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Abstract: The numerous processes involved in the etiology of breast cancer such as cell  survival, 

metabolism, proliferation, differentiation, and angiogenesis are currently being elucidated. 

 However, underlying mechanisms that drive breast cancer progression and drug resistance are 

still poorly understood. As we discuss here in detail, the Notch signaling pathway is an important 

regulatory component of normal breast development, cell fate of normal breast stem cells, and 

proliferation and survival of breast cancer initiating cells. Notch exerts a wide range of criti-

cal effects through a canonical pathway where it is expressed as a type I membrane precursor 

heterodimer followed by at least two subsequent cleavages induced by ligand engagement to 

ultimately release an intracellular form to function as a transcriptional activator. Notch and 

its ligands are overexpressed in breast cancer, and one method of effectively blocking Notch 

activity is preventing its cleavage at the cell surface with γ-secretase inhibitors. In the context 

of Notch signaling, the application of clinically relevant anti-Notch drugs in treatment regimens 

may contribute to novel therapeutic interventions and promote more effective clinical response 

in women with breast cancer.

Keywords: breast cancer, signaling pathways, γ-secretase, γ-secretase inhibitors, combination 

breast cancer therapy

Introduction
In recent years, there have been many advances in deciphering critical cell signaling 

networks and their relationship to the driving forces of cancer onset, growth, and 

metastasis. Moreover, in the hierarchy of signaling pathways, several pathways are 

considered fundamental to regulation of cell fate and having widespread survival 

effects, namely the Notch, Wnt/Wingless (Wnt), and Hedgehog (HH) pathways.

This review will focus on the role of the canonical Notch signaling pathway in breast 

cancer etiology and progression. Furthermore, we will review the current therapeutic 

options available for inhibiting Notch. Blockade of an upregulated Notch signaling 

pathway can be achieved by inhibiting the formation of the main force of Notch activ-

ity, the Notch intracellular domain (NICD). Thus, a pharmacological approach using 

γ-secretase inhibitors (GSIs) to prevent the final cleavage step of the precursor form 

of Notch, ie, transmembrane Notch (Notch™) that will decrease levels of NICD could 

be a novel therapeutic strategy either as a single agent or in combination with targeted 

or cytotoxic chemotherapy for a subset of cancer patients.

Breast cancer subtypes
Breast cancer is a heterogeneous disease divided into four major subtypes: luminal A 

(estrogen receptor [ER]+/progesterone receptor [PR]+), luminal B (ER+/PR+/human 
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epidermal growth factor receptor [HER]-2+), HER-2+/neu+, 

and triple negative (ER-PR-/HER-2+).1,2 Breast cancer of the 

luminal A or B subtype is derived from the luminal epithe-

lium of the breast ducts, and these tumors express hormone 

receptors, ER and PR. These subtypes comprise 70%–80% 

of all breast cancers. The ER+/PR+ luminal A subtype is very 

sensitive to current antihormonal therapy such as tamoxifen, 

fulvestrant, or aromatase inhibitors. Luminal B breast tumors 

have a higher proliferative index than those of luminal A 

and are inherently more resistant to current antihormonal 

therapy. HER-2+/neu+ designates a breast cancer subtype that 

contains gene amplification for the ERBB2 proto-oncogene 

resulting in overexpression of the HER-2 receptor tyrosine 

kinase protein. The HER-2+/neu+ breast cancers are very sen-

sitive to anti-HER-2 therapy such as trastuzumab or lapatinib. 

The final subtype of breast cancer is triple negative, which 

lacks expression of ER, PR, and HER-2. Triple negative 

breast tumors are the most aggressive, with poor prognosis 

and currently no approved targeted therapy. These triple nega-

tive breast tumors are treated with cytotoxic chemotherapy 

such as a DNA-damaging agent (cis- or carboplatin) or 

tubulin-destabilizing compounds (taxanes).

Although dramatic improvements have been made to 

cure breast cancer, one of the major problems that continue 

to plague both research scientists and clinicians is drug 

resistance. Therefore, elucidating the critical mechanisms 

that contribute to drug-resistant breast cancer will hopefully 

prevent tumor recurrence and disease progression and ulti-

mately provide a “cure” to women with breast cancer.

Notch signaling
Over a century of research has revealed the mechanisms 

that regulate canonical Notch signaling in the context of 

cell-to-cell signaling that controls both embryonic and adult 

stem cell self-renewal, stem cell quiescence, cell fate and 

differentiation, cell survival, apoptosis, and tumorigenesis. 

 Investigations elucidating the Notch pathway date back to the 

early 20th century, when in 1913 John Smith Dexter working 

in the laboratory of American geneticist Thomas Hunt  Morgan 

observed the outcome of a mutation of a gene in Drosophila 

ampelophila, which resulted in a notch or indentation at the 

ends of the fly wings. He called them “perfect notched.”3 

Additional research in 1917 by Morgan identified the alleles of 

this fly gene which eventually became known as “Notch”4 and 

he published his findings in The Physical Basis of Heredity5 in 

1919. The Notch gene was eventually cloned and identified for 

the first time in 1985–1986.6,7 Related research  employing the 

nematode worm Caenorhabditis elegans further elucidated the 

Notch signaling pathway, cell-to-cell interactions, and lateral 

inhibition during embryogenesis. Presently, embryologists and 

cancer researchers are the largest groups of research scientists 

studying Notch signaling.

Developmental Notch
The Notch signaling pathway mediates cell fate determi-

nation in three ways: regulatory, inhibitory, and inductive 

action.8 In regulatory signaling, during embryogenesis, Notch 

regulates the development and differentiation of many organ 

systems (angiogenesis, hematopoiesis, homeostasis, neuro-

genesis, nephrogenesis, myogenesis, and somatogenesis). 

The importance of this function was verified in Notch-1, 

Notch-2, Jagged-2, and Delta-1 knockout mice, which lack 

each Notch receptor or ligand regulatory components.9–12 The 

mice exhibited severe defects which resulted in embryonic 

or perinatal death. Notch activation in pluripotent stem cells 

initiates lateral inhibition so that a certain number of cells 

take on a specific cell fate and those adjacent are inhibited 

from differentiating.13 This process is exemplified in the fol-

lowing experiment: nascent chick retinal neurons transiently 

overexpressing Deltex-1 were found to prevent adjacent 

neuroepithelial progenitor cells from differentiating into 

neurons.14 Lastly, in inductive signaling, Notch promotes 

or induces the development of a certain cell type, usually 

amongst different (nonequivalent) cells. Such interactions are 

important for establishing demarcated boundaries between 

cell types, and the signaling is aptly referred to as boundary 

formation. The necessity of inductive signaling is evident 

in developmental studies. For example, a Notch-dependent 

localized signal affected the formation of the dorsoventral 

wing organizer in Drosophila,15,16 while the expression of 

Radical fringe determined the position of the dorsoventral 

boundary of vertebrate limbs.17

Notch receptors
The Notch receptor is classified as a large single-pass type 1 

transmembrane glycoprotein. It is expressed as a heterodi-

mer at the cell membrane. There are four mammalian Notch 

receptors, Notch 1–4, with Notch-1 being the longest and 

Notch-4 the shortest.13 They are comprised of three domains, 

extracellular, transmembrane, and intracellular (Figure 1). 

Notch is synthesized as a single, relatively large (.300 kDa) 

polypeptide in the endoplasmic reticulum. There, it undergoes 

O-glycosylation. An initial addition of O-linked fucose to 

the epidermal growth factor (EGF)-like repeats is medi-

ated by O-fucosyl transferase1. After the Notch preprotein 

is chaperoned by the guanosine triphosphate hydrolase 
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Figure 1 Notch receptors and ligands.

(GTPase) Rab-protein 6 through the secretory pathway to 

the trans-Golgi network, it undergoes additional elongation 

of the O-fucose with carbohydrate chains on serine and 

threonine residues by the Fringe family O-fucose-specific 

β1,3-N acetylglucosaminyl-transferases Lunatic, Manic, or 

Radical.18,19 Modification of the Notch receptor by Fringe pro-

teins controls ligand-mediated  activation.20 Next is cleavage 

by furin-like convertase into the N-terminus and C-terminus 

subunits and subsequent translocation of these mature entities 

to the cell plasma membrane.21,22 There, the cleaved subunits 

are assembled into the cell membrane as a fully functional 

heterodimeric receptor, noncovalently linked by a calcium 

cation awaiting engagement with a Notch ligand.

The N-terminal extracellular domain of each Notch 

receptor is the ligand-binding component and consists of 

29–36 multiple EGF-like repeats in tandem. From each 

extracellular domain extend six cysteine residues, which 

form three intra-domain disulfide bridges. Adjacent to the 

extracellular domain and closer to the cell membrane is 

the transmembrane domain, a dual hybrid moiety. The two 

components of this domain are: (1) the juxtamembrane 

RAM23 section (the  negative regulatory region) made of 

three Lin-12/Notch repeats, which prevent ligand-independent 

interactions, plus two conserved cysteine residues; and 

(2) the  heterodimerization section, which maintains the 

Notch  receptor in a nonactivated state. The third part of the 

Notch receptor is the intracellular domain (C-terminus), 

which extends from the inner cell membrane into the  cytoplasm. 

It contains four separate entities: (1) the DNA-binding protein 

recombination signal-binding protein for immunoglobulin 

kappa J (RBP-JΚ associated molecule or RAM domain), 

followed by a linker with a nuclear localization sequence; 

(2) seven iterated cdc10/ankyrin repeats; (3) a transcription 

activation domain (TAD) with an additional nuclear localiza-

tion sequence; and (4) polypeptide proline, glutamate, serine, 

and threonine-rich motifs (PEST) with degradation signals or 

degrons that stabilize NICD in the nucleus and target it for 

rapid proteolytic degradation. Lastly, TAD is found in Notch-1 

and Notch-2, but not in Notch-3 and Notch-4.

Notch ligands and activation
In vertebrates, the Notch ligands are known as Delta-like 1, 

3, and 413,23–26 and Jagged-1 and 213,26 (Figure 1). They are 

single-pass Type 1 transmembrane proteins that bind and 

activate the Notch receptor “in trans” (at the surface of a 

neighboring cell). They have extracellular and intracellular 

domains. The Jagged ligands are longer than the Delta-like 

ligands, the length determined by the 6–16 EGF-like repeats 

in the extracellular domain. A cysteine-rich area is located at 

the end of the EGF-like repeats, with Jagged ligands having 
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an additional cysteine-rich area. The intracellular domain of 

each ligand has a shorter cytoplasmic tail than the extracellular 

domain and contains a PDZ (post synaptic density protein 

[PSD95], Drosophila disc large tumor suppressor [Dlg1], and 

zonula occludens-1 protein [zo-1])-binding motif which aids in 

intracellular protein–protein  interactions. The ligand-activated 

cell-surface receptor initiates a cascade of events with two 

subsequent proteolytic cleavages that result in NICD entry into 

the nucleus to function as a transcriptional activator.27–29

Cell-cell contact mediates Notch ligand to receptor bind-

ing which initiates short-range cell-to-cell communication, 

a mono-directional cascade of events beginning at the cell 

membrane and ultimately activating the CSL (C promoter 

binding factor-1 [CBF-1], suppressor of hairless, Lag-1) 

family of transcription factors in the nucleus. The ligand 

engages the Notch receptor through its cognate high affinity 

EGF-like repeats (Figure 2). Ligand-mediated endocytosis 

in the ligand-expressing cell (trans-endocytosis) provides a 

force to pull the extracellular domain of the Notch recep-

tor from the transmembrane domain. This mechanical pull 

exposes the S2 cleavage site for the α-secretases of “A dis-

integrin and metalloprotease” family ADAM17 (tumor 

necrosis factor-α-converting enzyme TACE) or ADAM10, 

leading to ectodomain shedding of the extracellular por-

tion of the transmembrane portion of the Notch receptor 

at approximately 12 amino acids outside the transmem-

brane domain.30,31 This proteolytic ectodomain “release” 

or shedding forms a carboxyterminal fragment called 

Notch extracellular truncation (NEXT).32 The ligand-

Notch extracellular portion undergoes trans- endocytosis 

into the ligand-expressing, signal-sending cell, fol-

lowed by endosomal-mediated degradation or recycling. 

 Monoubiquitination by E3 ligases Mindbomb-1 and -2 or 

Neuralized-1 and -2 marks the ligand for endocytosis.

The remaining NEXT portion now exposes the S3 

and S4 cleavage sites that are mediated by the γ-secretase 

 complex.33 Interestingly, there are many γ-secretase 

substrates, a great number having relevance in breast 

cancer.34,35 This transmembrane aspartyl proteinase, con-

sidered a large complex, is comprised of a catalytic sub-

unit designated presenilin 1 or presenilin 2, a seven-pass 

transmembrane protein, and accessory subunits comprised 

of the transmembrane proteins nicastrin (NCT), anterior 

pharynx-defective 1 (APH1), and presenilin enhancer 2 

(PEN-2), a two-pass transmembrane protein. Nicastrin 

and APH1 stabilize PEN-2, which induces endoproteolysis 

of presenilin.36  Following receptor activation, NICD that 

is still attached to the inner cell membrane is marked for 

proteosomal degradation by E3 ubiquitin ligases Numb and 

Itch. γ-secretase severs NICD from the inside of the cell 

membrane, allowing it to enter the cytoplasm37 and eventu-

ally translocate to the nucleus (Figure 2).38
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Figure 2 Significant components in the Notch signaling pathway.
Abbreviations: ADAM/TACE, a disintegrin and metalloprotease/TNF-α converting enzyme; TNF-α, tumor necrosis factor-alpha; APH1, anterior pharynx-defective 1; ER, 
endoplasmic reticulum; NEXT, Notch extracellular truncation; NICD, Notch intracellular domain; PEN-2, presenilin enhancer 2; EGF, epidermal growth factor; S, site.
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NICD forms a transcriptional activation complex with 

CSL in the nucleus once the ankyrin-repeat motif of NICD 

docks with the Rel homology region of the DNA-binding 

factor CSL. Thus, CSL changes from a transcriptional 

repressor to a transcriptional activator. There occurs a release 

of transcription factor co-repressors (CoRs) like class I 

or II histone deacetylases, CBF-1-interacting repressor 

(CIR), SKI-interacting protein (SKIP), silencing media-

tor of retinoid and thyroid hormone receptor (SMRT), and 

SMRT/HDAC (histone deacetylase)-1-associated repressor 

protein (SHARP), and a recruitment of transcription factor 

co-activators (CoAs) such as mastermind-like 1–3 (MAML) 

protein. MAML further recruits the histone acetyltransferases, 

cyclic AMP (adenosine monophosphate) response element-

binding (CREB) protein CBP/p300 and p300/CBP-associated 

factor or general control non-depressible 5 (GCN5), to acety-

late histone tails for the unwinding of nucleosomes within 

chromatin for active transcription. This leads to an increased 

expression of specific genes. Some of the Notch gene targets 

that can be activated are: c-Myc, p21, and cyclin D1 (cell 

cycle progression), Bcl-2 (inhibition of apoptosis), and hairy 

and enhancer of split basic helix-loop-helix HES 1, 5, 6, and 

7, and HEY 1 and 2, and HEY-L family of proteins (tran-

scriptional repressors).37 NICD activity in the nucleus ends 

with phosphorylation triggered by cyclin c-cyclin-dependent 

kinase 8 (C-CDK8). Subsequently, glycogen synthase kinase 

3β phosphorylates the PEST domain of the C-terminus of the 

NICD, which is then targeted for polyubiquitination by E3 

ligase SEL10/FWB7 in the proteosome.39 Figure 3 depicts 

Notch-mediated nuclear transcription.

Notch and cancer: general overview
One of the earliest associations between Notch signaling and 

cancer occurred in 1991 in human T-cell acute lymphoblastic 

leukemia, where the Notch-1 gene was associated with the 

t(7;9)(q34;q34.3) chromosomal translocation.40 Notch cell 

signaling defects were detected in the form of alterations 

in the Notch-1 negative regulatory region and a loss of the 

C- terminus PEST domain, both of which lead to increased 

Notch-1 intracellular domain (N-1ICD) activity.41 In B-cell 

malignancies such as chronic lymphocytic leukemia, Notch-1 

mutations were linked to increased disease progression and 

resistance to  chemotherapy.42  Inconsistencies in the role of 

Notch in malignant B-cells became apparent as some data 

indicated that Notch signaling inhibited B-cell growth,43–45 

while other data reported a Notch-induced increase in 

B-cell proliferation.46–48 In mantle cell lymphoma, Notch-149 or 

Notch-250 PEST domain mutations were reported. In addition 

to the presence of dysfunctional Notch receptors in leukemia, 

the ligand Jagged-2 was found to be significantly overexpressed 

in multiple myeloma.51 In addition to hematologic malignan-

cies, aberrant Notch signaling has been found in solid tumors; 

Nucleus
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CSL SKIP

NICD

CIR
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HDAC SKIP
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Figure 3 Notch-mediated nuclear transcription.
Abbreviations: NICD, Notch intracellular domain; CIR, CBF-interacting repressor; CSL, C promoter binding factor-1 [CBF-1], suppressor of hairless, Lag-1; HDAC, histone 
deacetylase; SMRT, silencing mediator of retinoid and thyroid hormone receptor; SHARP, SMRT/HDAC1 associated repressor protein; HAT, histone acetyltransferase; 
MAML, mastermind-like 1-3; SKIP, ski-interacting protein; Bcl-2, B-cell lymphoma 2; HES, hairy and enhancer of split; HEY, HES related with YRPw motif protein.
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for example, cervical,52,53 colon,54,55 liver,56,57 lung,58 pancre-

atic,59–62 prostate,63,64 ovarian,65,66 and renal.67 Indeed, based on 

the numerous reports on the role of Notch signaling in cancer 

development and progression, Notch signaling has become a 

major target for novel therapeutic strategies.68–72 The role of 

Notch signaling in cancer could possibly be a double-edge 

sword. It was reported that Notch receptors and ligands were 

both oncogenic and tumor-suppressive in the same tumor.73 The 

possibility that Notch promotes or suppresses tumor growth 

has also been put forth by others.74–76 Some discrepancies in 

Notch signaling in cancer may be explained in part by “cell 

context, dose, and timing,”77 as well as Notch cross-talk with 

other signaling pathways, the micro-tumor environment, and 

the stage of cancer at the time of detection.

Notch and breast cancer
There is strong evidence that Notch signaling is dysregulated 

in solid tumors,28,76,78 though as reported in leukemia, it may 

be both a tumor oncogene and suppressor in breast and other 

 cancers.79 In mouse studies, tissue specific expression of N-1ICD 

induces spontaneous mammary tumors.80–82 Furthermore, 

transgenic (Tg) mice expressing mammary specific N-4ICD 

also form spontaneous mammary tumors.83 In fact, Notch-1 

and Notch-4 are categorized as bonafide breast oncogenes.84 

Further studies showed that overexpression of Notch-381 and 

Notch-485–87 also leads to murine mammary tumor formation. 

Studies from human breast cancer cell lines show deregulated 

expression of Notch and Notch ligand messenger RNA (mRNA).88 

Results from a human xenograft model for inflammatory breast 

carcinoma (MARY-X) implicate altered Notch-3 signaling spe-

cifically.89 In a study of 200 Greek women from differing breast 

cancer subtypes, Notch-4 mRNA levels were found to be higher 

in the hormone receptor and HER-2-positive breast cancers, 

while Notch-1 and Notch-3 mRNA levels were higher in 

triple-negative specimens compared with normal tissue.90 

When Notch-1 and Notch-4 and Jagged-1 and Delta-like-1 

expression were measured by immunohistochemistry in 

breast hyperplasia and carcinomas, high levels of Notch-1 

were found in the hyperplasias, ductal carcinoma in situ, 

infiltrating ductal carcinomas (IDCs), and infiltrating lobular 

carcinomas (ILCs), as well as elevated expression of Notch-4 

and Jagged-1 in IDCs and ILCs.91 Moreover, Notch-1 and 

Notch-3 NICD levels were increased in both human breast 

cancer specimens and cell lines, and Notch-3 activated nuclear 

transcription in those specimens and cells.92 Further evidence 

for altered Notch-1 in human breast cancer was found in the 

form of aberrant Notch-1 activation in various breast cancer 

subtypes.93 In addition, samples from breast cancer patients 

showed co-overexpression of the Notch-1 receptor and its 

ligand Jagged-1 predicting the poorest patient survival.94,95 

Lastly, examination of almost 100 breast cancer specimens by 

immunohistochemistry and quantitative polymerase chain reac-

tion (PCR) showed the expression of Notch-1 also correlated 

with poor outcomes.96

Nonetheless, Notch receptors are not a homogeneous 

group functionally. When the transcriptional activities of 

N-1ICD, N-2ICD, and N-3ICD on HES-1 and HES-5 promot-

ers were measured using a luciferase reporter assay, some 

of the differences were related to the combination of recep-

tors used and expression level of RBP-Jκ (CSL or CBF-1). 

Also, inhibitory Notch-2 activity was confirmed, as co-

expression of N-2ICD with N-1ICD or N-3ICD reduced their 

activity.97 In a xenograft study using MDA-MB-231 cells, 

Notch-2 inhibited tumor growth.98 Similarly, a clinical study 

which examined Notch-2 expression in breast cancer tissue by 

immunohistochemistry and qualitative and quantitative PCR 

concluded it may function as a tumor suppressor.96

In assessing the role of Notch signaling in breast cancer 

stem cells, it was concluded from in vitro and in vivo experi-

ments that Notch-4 activity was eightfold higher in breast 

cancer stem cells than in differentiated cells, and inhibition of 

Notch-4 resulted in suppression of tumor growth.99 Moreover, 

breast cancer stem cells exhibited increased Notch signaling 

as compared with bulk tumor cells, especially in levels of 

HES-1 mRNA, and GSIs effectively blocked mammosphere 

formation, which is an assay to measure survival and self-

renewal of breast cancer stem cells.100

Notch and tumorigenesis
Of the more than 300 breast cancer cases examined, approxi-

mately 50% showed a loss of Numb-mediated inhibition 

of Notch signaling by ubiquitination and proteosomal 

 degradation.101 Of particular interest are two germline altera-

tions (R62H and R71W) of presenilin-2 (PS-2) that have been 

reported in breast cancer patients with axillary node-negative 

disease, resulting in PS-2 being more susceptible to degrada-

tion.102 Furthermore, nicastrin-knockout mice, which have 

decreased proteolytic cleavage of Notch and consequently 

lower NICD, developed myeloproliferative disease,103 and 

Notch-1 knockout mice formed spontaneous basal cell car-

cinoma as they grew older.104

Possible mechanisms of action for Notch-driven tumor 

propagation are: gain of function mutation, ligand-mediated 

activation of Notch, and downregulation of Notch.105 

 Nonetheless, Notch tumorigenicity may be organ-dependent. 

In self-renewing systems such as skin, intestine, and bone 
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marrow, Notch interacts with multiple signaling pathways. 

 Oncogenesis derails these interactions such that Notch becomes 

a tumor suppressor in the skin and an oncogene in the bone 

marrow.75 Manipulation of gene expression has been useful 

to study Notch receptors and ligands in tumorigenic  systems. 

For example, MCF-10A cells, considered  nonmalignant and 

noninvasive, when transfected with Notch-4, grew in a soft 

agar assay, suggesting that Notch-4 is a breast oncogene.106 

Similarly, mice bred to express Notch-1ICD and Notch-3ICD 

in mammary epithelial cells developed mammary tumors.81 

Nonetheless, Notch receptors may not be equivalent in their 

capacity to induce cancer. Notch-2 may suppress tumorige-

nicity, as MDA-MB-231 cells with constitutively expressing 

N-2ICD showed increased apoptosis and did not form xeno-

graft tumors in mice.98 Notch signaling is also responsive to 

hormonal drivers of tumorigenicity, since estrogen was found 

to upregulate Notch-1 and Jagged-1 in MCF-7 cells.107 In 

contrast, Rizzo et al demonstrated that estrogen-mediated ER 

activation suppresses Notch activation, and the combination 

of anti-estrogen therapy with a GSI was more effective in 

inhibiting ER+ breast tumor growth than either therapy alone.91 

Specifically, the same group identified that Notch-1ICD acti-

vates ER-responsive genes under low estrogen conditions, 

suggesting that Notch-1ICD could mediate activation of the 

ER in an estrogen-independent manner.108

Furthermore, loss of negative regulatory mechanisms 

contributes to neoplastic metastasis. For example, expres-

sion levels of the negative regulator of Notch signaling 

Numb inversely correlated with tumor aggressiveness.101 

In in-vitro and in-vivo experiments examining osteolytic 

bone metastasis of human breast cancer cells, osteoblasts 

together with secretion of transforming growth factor β1 

enhanced Notch-3 expression in the breast cancer cells and 

mediated their metastasis; this effect was inhibited by GSI 

L-685458.109

Notch and oncogenic crosstalk
The oncogenic reach of the Notch signaling pathway is 

partly due to its communication or crosstalk with other 

signaling pathways. Hurlbut et al110 proposed more than 50 

 connections for the Notch crosstalk network; for example, 

receptor tyrosine kinases (RTKs), HH, Janus kinase/

signal transducers and activators of transcription (Jak/

STAT), transforming growth factor-β/decapentaplegic 

(TGF-β), and Wnt pathways. In addition to HH, Wnt, and 

TGF-β, amongst others pertinent to Notch crosstalk are 

platelet-derived growth factor (PDGF/PDGFR), vascular 

endothelial growth factor (VEGF), phosphatidylinositol 

3-kinase (PI3K/Akt), Ras, mammalian target of rapamycin 

(mTOR), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-kB), hypoxia-inducible factor (HIF), 

and cytokines interleukin-6 (IL-6), IL-1, and leptin plus 

ER signaling as well as microRNAs considered operation-

ally important for Notch crosstalk in breast cancer.111 The 

majority of functions which include cell proliferation, 

differentiation, and development, tumor angiogenesis, 

morphogenesis, and somitogenesis are all important during 

oncogenesis. One of the most critical pathways necessary 

for survival of cancer cells is the NF-κB pathway. It has 

been shown that NF-κB regulates Notch and is regulated by 

Notch. For example, N-1ICD or N-3ICD has been shown 

to activate NF-κB signaling components such as IKK 

(inhibitor of kappa B kinase).112 Furthermore, NF-κB has 

also been shown to regulate Notch indirectly by inducing 

Jagged-1, HES-5, and/or Deltex-1.113

The existence of Notch and RTK crosstalk in breast and 

other solid tumors has been established by our research 

group and many others since. We and others have shown that 

Notch-1 signaling is decreased in ErbB-2 overexpressing 

BT-474, SkBr3, and MCF-7/HER2 breast cancer cells and 

that anti-HER-2 therapy using trastuzumab or a small mol-

ecule tyrosine kinase inhibitor similar to lapatinib reactivated 

Notch-1. More importantly, a GSI or specifically Notch-1 

knockdown increased the sensitivity of ErbB-2+ breast cancer 

cells to anti-HER-2-mediated growth inhibition, indicating 

that Notch-1 signaling might contribute to trastuzumab resis-

tance in vitro.114 Moreover, tumor recurrence was prevented 

in mice injected with trastuzumab-sensitive BT-474 cells 

following treatment with trastuzumab and MRK-003 GSI 

or significantly reduced with trastuzumab and LY-411575 

GSI; additionally, BT-474 breast tumors that were resistant 

to trastuzumab were re-sensitized by addition of MRK-003 

GSI.115 An overview of the role and significance of Notch 

signaling in trastuzumab resistant breast cancer is reviewed 

by Mehta and Osipo.116

The regulation and activation of Notch signaling in triple 

negative breast cancer was recently eludicated by Clementz 

et al.117 Specifically, the investigators demonstrated that 

PEA3, an Ets family transcription factor, activates transcrip-

tion of Notch-1 and Notch-4.117 It was identified that enrich-

ment of PEA3 on the Notch-1 promoter was independent of 

AP-1 while PEA3 recruitment to the Notch-4 promoter was 

dependent on c-JUN and Fra-1, but negatively regulated by 

c-Fos. The findings from this study also showed that knock-

down of PEA3 was potent in inhibiting triple negative breast 

cancer growth in vitro and in vivo.
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Table 1 Chemical structure of γ-secretase inhibitors

Class Name Structure Type

Peptide  
isostere

Tripeptide
Z-Leu-Leu-Nle-CHO
GSI-I N

H
O

O

OO

OH
N

N
H

H

CH3

CH3

CH3

Transition state analog

Azepine DAPT
Compound 3
GSI-IX

F

F
OH

N

O O
N
H

O CH3

CH3CH3

Non-transition state 
analog

LY-685458
GSI-X O

O
N
H

N
H

O

N
HOH

O

NH2O

CH3

CH3

CH3

CH3

CH3

Transition state analog

YO-01027
Dibenzazepine
GSI-XX
Deshydroxy LY-411575

F

F
O

N
H

O

O

N
H

CH3

H3C

N

Transition state analog

Compound E
GSI-XXI

F

F

N

OO N

CH3

CH3

N
H

O
N
H

Non-transition state 
analog

RO-4929097 (Roche, Nutley,  
NJ, USA)

F
F

O

ON
H

O
NH

HN

F
F

F

CH3 CH3

Transition state analog

Sulfonamide MRK-003 (Merck and Co, Boston,  
MA, USA)

CF3

HN
NS

O
O CF3

N

Non-transition state 
analog

MK-0752 (Merck and Co)

O

O
O

OH

F
F

S

Cl

Non-transition state 
analog

Selective PF-03084014 (Pfizer Inc., Groton,  
CT, USA)

F

F

O
N
H

CH3

CH3

N
H

NH

CH3

CH3

CH3

CH3

Non-transition state 
analog

Abbreviations: GSI, gamma-secretase inhibitor; DAPT, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester.

GSIs: mode of action and side effects
The more than 100 GSIs synthesized to date can be 

divided into three classes: peptide isosteres, azepines, and 

sulfonamides.118,119 They are oral agents, the azepines and 

sulfonamides being the most popular. A list of select GSIs is 

presented in Table 1. GSIs currently undergoing US clinical 

trials are listed in Table 2.

The GSIs are classified into two types, depending on struc-

ture and binding sites: (1) aspartyl proteinase transition-state 

analogs as peptide isosteres that mimic the transition state of 
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Table 2 Clinical trials employing γ-secretase inhibitors in the treatment of breast cancer

Name Target Type of study Trial ID*

Individual therapy
MK-0752 (Merck and Co, whitehouse 
Station, NJ, USA)

Metastatic or locally advanced breast cancer Phase I NCT00106145

PF03084014 (Pfizer, Groton, CT, USA) Advanced solid tumors Phase I NCT00878189
RO-4929097 (Roche, Nutley, NJ, USA) Advanced or metastatic breast cancer or recurrent  

triple negative breast cancer
Phase II NCT01151449

Combination therapy
MK-0752 + Docetaxel Locally advanced or metastatic breast cancer Phase I/II NCT00645333

MK-0752 + Tamoxifen or Letrozole Early stage breast cancer Pilot study NCT00756717

Ridaforolimus (MK-8669) with either  
MK-0752 or MK-2206 (Akt inhibitor)

Advanced solid tumor Phase I NCT01295632

RO-4929097 + Capecitabine Refractory solid tumors Phase I NCT01158274

RO-4929097 + Cediranib maleate Advanced solid tumors Phase I clinical trial NCT01131234

RO-4929097 + Letrozole Post-menopausal ER+/PR+ Stage I or II breast cancer Phase Ib clinical trial NCT01208441

RO-4929097 + vismodegib Metastatic breast cancer Phase I clinical trial NCT01071564

RO-4929097 + Paclitaxel + Carboplatin Stage II or III triple negative breast cancer Phase I clinical trial NCT01238133

Note: *clinicaltrials.gov.
Abbreviations: ER, estrogen receptor; PR, progesterone receptor.

a substrate cleavage by γ-secretase and bind competitively 

to the catalytic active site of presenilins; and (2) small mol-

ecule non-transition-state inhibitors where the binding site 

is different from the active site, possibly at the interface of 

the γ-secretase complex dimer.120 Well known side effects 

of GSIs occur within the gastrointestinal tract. For example, 

acute treatment of TgCRND8 mice with LY-411575 for 

15 days caused an increase in the number of mucin-containing 

goblet cells in the small and large intestines and changes 

in the tissue architecture of the gastrointestinal tract which 

resulted in severe diarrhea.121 The GSIs also cause various 

off-target effects in breast cancer cells and Notch signaling. 

An early transition-state analog GSI, IL X (cbz-IL-CHO), 

produced a decrease in mRNA and protein levels of HES-1, 

induced G
0
-G

1
 cell cycle arrest, and inhibited human tongue 

carcinoma Tca8113 cell growth.122 Dipeptide GSI XII (z-Ile-

Leu-CHO) induced apoptosis in breast cancer cell lines by 

inducing Noxa, a pro-apoptotic protein.123 A later generation 

GSI, LY-294002 suppressed angiogenesis by blocking the 

epidermal growth factor (EGF)-induced upregulation of 

Jagged-1 in squamous cell carcinoma, thereby inhibiting 

EFG-Notch crosstalk.124 Tripeptide GSI I (z-Leu-Leu-Nle-

CHO) suppressed cell proliferation and induced apoptosis 

in Notch-3 overexpressing ovarian cell lines.65

An early generation non-transition state analog is DAPT, 

N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine 

t-butyl ester, a dipeptide inhibitor of the benzodiazepine 

type, also known as GSI IX and Compound 3.125 It is the most 

widely used in the laboratory setting.126 DAPT potentiated 

the apoptotic effects of the DNA-damaging drug melphalan 

in MCF-7 breast cancer cells.127 In cell lines with chromo-

somal translocations, DAPT inhibited the proliferation of 

truncated Notch-1 expressing an ADAM cleavage site but not 

of truncated Notch-2 which was without the cleavage site.128 

From DAPT, numerous other GSIs have been developed 

that are even more effective, ie, LY-411,575 (Compound 5) 

100-fold stronger than DAPT, LY-450,139 (Semagacestat 

or Compound 6),129 and RO-4929097 (Roche, Nutley, NJ, 

USA).

The small-molecule GSI classified as a tetralin imida-

zole PF-03084014 (Pfizer Inc., Groton, CT, USA) is in a 

Phase I trial to treat advanced breast cancer and other solid 

tumors.130 It is considered a selective or Notch-sparing GSI 

or GS (gamma secretase) modulator. When evaluated for 

Notch activity, PF-03084014 significantly decreased tumor 

cell migration and mammosphere formation in vitro, reduced 

tumor cell self-renewal ability in vivo, and decreased mRNA 

expression of Notch target genes HES-1, HES-4, Notch-1, 

and HEY-2 in HCC1599 xenograft tumors.131

Another small-molecule GSI, RO-4929097, was used in a 

multicenter Phase I clinical dose escalating study and contin-

ued on to Phase II and combination therapy studies. Derived 

from LY-411575 and containing a dibenzazepinone core, it 

is being tested for the treatment of breast cancer and other 

solid tumors.132,133 Patients with low basal levels of plasma 

IL-6 and IL-8 responded well, indicating that cytokines may 

be predictive biomarkers for response to therapy.134 In in vitro 

studies using a colon cancer cell line A549, RO-4929097 

produced a significant decrease in mRNA levels of Notch 

target genes HES-1, HES-4, and HEY-1.135

Another GSI, the sulfonamide-containing non-transition-

state GSI analog MK-0752 (Merck and Co, Inc, Whitehouse 
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Station, NJ, USA) is in a Phase I study to treat metastatic or 

locally advanced breast cancer.

Novel combination strategies
Since single-drug therapy is ineffective for long-term 

use, combination therapy oftentimes becomes necessary. 

Such a treatment regimen is applicable to “endocrine 

therapy, targeted therapies, chemotherapy, or possibly even 

radiation therapy.”72 There are several clinical studies using 

RO-4929097 in combination therapy. One Phase I study is 

using RO-4929097 with capecitabine for patients with refrac-

tory solid tumors and another with paclitaxel and  carboplatin 

for patients with Stage I or III triple negative breast cancer. 

A Phase I clinical trial is presently underway testing the effi-

cacy of RO-4929097 and a potent HH antagonist GDC-0449 

vismodegib in patients with advanced breast cancer.136 These 

patients may have been selected on the basis of upregulated 

crosstalk between Notch and the self-renewal pathway 

 (targeted therapy). Another Phase I study with RO-4929097 is 

adding cediranib for post-menopausal patients with advanced 

solid tumors (targeted therapy). In a Phase Ib clinical trial, 

RO-4929097 is combined with letrazole for patients with 

ER+/PR+ Stage II or III breast cancer (endocrine therapy). 

Another GSI in combination therapy is MK-0752. In a Pilot 

study, MK-0752 is being combined with tamoxifen or letra-

zole for patients with early stage breast cancer (endocrine 

therapy). In a Phase I study, MK-0752 (or MK-2206 Akt 

inhibitor) is being combined with ridaforolimus (MK-8669) 

in patients with advanced solid tumors (targeted therapy). 

A Phase I/II study is combining MK-0752 with docetaxel 

in patients presenting with locally advanced or metastatic 

breast cancer (chemotherapy).

Gastrointestinal toxicity is a major side-effect with GSI 

use.137 Nonetheless, careful monitoring of treatment proto-

cols, whether by modulating expression of Notch receptors 

with receptor antibody pretreatment before GSI treatment138 

or development of a practical combination therapy139 should 

minimize problematic side-effects. Notch activation must be 

assessed prior to GSI treatment (mutations and/or overex-

pression), since GSIs are more effective against tumors with 

upregulated Notch signaling. In addition, close attention must 

be paid to the therapeutic window so that the minimally active 

dose needed to inhibit Notch is employed, thereby reducing 

adverse side effects.

Conclusion
Much progress has been made in understanding Notch 

signaling in breast cancer. Molecular profiling of patients, 

fast becoming standard of care, identifies the type and loca-

tion of signaling dysfunction. Moreover, pharmacological 

innovations are helping produce more selective GSIs with 

fewer side effects. A “one problem–one solution” type of 

cure to breast cancer seems unlikely. Inhibition of Notch 

signaling with pharmacodynamically active drugs such 

as the GSIs is preventing metastasis and recurrence and 

increasing disease-free survival. The next level of care for 

determining the molecular signature of a breast tumor will 

develop therapeutic combinatorial protocols that effectively 

target crosstalk pathways, tumor microenvironment, tumor-

initiating cells (or cancer stem cells), developmental factors, 

non-canonical signaling components, and possibly other 

additional modulating factors still unknown. Breast cancer 

management will require a multidisciplinary team to pre-

pare and optimize the anticancer drug regimen, conduct the 

therapy, and even interpret results and treatment progress. 

Overall, targeting the Notch signaling pathway in breast 

cancer therapy and attempting its downregulation with GSIs 

looks promising.
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