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Abstract: Tumor vaccines are a novel approach to the treatment of malignancy, and are 

attracting the attention of the medical profession. Nanomaterials have significant advantages in 

the preparation of a tumor vaccine, including their ability to penetrate and target cancer tissue 

and their antigenic properties. In this review, we focus on several nanomaterials, ie, carbon 

nanotubes, nanoemulsions, nanosized aluminum, and nanochitosan. Applications for these 

nanomaterials in nanovaccines and their biological characteristics, as well as their potential 

toxicity, are discussed.
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Introduction
Increasing attention is being paid to tumor vaccines as a novel antineoplastic therapy 

that can be used against tumor cells, tumor cell lysates, and tumor antigens to activate 

the immune system and produce a specific antitumor immune effect.1,2 Tumor vaccines 

are derived from autologous or allogeneic tumor cells or a crude extract with a tumor-

specific or tumor-associated antigen.3 These vaccines can stimulate specific immune 

mechanisms to attack tumor cells and overcome the immune suppression caused by 

tumor products, thereby enhancing the immunogenicity of tumor-associated antigens 

and helping the immune system to destroy the tumor.4

The ideal vaccine would be a simple formulation, easy to manufacture, stable over 

a range of ambient temperatures, conveniently administered, readily transported, able 

to provide lifelong immunity against a given pathogen, and inexpensive.5,6

Basic particles of natural or artificial materials are used to compose  nanostructures. 

The three-dimensional size of these particles is in the range of 1–100 nm. The total 

number of elementary particles should be more than 50% of all particles in the 

 material.7 Nanomaterials have special thermodynamic, mechanical, magnetic, optical, 

and quantum properties, and their use in the preparation of tumor vaccines has enabled 

controlled release, stability, targeting, magnetic properties, greater penetration, and 

antigenic features to be incorporated.8–10 These characteristics make antitumor nano-

vaccines very promising for the prevention and treatment of cancer.11

Nanomaterials combined with tumor antigens allow tumor vaccines to have stronger 

biocompatibility, permeability, and targeting properties. Nanomaterials themselves 

are antigenic and can stimulate a strong immune response in the human body.12 

In the future, as nanoscience and nanotechnology make more progress, and more 
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new nanomaterials continue to appear, they will be used 

 increasingly in the field of tumor vaccines.13

There have also been some reports on the toxicity of 

nanomaterials.14 Nanomaterials may become attached to the 

surfaces of biological membranes by adsorption or electro-

static effects, causing damage to cells by generating reac-

tive oxygen species, resulting in lipid peroxidation, protein 

denaturation, DNA damage, and ultimately cell death.15–17 For 

example, multiwalled carbon nanotubes (CNT) are toxic to 

the immune system in mice,18 and can cause inflammation 

and damage to lung tissue.19 With the probable extensive 

application of nanomaterials in the future, the possibility 

of a negative impact of nanomaterials on humans cannot 

be ignored.

Carbon nanotubes
Carbon nanotubes formed by aggregation of single carbon 

atoms under certain conditions,20 have been used as carriers 

for a dendritic cell tumor vaccine. A dendritic cell tumor vac-

cine was created in vitro, whereby different amounts of tumor 

protein antigens against dendritic cells were loaded into CNT, 

and used to stimulate the immune system to produce more 

T cells, with the aim of destroying the tumor. CNT were 

connected with tumor proteins by formation of a covalent 

bond with tumor polypeptides or formation of complexes 

between CNT and tumor proteins.21 The CNT promotes 

phagocytosis of dendritic cells in the tumor tissue, such that 

more antigens to the dendritic cell are produced, significantly 

enhancing the immunogenicity of proteins in the tumor.22 

Thus, the ability of lymphocytes to attack and destroy the 

tumor are enhanced by activation using CNT-tumor protein 

complexes.23,24 In addition, the CNT-tumor protein complex 

is directly stimulated by the lymphocytes themselves, which 

further increases the ability of lymphocytes to destroy tumor 

cells. A foot and mouth disease virus polypeptide attached to 

CNT has been used to immunize BALB/c mice, and induced 

a strong antibody response.25 Multiwalled CNT conjugated 

with tumor lysate protein was shown to enhance the efficacy 

of immunotherapy using a tumor cell vaccine in a mouse 

model of H22 liver cancer.

CNT as tumor vaccine vectors
Most biological macromolecules, including proteins, can-

not enter cells because of the selective permeability of the 

cell membrane, which has hampered application of tumor 

 vaccines.26 DNA molecules, nucleic acids, proteins, and 

other biological molecules are adsorbed onto the outer wall 

of CNT via electrostatic and hydrophobic interactions.27,28 

The biological activity of these macromolecules can be 

retained and maximized by nonspecific interactions with 

CNT.29,30 The CNT then pass into cells via dissipation of 

passive energy and receptor-mediated endocytosis.31 Another 

theory is that diffusion of CNT into cells is an active process 

occurring at the phospholipid bilayer of the cell membrane.32 

CNT can be loaded with tumor-specific antigens by form-

ing stable covalent bonds or supramolecular assemblies 

based on noncovalent interactions. Once this cargo has 

been transported into various cells, tissues, and organs, the 

tumor-specific antigens are able to carry out their biological 

function.33 There has been a report of single-walled CNT 

being used as antigen carriers, whereby Wilms’ tumor antigen 

was solubilized onto single-walled CNT scaffolds which 

were rapidly internalized into antigen-presenting cells for 

recognition by T cells.34 In summary, CNT are ideal carriers 

for tumor vaccines.

Toxicity of CNT
Incorporation of nanomaterials in tumor vaccines has many 

advantages, but their potential toxicity cannot be ignored.35 

Epidemiological studies have shown that nanoparticles cause 

cardiovascular and respiratory disease, and can pass through 

the blood-brain barrier into the nervous system, leading to 

a variety of neurological disorders.36,37 In vitro studies have 

shown that CNT have many toxic effects, including decreased 

cell viability, induction of apoptosis, disruption of the cell 

cycle, and generation of oxidative stress and inflammatory 

responses.38–40 CNT can damage the respiratory system of 

mice by entering the alveolar space, causing a chronic inflam-

matory reaction characterized by intermittent granulomatous 

lung tissue and finally pulmonary fibrosis, with significantly 

greater toxicity than that seen with ordinary carbon black.41,42 

CNT distribute throughout the body via the circulatory and 

lymphatic systems in mice; therefore, their toxicity is not 

limited to the site of administration.43 It is possible that CNT 

have toxic effects in several organ systems. It has been con-

firmed that CNT pass through the blood-brain barrier into 

the central nervous system in mice,44 and neuronal apoptosis 

due to peroxide-induced inflammation and oxidative stress in 

stimulated neurons and glial cells has been observed.45,46

CNT makes protein adhesive modified, so the tumor 

antigen in it will be affected, resulting in immune activity 

reduced. Furthermore, the carbon nanotubes are difficult to 

be degraded in vivo, may be deposited within macrophages 

as the formation of localized granuloma.47,48
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Nanoemulsions
The term Nanoemulsion (NE) means the emulsion diameter 

of  droplets at the nanoscale. A nanoemulsion is created by 

two immiscible liquids with a thermodynamically stable 

isotropic appearance in a transparent or translucent disper-

sion system,49 and can be divided into oil-in-water (o/w), 

 water-in-oil (w/o), and bicontinuous types.50 Nanoemulsions 

have several advantages as parcel carriers for a tumor vaccine, 

because they have a strong affinity for the lymphatic system, 

which means they can be directed to the lymphatic circula-

tion where they gather in regional lymph nodes;  further, 

nanoemulsions stimulate lymphocytes to proliferate as part 

of specific immune responses in local lymph nodes.51 In addi-

tion, nanoemulsions enhance the bioavailability of a tumor 

antigen by ensuring its sustained release, particularly in the 

case of a w/o nanoemulsion, where the surface of the outer 

oil reservoir acts to partition and protect the contents from the 

destructive effects of enzymes.52,53 Lastly, the process used to 

form nanoemulsions is safe and does not alter the biological 

activity of the polypeptide ingredients.54

A novel o/w nanoemulsion has been used to prevent 

influenza, and w/o nanoemulsions have been the subject of 

research as vaccines for acquired immune deficiency syn-

drome and as immunotherapy for cancer.55,56 A nanoemul-

sion encapsulating MAGE1-HSP70 (melanoma associated 

antigen-hot shock protein)/super antigen staphylococcal 

enterotoxin A)57–59 showed good physicochemical properties, 

and was found to stimulate strong MAGE-1-specific cellular 

immunity and prevent expression of MAGE-1 tumor cell 

attacks in a mouse model.59

However, preparation of nanoemulsions remains difficult, 

given the lack of a standardized method, tumor antigen effi-

ciency is not high, and their use is still confined to animal 

experiments.60 Further, the mechanism explaining the lack 

of an immune response to MAGE-1 administered via an oral 

nanoemulsion is not entirely clear.52

Adjuvant nanosized aluminum
Aluminum hydroxide and aluminum phosphate were first 

approved for use as adjuvant therapy more than 70 years 

ago.61 These adjuvants are widely used in animal and human 

vaccines.62,63 When aluminum is used as an adjuvant for 

tumor vaccines, it is inexpensive, safe, and easy to prepare, 

and absorbs tumor proteins. However, aluminum adjuvants 

are neurotoxic, with allergic reactions at the injection site 

being common, along with poor antitumor cell immune 

function.63,64

Nanoaluminum compares well with ordinary aluminum 

as a tumor vaccine adjuvant because of its particle size, 

specific surface area, and strong adsorption capacity, that 

can enhance its adjuvant activity while improving targeted 

antigen delivery and reducing side effects; these advantages 

have taken nanoaluminum in promising research directions.65 

Adjuvant nanoaluminum immunotherapy induced strong 

humoral and cellular immunity against tumors in experiments 

using viral vaccines in a mouse model. The tumors were 

significantly reduced in size and strong effects on peripheral 

blood lymphocytes were shown in vitro.66

Nanoaluminum is a strong promoter of cell death in mice, 

suggesting that nanoaluminum may have significant neuro-

toxicity, leading to impaired neurobehavioral functioning.67 

Further, it has been shown that the toxicity and potential 

for bioaccumulation in earthworms exposed to high levels 

of nanoaluminum resulted in decreased reproduction.68 

Although nanosized aluminum is being used widely by the 

military and industry in many applications, its potential for 

bioaccumulation might affect humans, given that they are at 

the top of the food chain.

Chitosan nanoparticles
Chitosan is a cationic polysaccharide that exists in nature 

as a major component of the outer shell of animals with 

exoskeletons, and is a biopolymer produced by deacetyla-

tion of  chitin. Chitosan has excellent biodegradability, 

biocompatibility, and biosecurity, and overall nontoxic 

characteristics.69,70 As a carrier, nanochitosan can improve 

DNA and drug bioavailability, resistance in vivo to enzyme 

drop solutions, enhance controlled sustained release of 

biomaterials, reduce toxicity, and be prepared under mild 

conditions without the use of an organic solvent, thereby 

avoiding DNA and drug destruction, as well as preventing 

residual solvent remaining after the preparation process.71–73 

Chitosan nanoparticles can be used to alter loading of a 

protein and to adjust the value of each parameter during 

preparation. They also have high stability, high protein 

packing efficiency, can be prepared as a lyophilized pow-

der, and are easy to store and transport.74,75 Nanochitosan 

and microparticles are also suitable for tumor vaccines and 

have been shown to enhance antigen uptake by mucosal 

lymphoid tissues, thereby inducing strong responses against 

antigens.76,77

Nanochitosan has been reported to have a strong stimula-

tory effect on T and B lymphocytes as well as on the cellular 

and humoral immune systems, which can be activated at 
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the same time,78 and has immune-stimulating activity by 

increasing accumulation and activation of macrophages and 

polymorphonuclear cells, and induction of cytokines after 

intravenous administration.78–80 All these attributes indicate 

that nanochitosan can be used as a carrier for cancer gene 

vaccines, where it has great potential application.

Conclusion
The advent of vaccines has been of the utmost significance in 

human health. The smallpox, hepatitis B, Bacille Calmette-

Guérin, and influenza vaccines protect against viral and 

bacterial infection, and have saved countless lives. However, 

in the past ten years, although a large number of vaccines 

have been developed against a variety of cancers, very few 

have entered Phase III clinical trials. A lack of specificity 

for cancer cells is a major challenge for the development of 

cancer therapies.81

Because of their unique properties, nanomaterials are 

widely used in various fields,82 but their application has been 

less in the field of tumor vaccines. It could be possible to 

take advantage of their penetrating, biocompatible, target-

ing, immune activity, and sustained-release characteristics to 

make more powerful tumor vaccines, where nanomaterials 

would be the ideal choice for tumor vaccine carriers and adju-

vants. However, some of the toxic effects of nanomaterials 

cannot be ignored.

Development of tumor vaccines is a multidisciplinary 

field, and with more indepth research on tumor biology, tumor 

immunology, molecular biology, and nanomaterials, a tumor 

vaccine will eventually be produced for the prevention and 

treatment of cancer.
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