
© 2013 González-Masiá et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access 
article which permits unrestricted noncommercial use, provided the original work is properly cited.

OncoTargets and Therapy 2013:6 819–832

OncoTargets and Therapy

Circulating nucleic acids in plasma and serum 
(CNAPS): applications in oncology

José A González-Masiá1

Damián García-Olmo2

Dolores C García-Olmo3

1General Surgery Service, General 
University Hospital of Albacete, 
Albacete, 2Department of Surgery, 
Universidad Autónoma de Madrid 
and La Paz University Hospital, IdiPaz, 
Madrid, 3Experimental Research Unit, 
General University Hospital  
of Albacete, Albacete, Spain

Correspondence: Dolores C García-
Olmo 
Unidad de Investigación, Hospital General 
Universitario de Albacete, C/ Hermanos 
Falcó 37, 02006 Albacete, Spain 
Tel +34 967 59 75 13 
Fax +34 967 24 39 52 
Email doloresg@sescam.jccm.es

Abstract: The presence of small amounts of circulating nucleic acids in plasma and serum 

(CNAPS) is not a new finding. The verification that such amounts are significantly increased 

in cancer patients, and that CNAPS might carry a variety of genetic and epigenetic alterations 

related to cancer development and progression, has aroused great interest in the scientific 

community in the last decades. Such alterations potentially reflect changes that occur during 

carcinogenesis, and include DNA mutations, loss of heterozygosity, viral genomic integration, 

disruption of microRNA, hypermethylation of tumor suppressor genes, and changes in the 

mitochondrial DNA. These findings have led to many efforts toward the implementation of 

new clinical biomarkers based on CNAPS analysis. In the present article, we review the main 

findings related to the utility of CNAPS analysis for early diagnosis, prognosis, and monitoring 

of cancer, most of which appear promising. However, due to the lack of harmonization of 

laboratory techniques, the heterogeneity of disease progression, and the small number of 

recruited patients in most of those studies, there has been a poor translation of basic research 

into clinical practice. In addition, many aspects remain unknown, such as the release mechanisms 

of cell-free nucleic acids, their biological function, and the way by which they circulate in the 

bloodstream. It is therefore expected that in the coming years, an improved understanding of the 

relationship between CNAPS and the molecular biology of cancer will lead to better diagnosis, 

management, and treatment.

Keywords: plasma, cancer, clinical tool, microRNA, heterozygosity, tumor suppressor genes, 

viral genomic integration, biomarkers

Introduction
According to the World Health Organization, cancer mortality will increase by 45% 

from 2007 to 2030 due to the demographic increase and population aging.1 For that 

reason, many efforts have been made to find sensitive and specific biomarkers for early 

diagnosis, prognosis, and management of patients during treatment and follow-up.

A variety of tumors secrete proteins into the bloodstream that are routinely 

used as tumor markers in clinical practice, such as the prostate-specific antigen in 

prostate cancer, the alpha-fetoprotein in hepatocarcinoma, the carcinoembryonic 

antigen (CEA) in colon cancer, the cancer antigen (CA) 15.3 in breast cancer, and the 

CA19.9 in pancreatobiliary tumors.2 However, those techniques might lack sensitivity 

in nonsecretory tumors, and might give positive results due to inflammatory processes 

or benign illnesses, limiting their specificity. In addition, there are no known serum 

markers for most tumors, which highlights the need for extensive study of the biology 

of tumors to propose new clinical tools. Indeed, it is expected that an improvement in 
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the knowledge of the molecular biology of cancer will lead 

to earlier diagnosis and more effective treatments.

Cancer is produced and progresses as a consequence 

of complex and gradual processes, in which a variety of 

genetic and epigenetic alterations are involved (eg, muta-

tions, hypermethylations), and which mainly result in 

uncontrolled cell growth. Those molecular alterations can be 

found in the bloodstream,3 which suggests that we could find 

understanding of the molecular biology of a specific cancer 

in plasma (Figure 1). This was the start point for the study 

of the so-called cell-free nucleic acids in plasma and serum 

(CNAPS) as cancer biomarkers.

Although in the last decades the CNAPS concept has gen-

erated a considerable interest in the research community, the 

concept was first suggested many years before this. Specifi-

cally, Mandel and Métais4 first reported the existence of cell-

free DNA (cfDNA) in plasma in the mid-twentieth century. 

However, their study had scarce impact until 30 years later, 

when Leon et al5 demonstrated that cancer patients had higher 

cfDNA levels than normal people and that patients with per-

sistently high levels of cfDNA after treatment had a worse 

prognosis than those in whom cfDNA levels decreased.

Some years later, Stroun et al6 suggested that at least 

some of the cfDNA in serum or plasma was derived from the 

primary tumor, but this hypothesis was only confirmed later 

by two nearly parallel studies that described the presence of 

KRAS mutations in plasma from patients with pancreas neo-

plasm7 and acute myelogenous leukemia.8 Those discoveries 

were the milestones that opened new pathways for cancer 

biology research and the search for new clinical tools.

The term “CNAPS” refers to different types of cell-free 

nucleic acids (cfNAs), such as genomic DNA (gDNA), mito-

chondrial DNA (mitDNA), viral DNA and RNA, messenger 

(m)RNA, and microRNA (miRNA), which have recently been 

reported to be present in plasma.3,9–13

In spite of the increasing number of studies focused on 

CNAPS, and of the technological improvements, nowadays, 

some important aspects of CNAPS biology remain unknown, 

such as their release mechanisms,14 method of circulation,15–18 

and biological role in cancer progression.19 Limiting factors in 

the study of CNAPS have mainly been the lack of harmoniza-

tion of laboratory techniques, the heterogeneity of the disease 

progression, and the small number of recruited patients in 

most of studies, which is for some authors9 an example of 

poor translation of basic research into clinical practice.

Circulating cfDNA
Biology of cfDNA
It has been reported that cfDNA is a double-stranded mol-

ecule of low-molecular weight that is fragmented into short 

(70–200 base pairs) and long sections (up to 21 kilobases).20 

The analysis of those fragments has deepened understanding 

Analyses of plasma cfDNA:
• Quantitation of total cfDNA

• Quantitation of tumor cfDNA

• DNA integrity index

• Detection of molecular alterations harbored
in primary tumors:

    Mutations in oncogenes and/or tumor suppressor genes
    (eg, KRAS, APC, p53, PIK3CA, BRAF, EGFR, HER2)

    Methylation of genes
    (eg, p16, APC, SEPT9, RASSF1A, GSTP1, DAPK)

    Loss of heterozygosity

• Detection of viral DNA
   (eg, Epstein-Barr virus, human papillomavirus)

• Quantitation of mitochondrial cfDNA

• Mitochondrial DNA integrity

Analyses of plasma cfRNA:
• Quantitation of specific mRNA sequences

(eg, metastasin, cytokeratin 19, mammaglobin, squamous 
   cell carcinoma-antigen, human telomerase reverse transcriptase) 

• Quantitation of specific miRNA sequences 
(eg, miR-1, miR-15, miR-17-3p, miR-21, miR-25, miR-29a, 

   miR-30d, miR-44, miR-92, miR-92a, miR-106a, miR-128b, 
   miR-141, miR-221m, miR-223, miR-361-3p, miR-486, miR-625) 

Figure 1 Graphic representation of the analyses of cell-free nucleic acid (cfNA) circulating in plasma that have been tested in cancer patients and that might serve as clinical 
markers.
Abbreviations: mRNA, messenger RNA; cfDNA, cell-free DNA; cfRNA, cell-free RNA; miRNA, micro RNA.
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of their origin.21 For some researchers, the main source of 

cfDNA has been necrosis,22,23 while others have proposed 

apoptosis in view of the size of the DNA fragments detected 

in plasma.20 In addition, several studies have suggested the 

active release of cfDNA by cells,14,24 and specifically by 

lymphocytes.25 Therefore, two possible sources of cfDNA, 

non-mutually exclusive, have been considered: passive 

release through cell death and active release by cell secretion. 

Nonetheless, recent studies using genome-wide sequencing 

of plasma DNA have demonstrated that such DNA contains 

representation of the entire tumor genome and reflects the 

clonal genomic evolution of tumors.26

Theoretically, CNAPS would be rapidly degraded in 

the bloodstream by nucleases; it has even been proven that 

mutated cfDNA degrades faster than non-mutated cfDNA.27,28 

However, the enzymatic action might be limited because at 

least part of cfDNA appears to be protected by being com-

plexed or particulate with special protective characteristics 

against enzymatic degradation.29–31 A decreased activity of 

DNase has also been observed in plasma from cancer patients, 

which might be another reason for the high levels of cfDNA 

found in plasma.31

Quantitation of cfDNA in plasma  
and serum
Many studies have confirmed the early findings of Leon et al.3,9 

In fact, high concentrations of cfDNA have been reported in 

plasma and serum from patients with various cancers, such 

as cancer of the colon,33 lung,34–36 breast,37,38 stomach,39 and 

esophagus.40 The clinical value of such quantitation for dif-

ferential diagnosis was suggested in a large study by Shapiro 

et al,41 who showed that patients with benign gastrointestinal 

diseases had a lower mean concentration of plasma cfDNA 

(118 ng/mL) than cancer patients (412 ng/mL).

Several studies have proposed the use of the quantita-

tion of cfDNA in plasma as a method for screening colon,33 

breast,38 and lung cancers36,42 among others. In colon cancer 

patients, such a method has showed an even better sensitivity 

than CEA quantitation.33 In breast cancer patients, plasma 

levels of cfDNA have also been related to clinicopathologi-

cal variables such as size, tumor stage, lymphadenopathies, 

human epidermal growth factor receptor 2 (HER2)/neu level 

and state.38 In lung cancer, it has even been suggested that 

the concentration of circulating DNA might be a risk factor 

for the presence of the illness and a prognostic index during 

follow-up.36

However, in extensive revisions, the use of quantitation of 

cfDNA in plasma as a unique marker has been questioned9 

and has even been proposed as inadvisable in lung cancer43 

and associated with CA125 in ovarian cancer.44 In addition, 

it is remarkable that overlapping concentrations of cfDNA 

are found in healthy individuals under physiological stress 

(eg, physical exercise) or in patients affected by other pathologi-

cal processes, such as, inflammation, trauma, or sepsis.3,45–47

The validation of the clinical utility of methods for 

detection and quantitation of plasma cfDNA has probably 

failed because of technical limitations, particularly those 

related to sensitivity and specificity. There have been some 

attempts to establish reference values for different types of 

cancer;48 however, the lack of harmonization in the laboratory 

techniques (quantitative polymerase chain reaction [PCR], 

spectrophotometry, fluorimetry, etc) and the low number 

and heterogeneity of patients enrolled in each study, have 

prevented the achievement of suitable statistical power and 

the establishment of reference patterns.3,9,10

Although, theoretically, the levels of cfDNA in plasma 

might be affected by several clinicopathological features 

such as tumor size, tumor stage, or metastasis,9,38 no direct 

relationship between these features has been proven, as 

Lecomte et al discussed in their review focused on colorec-

tal cancer.49 García-Olmo et al have conducted studies in 

animal models to deepen understanding of cfDNA kinetics 

and have repeatedly shown that non-mutated DNA levels 

are not significantly related to tumor size or metastasis.50,51 

In fact, they found that large amounts of non-tumor DNA 

are released during tumor progression and, in particular, at 

the early stages, suggesting that there is active interaction 

between tumor and non-tumor cells.50

It is probable that the quantitation of cfDNA in plasma 

will be of most clinical value during disease monitoring.42 

It has been reported that plasma levels decreased in cancer 

patients after surgical treatments33,35,37,39,40 and/or chemoradio-

therapy,52 sometimes reaching levels similar to those measured 

before treatment.35,39,40 In addition, patients who maintained 

high levels of cfDNA in plasma either did not respond to the 

treatment or had a high risk of relapse.5,33–37,53

Circulating nucleosomes, as degradation products of 

necrotic tumor cells in the bloodstream, have also been 

examined and quantified by enzyme-linked immunosorbent 

assay techniques.16 The DNA of necrotic cells, after being 

phagocytosed by macrophages,23 might be released to the 

bloodstream inside those structures, which protect it from 

enzymatic degradation. Nucleosomes have been found in 

healthy subjects and in patients with benign diseases,15 thus, 

their value as a screening method appears to be limited; 

however, there is some evidence to support their utility 
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for cancer monitoring. Specifically, during chemotherapy 

treatments, an initial increase of the levels of nucleosomes has 

been observed in plasma, which might be related to apoptosis 

provoked by treatment, and a later decrease in patients who 

had a good response to the treatment.15,54,55

Molecular alterations of cfDNA
Most of the molecular alterations found in cfDNA circulating 

in plasma reflect the genetic and epigenetic changes found in 

primary tumors and, thus, the analysis of such tumor cfDNA 

might be valuable for tumor diagnosis and monitoring. Highly 

sensitive methods are required to detect those alterations 

among larger quantities of non-altered cfDNA molecules and, 

for this reason among others, extremely varied results have 

been reported.3,20,56

Following, we review the alterations in cfDNA most 

frequently found in plasma from cancer patients and tumor-

bearing animals.

Integrity of the DNA strand
Using PCR, Wang et al57 found that long DNA fragments, 

related to necrosis phenomena, could be distinguished from 

shorter fragments, produced by physiological apoptosis 

phenomena. These findings gave rise to the so-called integrity 

index, based on the ratio between long and short cfDNA 

fragments. The integrity index was established based on 

gynecologic and breast cancers,57 with the results obtained 

from 61 patients compared with those from 65 patients 

without neoplastic disease. It was found that the area under 

the curve for the DNA integrity index was 0.911 in cancer 

patients in relation to patients without cancer, with 100% 

sensitivity and 62% specificity. The authors suggested that 

the integrity index provides a simple and inexpensive way 

to detect cancer.57

A number of transposable elements of the genome, such 

as ALU and LINE1 sequences, can be easily detected and 

have been associated with tumor necrosis. Specifically, ALU 

sequences are short elements (typically 300 nucleotides in 

length) that account for more than 10% of the human genome. 

Umetani et al developed a method to measure the integrity 

of cfDNA in serum using quantitative PCR for ALU repeats, 

and suggested that the integrity index is increased at the early 

stages of the disease and a promising molecular biomarker 

for detecting colorectal and breast cancer.58,59 Moreover, it 

might serve as a sensitive method to detect nodal metastases 

in the early stages, having an even higher predictive value 

than the clinicopathological variables commonly used, such 

as tumor size and stage.59

In a recent study in patients with hepatitis B virus-related 

hepatocellular carcinoma, the integrity index was associated 

with tumor size, TNM Classification of Malignant Tumors 

(TMN) stage, and nodal metastasis, and showed a more 

discriminatory power than total cfDNA concentration.60

Further, in other recent studies, the clinical value of the 

integrity index has been demonstrated, not only for the diag-

nosis but also the monitoring of the disease. For example, it 

has been found that the integrity index decreases in parallel 

to the response to surgical treatments for head and neck 

tumors61 and melanoma,62 to chemotherapy in leukemia,63 

to radiotherapy in nasopharyngeal tumors,64 and to chemo-

radiotherapy in colorectal cancer.52 Moreover, it has been 

reported that patients with high concentrations of integrity 

DNA had shorter disease-free intervals.64

Alterations in the integrity of DNA have also been 

detected in other organic liquids, such as urine, and can be 

used in the early diagnosis of bladder cancer without cytol-

ogy.65 Some authors have emphasized that the integrity index 

meets many of the requirements of a universal biomarker;10 

however, other studies have not supported this idea.66

Gene mutations
As previously mentioned, many studies have shown that gene 

mutations found in primary tumors can be also detected in 

cfDNA circulating in plasma. The literature reports a wide 

percentage range of patients in whose plasma such mutations 

have been detected. The differences between studies might be 

due to technical reasons, since sensitive techniques are needed 

to detect very small amounts of mutated DNA among larger 

quantities of un-mutated DNA, which has a dilution effect.

The gene that has most frequently been examined is 

the KRAS oncogene, which is mutated in variable rates in 

high-incidence tumors, such as colon, pancreas, lung and 

thyroid tumors,9 and has intrinsic characteristics that make 

it useful as a marker.49 In fact, the prevalence of KRAS muta-

tions is near 50%. Such mutations occur in the early stages 

of carcinogenesis and are mostly produced at specific sites 

(particularly in codon 12), which facilitate its detection using 

PCR-based techniques.

With respect to colorectal cancer, KRAS mutations have 

been found in 40%–50% of patients, and have also been 

detected in the plasma or serum of 25%–30% of patients.49 

Kopreski et al67 tried to correlate the detection of KRAS muta-

tions in plasma with clinicopathological findings detected by 

colonoscopy. They enrolled into their study one of the largest 

series of colorectal cancer patients that has ever been enrolled 

into similar studies, and detected KRAS mutations in plasma 
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from 83% of patients whose tumors had such mutations.67 

Moreover, they also found that some patients with apparently 

normal colonoscopy had KRAS mutations in plasma, which 

might be related to the presence of precancer lesions, thus 

suggesting the technique’s suitability for early diagnosis and 

screening.67

In a review by Sorenson,68 the author defended the detec-

tion of KRAS mutations in plasma as a specific marker for 

gastrointestinal tumors, with 2.5% false positives, although 

the review of studies showed that the concordance with 

KRAS plasmatic mutations with respect to primary tumor 

was only 50%. It has also been reported that other mutations, 

different from those in primary tumors, can be detected in 

plasma from cancer patients, which might be due to clone 

heterogeneity in tumors.69

In patients with pancreas cancer, it has been shown that 

detecting KRAS mutations in plasma is useful for early diag-

nosis as a complementary marker together with other serum 

markers (eg, CA19.9).70 Other researchers have also used it 

for disease monitoring.71

In a prospective study conducted by Gormally et al72 of a 

healthy population, KRAS mutations were detected in plasma 

from 1.2% subjects and p53 mutations in 3.6%. The authors 

suggested that KRAS mutations are detectable in plasma 

before the diagnosis of bladder cancer. In contrast, KRAS 

mutations have been detected by other researchers in up to 

30% of healthy individuals;9 this has been interpreted as a 

limitation of the diagnosis and screening value.

With respect to mutations in other genes, Chen et al73 used 

an ultrasensitive technique to detect p53 mutations in plasma 

from patients with Stage II and III breast cancer, and their 

results showed a correlation between such detection and the 

clinical course of the disease after therapy.

The value of detection of tumor mutations in plasma for 

monitoring the response to treatment has been analyzed in 

several studies. Diehl et al74 showed that the detection and 

quantification of mutated cfDNA in plasma from colon 

cancer patients undergoing surgery and chemotherapy were 

more useful for monitoring than the quantitation of CEA in 

serum. In addition, a recent study has shown that the use 

of panels with the most frequent mutations in colorectal 

cancer (APC, KRAS, TP53, PIK3CA, and BRAF) was more 

useful than using CEA and CA19.9 levels.75 Further, it has 

been suggested that, in the postoperative period, the levels 

of mutated KRAS in plasma are a more powerful predictor 

of recurrence than Dukes stage.76

In breast cancer patients, the presence of amplified 

HER2 has been demonstrated in circulating cfDNA during 

follow-up.77 This led the researchers to propose such ampli-

fication as a marker for prognosis and response to treatment 

with monoclonal antibodies, such as trastuzumab.77 A recent 

study has provided proof of the concept that tumor cfDNA 

circulating in plasma represents a highly sensitive biomarker 

of tumor burden in metastatic breast cancer.78 Specifically, 

the researchers developed new methods to identify somatic 

genomic alterations (point mutations, structural variants) 

and designed personalized assays to quantify tumor cfDNA 

circulating in plasma from 30 patients. They found that levels 

of tumor cfDNA showed a greater dynamic range and greater 

correlation with changes in tumor burden than did CA15-3 

or circulating tumor cells.78

Many chemotherapeutic agents act on pathways in which 

KRAS, BRAF, EGFR, or p53 are involved.79,80 For this reason, 

in many cases, it is important to know the mutation status 

for predicting the response to treatment and monitoring the 

disease. The analysis of plasma offers a noninvasive and 

quick way to find out this information and, in this sense, 

it has been reported that detection of EGFR mutations in 

plasma might be useful to predict disease progression, 

disease-free intervals, and drug resistances in patients with 

lung cancer.79–81 Moreover, it has recently been reported that 

sequencing of cancer exomes in serial plasma samples might 

be useful to track genomic evolution of metastatic cancers 

in response to therapy.26 The researchers described a nonin-

vasive approach for characterizing cancer exomes in plasma 

that might enable detailed and comprehensive evaluation of 

clonal genomic evolution associated with treatment response 

and resistance.26

Summarizing, patients whose tumors have specific muta-

tions might be monitored by analyzing the tumor cfDNA in 

their plasma samples.10,26,78

Gene hypermethylations
Some tumors are related to specific epigenetic alterations 

(eg, methylation), leading to changes in the expression 

of promoters of suppressor genes, which results in their 

silencing. Such alterations occur early in tumorigenesis 

and in DNA fragments that are rich in cytosine and guanine 

(CpG islands). The first observations were reported in 1999 

by Esteller et al82 in non-small cell lung carcinoma; now, 

the detection of these alterations represents one of the most 

promising advances in cancer diagnosis.

Epigenetic alterations are not tumor specific; moreover, 

there are some genes that are frequently hypermethylated and 

silenced in different types of tumors. In fact, many studies 

have analyzed panels of genes to increase sensitivity.83–85 
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Thus, it is essential to select accurately the genes to analyze 

for each type of cancer to improve the sensitivity of the 

analyses. Some of the most common aberrant methylations 

affect the p16 tumor suppressor gene and have been found 

in patients with liver, lung, and breast tumors.82,86,87 Other 

suppressor genes frequently hypermethylated are SEPT9, 

RASSF1A, GSTP1, and DAPK, among others.

The clinical value of the detection of hypermethylated 

genes in plasma has been shown in different types of cancer 

such as breast,84,85 colon,53 liver,88 esophagus,89 and urological 

tumors,90 as well as in hematologic diseases.91 It has been 

suggested that the methylated status of cfDNA circulating 

in plasma might be a tool for prognosis stratification and 

the prediction of the response to some chemotherapeutics 

agents,8,9,92 disease-free interval, and risk of relapse.53,88,89

Hypermethylations have also been detected in cfDNA 

from other body fluids such as urine.90 Specifically, the 

presence of tumor cfDNA has been reported in 70% of 

urine samples, suggesting its utility for the diagnosis and 

monitoring of patients with urologic tumors such as bladder, 

prostate and kidney cancers.90

Microsatellite alterations
“Microsatellites” are repeating sequences of one to six 

nucleotides that are scattered along the genome; their 

function is unknown. Such sequences serve to identify “loss 

of heterozygosity” (LOH), which is a frequent alteration 

of tumor DNA characterized by the loss of an allele when 

compared with matched normal DNA from the same 

individual. LOH indicates the absence of a functional tumor 

suppressor gene by deletion. In contrast, some tumors have 

abnormally long or short microsatellites as a result of a 

defective DNA repair process; this is termed “microsatellite 

instability” (MSI).

It has been reported that LOH and MSI can be detected 

in cfDNA circulating in plasma; however, discrepancies 

between tumor DNA and plasma cfDNA have been reported.2 

Although the detection of such alterations in plasma is more 

probable in advanced stages, some researchers have sug-

gested a potential value for such detection at the diagnosis 

stage of breast93 and ovarian cancers,44 which may have an 

even higher sensitivity than the quantitation of cfDNA.44

To increase the sensitivity of this kind of marker, they 

have been tested in combination with several other plasma 

markers, such as methylations and prostate-specific antigen 

in prostate cancer.94 In addition, panels of microsatellites 

are often used to improve sensitivity.95,96 For example, in a 

recent prospective study in breast cancer patients, LOH was 

determined by PCR-based microsatellite analysis using a 

panel of eight polymorphic markers.96 The researchers found 

that LOH at those markers was significantly correlated with 

tumor stage, tumor size, lymph node metastasis, positive 

progesterone, and HER2 status.96 Moreover, LOH at a marker 

mapping to cyclin D2 correlated with shorter overall survival. 

Thus, the researchers concluded that the improved detection 

of LOH on cfDNA provides important information on DNA 

losses of tumor suppressor genes (TIG1, PTEN, cyclin D2, 

RB1, and BRCA1) in breast cancer. In particular, loss of the 

cyclin D2 gene may become an important prognostic marker 

easily detectable in the peripheral blood.96

Prior to that interesting study, it was reported that the 

assessment of microsatellite status in plasma might be a 

useful predictive tool for prognosis in breast carcinoma,97 to 

monitor the response to surgical treatment; in oral squamous 

cell carcinoma;95 and to biochemotherapy in metastatic 

melanoma.98

viral DNA
Viruses are the main etiologic factors of a number of tumors 

and can be detected in plasma by PCR-based techniques. In 

fact, the presence of cfDNA of Epstein–Barr virus (EBV) 

has been demonstrated in nasopharyngeal cancers, Hodgkin’s 

disease, and Burkitt lymphoma; human papillomavirus in cer-

vical tumors; and hepatitis B virus in hepatocellular tumors, 

certain lymphomas, and gastric cancers.3,10,12,99–102

The presence of EBV sequences in plasma has been the 

focus of many studies, perhaps due to the high incidence of 

nasopharyngeal carcinoma in Asian countries. It has been 

shown that the detection of EBV in plasma is a powerful 

diagnostic tool and its quantitation might have prognostic 

value.103 In addition, detection of EBV in plasma has also 

been associated with response to radiotherapy, disease recur-

rence, and survival.12

mitDNA
Although the study of the genetic and epigenetic alterations 

of gDNA is the cornerstone of cancer research, the discov-

ery of specific alterations in mitDNA in cancer patients104 

has opened new routes in the search for clinical tools. The 

detection of aberrant changes in mitDNA is becoming an 

important tool for the early diagnosis of cancer, which is in 

part due to the fact that the analysis of mitDNA has some 

advantages over that of gDNA.11 These advantages can be 

summarized as follows.

•	 The mitochondrial genome is shorter and more simply 

organized than nuclear DNA. These unique properties 
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make the screening of a mitochondrial genome much 

easier and more cost-effective.

•	 mitDNA’s high number of copies, in comparison to 

nuclear DNA, make it a much more sensitive method.

•	 mitDNA fragments have been detected in different body 

fluids from cancer patients at early stages, such as in the 

blood,104,105 saliva,106 urine,107 and sputum.

The alteration of mitDNA as a response to adaptation 

changes was first described in the early twentieth century, when 

it was termed the “Warburg effect.”108 Alterations in mitDNA 

have been found in the plasma of healthy individuals109 and have 

also be related to tumor development and progression.110 The 

alterations, which are point mutations, deletions, insertions, and 

quantitative changes,11 have been detected in a wide range of 

tumors, such as breast, colon, liver, head, and neck and lung.111 

It is important to highlight that the identification of mutations 

in a concrete region typical to many tumors is referred to as the 

“D-loop,” which may have diagnostic value.104

The presence of mitDNA mutations has been reported in 

plasma and serum samples from patients with hepatocellular, 

pancreatic, prostatic, colorectal, and esophageal cancers, 

among others.112–116 Moreover, several studies have suggested 

that quantitation of mitochondrial cfDNA in plasma might 

serve as a clinical tool,117,118 and may even have a higher 

diagnostic value than gDNA in some cases.118 Specifically, 

Kohler et al117 compared the levels of gDNA and mitDNA 

in plasma from patients with benign and malignant breast 

tumors with those from healthy controls. They concluded that 

both nuclear and mitochondrial cfDNA have potential as bio-

markers in breast tumor management; however, the nuclear 

cfDNA showed greater sensitivity and specificity. Zachariah 

et al118 conducted a study in 104 women with ovarian cancer, 

benign tumors, and endometriosis, and compared the levels of 

gDNA and mitDNA in plasma in these patients. Patients with 

epithelial ovarian cancer had significantly higher amounts 

of nuclear and mitochondrial cfDNA than the other women, 

but the levels of cfDNA in plasma were related to neither 

pathological parameters nor CA125 levels. In addition, the 

researchers found that quantitation of mitDNA was a unique 

way to differentiate between patients with ovarian cancer 

and endometriosis.118

Other studies have used “mitochondrial DNA integrity,” 

which has been defined as the ratio between long and short 

fragments of mitDNA.119 It has been reported that such an 

index might differentiate between patients with urologic 

malignancies (renal, prostate, and bladder tumors) and 

healthy subjects, with a sensitivity of 84% and a specificity 

of 97%.119

Finally, it has been reported that some mitDNA poly-

morphisms are associated with cancer development, thus a 

genetic analysis of such polymorphisms could help to identify 

target populations to establish screening programs.11

Circulating cell-free RNA (cfRNA)
Biology of cfRNA
The origin of the cfRNA circulating in plasma, its role, and 

its release mechanisms are yet unknown. The existence of 

cfRNA in blood was reported many years ago when, in 1987, 

Wieczorek et al120 found RNA in proteolipid complexes in the 

serum of cancer patients.121 However, the potential clinical value 

of the detection of cfRNA in plasma did not attract the attention 

of researchers until 1999, when two parallel studies reported 

the detection of tyrosinase mRNA in patients with metastatic 

melanoma122 and mRNA associated with EBV in patients with 

nasopharyngeal carcinoma.123 Many studies have subsequently 

reported the presence of specific mRNA in plasma from patients 

with a variety of cancers including colon,124–126 breast,127,128 

prostate,129,130 melanoma,122 lung,131 and thyroid.132

It was theorized that the fragility of cfRNA in serum or 

plasma – due to the fast enzymatic degradation it undergoes, 

which is increased in cancer patients133 – might make its 

detection difficult. However, it was found that the molecules 

are more stable than it was presumed,134 possibly due to 

protection by vesicle-like structures.

The origin of cfRNA remains less clear than that of 

cfDNA.21,24 It has been proposed that apoptosis might be 

involved in the release of cfRNA, and that its association with 

apoptotic bodies might explain the resistance to nucleases 

in blood.31 However, other hypotheses for the circulation of 

cfRNA have also been put forward, such as it occurring within 

lipoprotein complexes24 or being in other actively-released 

particles, such as exosomes.121

Ng et al135 examined the particle-associated nature of 

circulating cfRNA by filtering plasma samples from healthy 

subjects and cancer patients through material with different 

pore sizes. They found greater amounts of particle-associated 

mRNA in cancer patients than in healthy subjects, suggesting 

that most of the cfRNA not associated with particles had 

degraded.135

Detection and quantitation of cfRNA  
in plasma and serum
The use of cfRNA as a biomarker has several advantages 

including the ease with which plasma or serum samples 

for testing can be obtained, which makes it feasible for 

the monitoring of metastatic disease and even for wide 
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screenings. However, RNA molecules are fragile, so high 

sensitivity techniques with simultaneous internal controls 

are necessary.136

One of the most analyzed mRNAs in plasma is that of 

the human transcriptase reverse telomerase (hTERT), which 

corresponds to a ribonucleoprotein involved in the repair and 

lengthening of telomeres in eukaryotic cells. This mRNA is 

overexpressed in a variety of tumors.124,126,128,129,137–140 However, 

cfRNA is not specific to cancer patients and can also be found 

in healthy volunteers or in those suffering trauma.46,141

In breast cancer patients, using PCR-based techniques, 

hTERT mRNA has been detected in serum, even in patients 

with localized disease.128 Silva et al127 observed that analysis 

of specific mRNA epithelium (cytokeratin 19) in plasma, in 

combination with mammaglobin, facilitates the detection 

of a greater number of positive cases than does analysis of 

tumor cfDNA (73% versus [vs] 29%). Moreover, detection 

of epithelial mRNA has been found to be related to tumor 

size and proliferation rate.127 In addition, El-Abd et al have 

suggested the utility of the detection of metastasin mRNA 

in serum as a survival marker, with high sensitivity (85%) 

and specificity (100%).142

In colon cancer patients, an adequate correlation between 

hTERT levels in plasma and tumor stage has been observed, 

which has led such a quantitation to be proposed as a tool for 

screening, monitoring,137 and response to treatment.140

With respect to lung cancer, Miura et al138 analyzed 

plasma samples from 112 patients and 80 healthy subjects 

to detect and quantify hTERT and epidermal growth factor 

receptor (EGFR) mRNAs. They found that the sensitivity 

and specificity in lung cancer diagnosis were, respectively, 

89% and 73% for hTERT mRNA, and 71% and 80% for 

EGFR mRNA. Moreover, they found that the number of 

copies of hTERT mRNA significantly decreased after 

surgical treatment.138 These data led the researchers to 

suggest that hTERT mRNA, especially when combined 

with EGFR mRNA, may be an excellent biomarker for 

pulmonary malignancies to diagnose and assess clinical 

stage.138 In addition, it has been suggested that the detection 

of heterogeneous nuclear ribonucleoprotein-B1 mRNA and 

HER2/neu-specific mRNA might have diagnostic value in 

lung cancer.143

In esophagus cancer patients, the detection of squamous 

cell carcinoma-antigen mRNA (SCC-Ag mRNA) by real-

time PCR was shown to be the best predictive factor for 

recurrence in patients.144

In hepatocellular cancer, the detection of hTERT mRNA 

in serum has been suggested to be of diagnostic value, with a 

sensitivity of 88% and a specificity of 70%.139 Moreover, the 

researchers reported a good correlation between the levels of 

hTERT mRNA in plasma and clinicopathological parameters, 

such as degree of differentiation.139 However, other studies 

have shown no correlation with clinicopathological variables 

such as tumor size.145

cfRNA can be detected in other body fluids such as saliva 

and urine, and satisfactory results have been reported for its 

detection in these as a marker for the diagnosis of mouth and 

urological cancers, respectively.136

miRNA
The discovery of miRNA in 1993 was a milestone in cell 

biology research. From that moment, the number of identi-

fied miRNAs steadily increased and, to date, more than 

900 human miRNAs have been discovered.

“miRNAs” are small noncoding molecules of 

18–22 nucleotides that regulate gene expression, acting at a 

post-transcriptional level. It is known that a unique miRNA 

is able to regulate multiple different mRNAs, so that it might 

potentially alter the function of multiple channels.13

miRNAs have been demonstrated to play important roles 

in control of cell proliferation, cell differentiation, and apop-

tosis, thus their dysregulation contributes to tumor develop-

ment. Moreover, it has been demonstrated that miRNAs can 

function as potential oncogenes or oncosuppressor genes, 

depending on the cellular context and on the target genes 

they regulate.146 Aberrant expression of miRNAs has been 

associated with multiple types of cancer including colon,147–150 

lung,151–154 breast,155 prostate,156 gastric,157 and esophagus,158 

as well as lymphoma.159

miRNAs have been detected in the plasma and serum of 

animals and humans, and in both healthy subjects and cancer 

patients. The first evidence that miRNAs might serve as sero-

logical biomarkers of solid tumors was provided by Mitchell 

et al156 and Chen et al.147 miRNAs circulating in plasma have 

some advantages as clinical markers compared with other 

forms of cfRNA, since they have a remarkable resistance to 

endogenous and exogenous ribonuclease activity, extreme 

pH conditions, and freeze–thaw cycles, whereas synthetic 

miRNAs are promptly degraded.160

Circulating miRNAs have been found packaged into 

various membrane-bound vesicles such as exosomes,18 

microvesicles and apoptotic bodies (reviewed by Zandberga 

et al),160 and also in lipoprotein complexes.141 This is probably 

the main reason for the high resistance of plasma miRNAs, 

which makes their detection by PCR-based techniques 

easy. In addition, miRNAs are tissue specific, which allows 
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the development of panels to help in the diagnosis of 

tumors of unknown origin.156,161,162 Moreover, they are not 

only detectable in the bloodstream but also in other body 

fluids.18,163 Thus, the use of miRNAs as serological biomarkers 

is a very attractive option and research in this field continues 

to increase.

miR-21, probably the most analyzed miRNA, is often 

overexpressed in many types of tumors.164 Nonetheless, a 

number of miRNAs have been demonstrated to have potential 

value as serological biomarkers in cancer, including miR-1, 

miR-10b, miR-17-92, miR-24, miR-92a, miR-122, miR-141, 

miR-155, miR-195, miR-221, and miR-375.165

The diagnostic value of miRNA panels appears to be 

superior to that of individual miRNAs.160 Specific expression 

patterns of serum miRNAs have been identified for lung 

cancer, colorectal cancer, and diabetes, providing evidence 

that serum miRNAs contain fingerprints for a variety of 

diseases.147

It has been demonstrated that colorectal cancer patients 

have an miRNA serum profile significantly different to that 

of healthy subjects. Specifically, 69 miRNAs have been 

detected in sera from colorectal cancer patients but not in 

those from healthy subjects.147 Moreover, colorectal cancer 

patients have been found to share a large number of serum 

miRNAs with lung cancer patients.147 In addition, Ng et al148 

analyzed plasma samples from 90 colorectal cancer patients 

and 50 healthy subjects and found that miR-17-3p and 

miR-92 were overexpressed in patients, which suggested 

the potential diagnostic value of such plasma levels, with a 

sensitivity of 89% and specificity of 70%. Subsequent studies 

have supported Ng et al’s findings, including that by Huang 

et al,149 who showed that levels of miR-29a and miR-92a in 

plasma discriminate colorectal cancer, with 83% sensitivity 

and 85% specificity. In a recent revision, the prediction value 

of three miRNAs (miR-221, miR-141, and miR-29a) has been 

highlighted as 3 independent factors of wrong predictions in 

different clinical stages.166

The increased expression of miR-21, miR-106, and miR-

15 has been observed in breast cancer patients compared with 

that observed in healthy subjects, in both tissues and serum, 

and those levels have been found associated with tumor stage 

and the presence of lymph node metastases.155 With respect to 

lung cancer, Wang et al152 and Liu et al153 observed high levels 

of miR-21 in the plasma of cancer patients compared with 

that in healthy individuals. These levels were also associated 

with TNM stage and the presence of lymph node metastasis. 

Further, Roth et al154 suggested that miR-361-3p and miR-

625 might have a protective effect on the development of 

non-small cell lung cancer, while its quantification in serum 

might have the diagnostic potential to detect that cancer, 

particularly in smokers.

The most comprehensive search to date for circulating 

miRNAs with prognostic significance was performed by Hu 

et al,151 who analyzed a large cohort of 303 patients and found 

that four plasma miRNAs (miR-486, miR-30d, miR-1, and 

miR-449) were independent predictors of average survival. 

In prostate cancer, Mitchell et al156 were able to distinguish 

patients with cancer from healthy individuals by serum levels 

of miR-141. Finally, Lawrie et al demonstrated that serum 

levels of miR-21 were associated with the disease-free inter-

val in patients with diffuse B-cell lymphoma.159

In future, the search for circulating miRNAs of clinical 

value is likely to be carried out at the same time as the study 

of many unknown aspects, such as the role of circulating 

miRNAs, the cell types that secrete them, and the regulation 

of this secretion.

Conclusion
The data reviewed in the present article suggest that the 

clinical value of cfNAs circulating in plasma is already 

more than a theoretical idea, since the characterization and 

the quantitation of such nucleic acids (NAs) have been shown 

to be complementary tools in the diagnosis, prognosis, and 

management of cancer patients (Figure 2). However, some 

important questions remain unanswered, largely because most 

studies have been underpowered as well as because there has 

been no adequate standardization of laboratory techniques, 

Trauma Sepsis
inflammatory diseases

Necrosis/apoptosis
active release

Diagnosis Prognosis Treatment

Laboratorial detection
of CNAPS:

PCR, sequencing, fluorimetry,
spectrophotometry, etc

Clinicopathological
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Tumor size, tumor grade,
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Cancer
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Quantitative
changes
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Clinical value

Figure 2 Schematic representation of the outline of the present review.
Abbreviations: CNAPS, cell-free nucleic acids in plasma and serum; PCR, 
polymerase chain reaction; TNM, TNM Classification of Malignant Tumors.
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which complicates the comparison of results from different 

groups.3,9,10 Thus, it appears necessary to drive initiatives 

directed toward validating and verifying laboratory methods 

and procedures for required molecular tests before their use 

in clinical testing. For this, it might be useful to network, as 

has been demonstrated by successful previous initiatives.167 

Methods based on sequencing (genome-wide sequencing, 

exome sequencing, etc) appear to be the definitive tool for 

making the analysis of cfDNA for cancer monitoring useful, 

since it allows for personalized assays.26,78

However, plasma cfNAs have yet many enigmatic 

aspects. Elucidation of these might lead us to a revision in the 

way the pathobiology of cancer is conceived. It is likely that 

many molecular pathways are involved in the origin of such 

NAs, since various results point in non-exclusive different 

directions. It has been postulated that the cfNAs circulating 

in plasma are not merely biological waste, but that they may 

be directly involved in the development of metastases, pos-

sibly through transfection-like uptake by susceptible cells.168 

This hypothesis, the “genometastasis theory,” is supported by 

strong evidence – namely, the observation that plasma from 

cancer patients can transfect and oncogenically transform 

cultured cells.169,170

Regardless, no conclusive explanation of the circulation 

mechanism of cfNAs yet exists. Several groups have 

suggested a relationship between the presence of cfNAs 

in plasma and the presence of exosomes.121,171 Thus, 

it appears feasible that at least part of plasma cfNAs 

circulates within exosomes. This finding correlates with 

the idea that plasma cfNAs might have a role in tumor 

progression, since it has been proven that exosomes are 

able to transfer their RNA content to cells, and that this 

RNA can be functional in its new location.18 It has even 

been demonstrated that miRNAs are transferred during 

immune synapsis and are able to modulate gene expression 

in recipient cells.172 Moreover, cross-talk between tumor-

derived exosomes and host cells, such as bone marrow 

progenitor cells, appears undeniable.173 Thus, transfer of 

genetic material from exosomes to cells might be involved 

in the recruitment and metastatic conversion of host cells. 

Conversely, it might be possible to exploit this phenomenon 

for therapeutic purposes and, perhaps, it will be proper to 

focus the development of clinical tools on the detection 

and analysis of NAs containing microparticles. Certainly, 

at this moment, a robust body of research on exosomes and 

microvesicles exists and increased understanding of such 

particles in future will shed light on cancer pathobiology 

and offer promising perspectives on clinical tools.

Thus, although the origin and the circulation mechanism 

of plasma cfNAs remain unclear, there is strong evidence to 

suggest that such NAs will become useful biomarkers for 

the diagnosis and monitoring of cancer disease and that they 

might be essential to tumor development and progression.
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