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Abstract: Since its first description in Drosophila by Drs Nusslein-Volhard and Wieschaus 

in 1980, hedgehog (Hh) signaling has been implicated in regulation of cell differentiation, 

proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh 

signaling to cancer was established through studies of Gorlin syndrome in 1996 by two inde-

pendent teams. Later, it was shown that Hh signaling may be involved in many types of cancer, 

including skin, leukemia, lung, brain, and gastrointestinal cancers. In early 2012, the US Food 

and Drug Administration approved the clinical use of Hh inhibitor Erivedge/vismodegib for 

treatment of locally advanced and metastatic basal cell carcinomas. With further investigation, 

it is possible to see more clinical applications of Hh signaling inhibitors. In this review, we 

will summarize major advances in the last 3 years in our understanding of Hh signaling acti-

vation in human cancer, and recent developments in preclinical and clinical studies using Hh 

signaling inhibitors.
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Introduction
Remarkable progress has been made since the hedgehog (Hh) mutant phenotype 

was first described in fruit fly in 1980.1 Three vertebrate homologues of Hh and their 

receptors were identified in the 1990s.2–6 As an essential pathway during development, 

the Hh pathway is critical for maintaining tissue polarity and stem cell population. 

The first link between Hh signaling and cancer was shown in tumor-prone Gorlin 

syndrome in 1996.7–11 In early 2012, Hh signaling inhibitor GDC-0449 (Erivedge/

vismodegib; Hoffmann-La Roche Ltd, Basel, Switzerland) was approved by the US 

Food and Drug Administration for treatment of locally advanced and metastatic basal 

cell carcinomas (BCCs).

The general signaling mechanisms of the Hh pathway are conserved from flies to 

humans.12 Mammalian Hh signaling molecules include ligands (sonic Hh, Indian Hh, 

and desert Hh), patched receptors (PTCH1, PTCH2), signal transducer smoothened 

(SMO), and transcription factors (Gli1, Gli2, Gli3) (see Figure 1). In the absence 

of ligands, SMO serves as the key signal transducer, whose function is inhibited by 

another transmembrane protein patched (PTCH1). Upon binding of an active Hh 

ligand, this inhibition is released, allowing SMO to signal downstream, eventually 

leading to activation of Gli transcription factors. Gli molecules can bind the specific 

consensus sequences located in the promoter region of the target genes to regulate 

target gene expression.13,14
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In the last 3 years, there has been significant progress 

regarding Hh signaling and its significance in cancer devel-

opment and therapeutics. The total number of publications 

on Hh signaling in the last 3 years is close to 30% of all 

Hh-related publications, and progress has been made in 

the following areas: 1) better understanding of Hh signal 

transduction and the associated target genes, 2) more reliable 

mouse models linking Hh signaling to human malignancies, 

3) better understanding of Hh signaling mechanisms during 

cancer development and metastasis, 4) an increasing num-

ber of clinical and preclinical studies on cancer treatment 

using Hh signaling inhibitors, and 5) emerging evidence of 

Hh signaling in supporting residual cancer cells and cancer 

stem cells.

Signal transduction  
of the Hh pathway
All Hh proteins are secreted molecules, functioning at 

short range on nearby cells or at long range to distant cells 

during development.15–17 Hh protein precursors undergo 

post-translational modifications (autocleavage to release 

the N-terminal fragment [HhN], covalently binding to a 

cholesterol moiety at the C-terminal end, and palmitoylation 

by a palmitoylacyltransferase at the N-terminus of HhN).18–21 

Molecules involved in Hh protein transport and distribution 

include the transmembrane transporter-like protein dispatched 

(Disp),22–24 metalloproteinases,25 the heparan sulfate proteo-

glycans Dally-like (Dlp) and Dally26,27 or their regulators,28 as 

well as enzymes such as sulfateless and tout velu.29–31

Target genes
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Figure 1 A diagram of hedgehog (Hh) signaling in mammalian cells. Smoothened (SMO) is the key signal transducer of the Hh pathway. in the absence of the Hh ligands, Hh 
receptor patched (PTC) is thought to be localized in the cilium to inhibit SMO signaling. Coreceptors of Hh include CDO (cell adhesion molecule-related/downregulated by 
oncogenes), brother of CDO (BOC), Gas1, glypican 3, (GPC3), and GPC5. wnt inhibitory factor-1 (wiF1) can also regulate Hh signaling through association with CDO, BOC, 
or GPC5. Gli molecules are processed with the help of suppressor of fused (SuFu)/KiF7, β-TRCP molecules into repressor forms, which turn off the Hh signaling pathway. 
Other negative regulators of Gli molecules include Rab23, protein kinase A (PKA), SuFu, tumor suppressor sucrose nonfermenting 5 (SNF5), Culin 3 (Cul3), and itchy e3 
ubiquitin ligase (Itch) through regulation Gli protein modifications, nuclear–cytoplasm shuttling, as well as transcriptional activities. In the presence of Hh, PTC is thought to be 
shuttled out of cilium and is unable to inhibit SMO. The ciliary localization of SMO is thought to require β-arrestin 2 (βArr2), and G protein coupled receptor kinase 2 (GRK2). 
Hh reception promotes SMO conformational changes to form dimers. Gli molecules are now processed to active forms (GliA), which will activate the Hh target genes. This 
process can be inhibited by KiF7 and SuFu. Protein kinase C isoform ι/λ (PKCι/λ) is known to positively regulate Gli transcriptional activity. Positive regulators are in red, 
negative regulators are in blue, and target genes are in pink. KiF7 can function (in black) as a negative regulator or a positive regulator. The interacting pathways with the Hh 
pathway are in green. Although the role of cilium for Hh signaling during embryonic development is well established, cancer cells generally lack cilia. it has been demonstrated 
that lack of cilia prevents development of basal cell carcinomas in mice. it is not clear whether this is true for all other types of Hh signaling-associated cancer.
Abbreviations: eGF, epidermal growth factor; eMT, epithelial–mesenchymal transition; iGF, insulin-like growth factor; PDGF, platelet-derived growth factor; 
TGFβ, transforming growth factor β; veGF, vascular endothelial growth factor; GDC0449, synthetic small molecules targeting at SMO signaling; BMS833932, synthetic small 
molecules targeting at SMO signaling; LY2940680 synthetic small molecules targeting at SMO signaling; SAG, smoothened agonist; MDM2, Mouse double minute 2 homolog; 
Pi3K, Phosphatidylinositide 3-kinases; AKT, homolog of viral oncogene v-AKT; MeK, MAPK or eRK kinase; Stat3, signal transducer and activator of transcription 3; wnt, 
wingless homolog; ABCG2, ATP-binding cassette sub-family G member 2; BCL2, B-cell lymphoma 2; bTRCP, beta-transducin repeat containing protein.
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Figure 1 shows the mammalian Hh signaling pathway 

with major players in the diagram. Several molecules are 

engaged in reception of Hh ligands, with patched (PTC, one 

PTC in fly, and two PTCs in vertebrates: PTCH1 and PTCH2) 

as the major receptor.32 Studies from cultured cells indicate 

that PTC inhibits SMO at a substochiometric concentration.33 

Hh-interacting protein (HIP) can compete with PTC on Hh 

binding, resulting in negative regulation of Hh signaling.34 On 

the other hand, interference Hh or its vertebrate homologues 

cell adhesion molecule related/downregulated by oncogenes 

(CDO) and BOC (brother of CDO), GAS1, and glypican-3 

(GPC3) serve as coreceptors of Hh.35–42 In contrast to the 

inhibitory effect of glypican-3, glypican-5 (GPC5) and other 

heparan sulfate proteoglycans are shown to stimulate Hh 

signaling by promoting binding of sonic Hh to PTCH1.43,44 

The effect of GPC5 and interference Hh homologues requires 

another secreted extracellular molecule: Wnt inhibitory 

factor-1 (WIF1).45,46 It is still not entirely clear how binding 

of Hh proteins results in the pathway activation. It is proposed 

that PTC limits SMO signaling via transporting endogenous 

small molecules specifically targeted to SMO. Candidates 

of these small molecules include PI4P, lipoproteins, and 

provitamin D3.47–50 It is currently not very clear how these 

molecules regulate SMO signaling.

It is now known that glucocorticoid molecules can 

modulate SMO signaling through regulating its ciliary 

 localization.51 Several recent reports support SMO to 

G protein coupling,52–55 but the physiological relevance of 

the G protein coupling of SMO in carcinogenesis has not 

been convincingly demonstrated. Gα can also regulate Gli 

proteins independent of SMO.56 It is quite clear that two 

important events occur during SMO signaling in mammalian 

cells. First, SMO protein undergoes conformational change to 

favor SMO signaling,57 although the regulatory mechanism 

underlying this conformational change is not clear. Second, 

ciliary translocation of mammalian SMO protein is critical 

for Hh signaling.58–63 Several reports now link neuropilin 1/2 

(Nrp1/2) to SMO signaling.64–67

Several molecules are identified to be genetically down-

stream of SMO in Drosophila, including COS2, suppressor 

of fused (SuFu), and fused. A COS2 homologue, kinesin 

like-protein KIF7, functions in the Hh pathway but not 

directly associated with SMO,68–72 suggesting that KIF7 

does not contain all COS2 functions in vertebrates. In 

contrast, the phenotype of fused-/- mice is very different 

from Shh null mice,73–75 indicating that fused is not criti-

cal for Hh signaling during early embryonic development 

in mice.

In addition to the Drosophila homologues, mamma-

lian cells have several novel cytoplasmic regulators of Hh 

signaling, including Rab2376 and tectonic.77 Rab23 and tec-

tonic are all negative regulators downstream of SMO. We 

have shown that Rab23 is involved in Gli–SuFu interaction78 

(see Figure 1). Unlike many Rab proteins, we found that 

Rab23 is localized both in the nucleus and in cytoplasm,79 

suggesting that Rab23 may have other unrevealed functions 

apart from membrane trafficking.

The ultimate effect of Hh signaling is activation of 

downstream Gli transcription factors, which regulate 

target genes by directly binding a consensus binding site 

(5′-tgggtggtc-3′) in the promoter.13,14,80,81 The activity of Gli 

transcription factors can be regulated at several levels. First, 

nuclear–cytoplasmic shuttling of Gli molecules is tightly 

regulated.82–85 Protein kinase A can retain Gli1 protein in 

the cytoplasm via a protein kinase A site in the nuclear 

localization signal domain,83 whereas activated Ras signaling 

induces Gli nuclear localization.85 Second, ubiquitination, 

acetylation, and protein degradation of Gli molecules are reg-

ulated by several distinct mechanisms, including β-TRCP-, 

cul3/BTB-, and numb/itch-mediated Gli ubiquitination, 

sumoylation, and acetylation.86–93 In addition, Gli3 (Gli2 to a 

lesser extent) can be processed into transcriptional repressors, 

which may be mediated by the β-TRCP E3 ligase.88,94 SuFu 

not only prevents nuclear translocation of Gli molecules but 

also inhibits Gli1-mediated transcriptional activity.95–97 Other 

mechanisms to modify Gli functions include interaction with 

a negative regulator sucrose nonfermenting 5 (SNF5)98 and a 

positive regulator protein kinase C isoform ι/λ.99

Several feedback regulatory loops exist in this pathway to 

maintain a certain level of Hh signaling in a given cell. PTC, 

HIP, GAS1, neuropilins, and Gli1 are components, as well 

as the target genes of this pathway. PTC and HIP provide 

negative feedback regulation, whereas Gli1 and Nrp1/2 

form positive regulatory loops. On the other hand, GAS1 is 

downregulated by the Hh pathway but is a positive regulator 

for Hh signaling.100 Alterations of these loops would lead to 

abnormal signaling of this pathway, such as inactivation of 

PTCH1 in BCCs.

Activation of the Hh pathway  
in human cancer
The initial link between Hh signaling and human cancers was 

made from the discovery that mutations of human PTCH1 

are associated with a rare and hereditary form of BCC, basal 

cell nevus syndrome (BCNS) (also Gorlin syndrome).101–103 

Gorlin syndrome is a rare autosomal genetic disease with two 
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distinct sets of phenotypes: an increased risk of developing 

cancers such as BCCs, medulloblastomas, rhabdomyosar-

comas, and meningiomas, as well as developmental defects 

such as bifid ribs and ectopic calcification.104

Almost all BCCs and about 30% of medulloblastomas 

have activated Hh signaling via gene mutations in PTCH1, 

SMO, or other Hh pathway molecules.105–109 In addi-

tion, cancers associated with Gorlin syndrome, including 

rhabdomyosarcoma110,111 and meningiomas,112–114 are reported 

to have gene mutations in the Hh signaling pathway or 

elevated Hh target gene expression. Activated Hh signaling 

has been detected in a variety of human cancer types, either 

in the tumor or in the stroma.100,115–117

Genetically engineered mice with Ptch1 and Smo genes 

have generated more convincing evidence for the critical role 

of Hh signaling in cancer. In addition to BCCs and medullo-

blastomas, rhabdomyosarcomas develop in mice with 

expression of oncogenic SmoM2 or knockout of Ptch1.118–121 

One surprising finding from tissue-specific Ptch1 knockout 

is the development of gastrointestinal stromal-like tumors 

(GIST),122 suggestive of a role of Hh signaling in GIST. Even 

in the situation of a small cell lung cancer (SCLC) mouse 

model, expression of oncogenic SmoM2 increases the tumor 

number, whereas Smo knockout reduces the tumor number.123 

Recent study of Barrett’s esophagus indicates that sonic 

Hh expression in the epithelium of the esophagus can lead 

to stromal expression of Hh signaling target genes, which 

is similar to the human situation.124,125 In contrast, tissue-

specific expression of oncogenic Smo molecule SmoM2 

has no effects on K-Ras-induced pancreatic cancer126 or 

on prostate cancer.127 The negative data, however, do not 

rule out the promoting effects of Hh signaling for tumor 

metastasis, a major factor for cancer mortality. Currently, 

there are only a limited number of mouse models for cancer 

metastasis. Even for the available mouse models for cancer 

metastasis, several variable factors make cancer metastasis 

models less robust, and these factors include mouse genetic 

backgrounds, low incidence, and long duration to observe 

metastasis in mice.

Hh signaling in tumor initiation, 
promotion, and metastases
Hh signaling plays different roles in different types of 

cancer.100 Based on the published data, we attempt to divide 

the functions of Hh signaling during cancer development 

into three types: the tumor driver, the tumor promoter, or the 

regulator for residual cancer cells after therapy. For example, 

activated Hh signaling can drive development of BCCs, 

medulloblastomas, rhabdomyosarcoma, GIST, and Barrett’s 

esophagus,118,119,122,124,128,129 and Hh signaling in these lesions 

serves as the tumor driver, at least in the mouse models. For 

SCLC, Hh signaling can promote cancer development but 

is not sufficient to drive tumor formation, and thus serves as 

a tumor promoter.123 In pancreatic cancer, inhibition of Hh 

signaling does not affect tumor formation but can promote 

tumor metastasis.130–137 For other cancer types, Hh signaling 

may regulate the number of cancer stem cells or the tumor 

microenvironment, such as leukemia and liver cancer.138,139 

As more in vivo data are available, we predict more revelation 

of the tumor promoting role of Hh signaling. Tumor recur-

rence after therapy is a major issue in clinical care of cancer 

patients, such as chemotherapy or radiotherapy resistance, 

and will be discussed in “Hh signaling, cancer stem cell, and 

residual cancer cells.” For some cancer types, Hh signaling 

may not have any roles to play.

Activation of Hh signaling does not work in isolation 

but rather crosstalks with other signaling pathways during 

cancer development and metastasis. Earlier studies indi-

cated that Ptch1+/- mice with P53 knock out all developed 

medulloblastomas, whereas ,30% of Ptch1+/- mice (with 

wild-type P53) had this type of tumor.140 We have shown 

that skin-specific knockout of Stat3 or its upstream activa-

tor Il11ra significantly reduced Hh signaling-mediated BCC 

formation.141 Increasing data have indicated close collabo-

ration between Hh signaling and growth factor signaling 

pathways. Our earlier work indicated that platelet-derived 

growth factor α (PDGFRα) is regulated by Hh signaling and 

is responsible for cell proliferation in BCCs.142 Now more 

links are reported between Hh and other pathways, including 

epidermal growth factor, insulin growth factor, transforming 

growth factor β (TGFβ), mTOR/S6K1, RACK1, notch, and 

protein kinase C.100,143–151 Although some of these molecules 

are involved in regulation of tumor microenvironment, such 

as TGFβ, others are known to regulate cancer stem cells, 

such as PDGFRα and notch. We will have more discussion 

on cancer stem cells in “Hh signaling, cancer stem cell, and 

residual cancer cells.”

Increasing evidence indicates that Hh signaling plays an 

important role during tumor metastasis in several types of 

cancer, such as pancreatic and breast cancers.135,152 Studies 

from many groups indicate activation of Hh signaling in 

the stromal as well as tumor compartments in metastatic 

pancreatic cancer.130,133–137,153 In fact, Hh signaling inhibitors 

are effective in suppressing tumor metastases of pancreatic 

cancer.135 Hh signaling also regulates bone homeostasis as 

well as bone metastasis in breast cancer independent of 
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the Hh ligands.143 During tumor metastasis, Hh signaling 

activation is observed both in the tumor compartment and 

in the stroma.135 The molecules mediating Hh’s metastatic 

functions remain largely untested, but there are reports to 

indicate the following molecules: snail, TGFβ, Wnt, HGF, 

and muc5 AC.135,154–157 Further studies will be needed to 

understand the molecular basis by which Hh signaling medi-

ates cancer metastases.

Hh signaling inhibitors: preclinical 
and clinical studies
More than 200 compounds have been disclosed to have 

inhibitory effects on Hh signaling. Of these, eight have been 

used for clinical trials (see Table 1 for the list). There are 

three major targeting sites for Hh signaling inhibitors identi-

fied so far: Hh molecules (Shh neutralizing antibodies, small 

molecule Robotnikinin), SMO protein (cyclopamine and its 

derivatives IPI-926 and CycT, and synthetic compounds 

GDC-0449, XL-139/BMS833923, LDE-225, PF04449913, 

and LY2940680), and Gli inhibitors (HPI-1, HPI-2, 

GANT-56, and GANT-61).100 The major advances include 

successful clinical trials using GDC-0449 and US Food and 

Drug Administration approval of GDC-0449 for treatment 

of locally advanced and metastatic BCCs. However, com-

bination of Hh signaling inhibitors with gemcitabine or Hh 

signaling inhibitors alone did not show any improvements in 

the outcomes of pancreatic cancer patients. We summarize 

these data below.

Table 1 shows the list of Hh signaling inhibitors in clinical 

trials, with all eight small molecules targeting SMO. Clinical 

trials with GDC-0449 in BCCs are the most successful. 

The successful Phase II clinical trials were preceded with a 

remarkable Phase I clinical trial in patients with metastatic 

BCCs.158 This drug is well tolerated by patients.159–161 Two 

independent groups used GDC-0449 to treat BCNS patients 

and sporadic BCCs, respectively, via oral administration. 

Although the overall outcomes were very encouraging, the 

responses of two groups of patients were quite different. 

Although BCNS patients had virtually a 100% response 

rate, sporadic BCCs had only a 33% response rate. Previous 

studies in mouse models indicate that tumors acquire somatic 

mutations in Smo or other signaling pathways following 

GDC-0449 administration,162 which may explain why not 

all sporadic BCCs responded well. A more rational way to 

treat sporadic BCCs is topical application. Two groups (one 

from Novartis AG and one from Hoffmann-La Roche Ltd/

Genentech) indeed tested that possibility with BCNS patients 

and obtained impressive responses.163,164 Mechanisms to 

Smo antagonist resistance include mutations in the target 

SMO gene or alterations in the PI3K pathway.165,166 Several 

ways have been explored to mitigate drug resistance to SMO 

antagonists, such as itraconazole and arsenic trioxide, poly-

meric nanoparticle-encapsulated Hh signaling inhibitors, or 

vitamin D3.167–170 Hopefully, some of these combined treat-

ments will provide benefits to BCC patients.

Studies in animal models demonstrated significant 

inhibition of Hh signaling inhibitors on medulloblastoma 

development. For example, oral administration of IPI-926 

or PF-5274857 can reduce tumor development, leading to 

a longer lifespan in mouse medulloblastoma models.171,172 

However, an early clinical trial on a medulloblastoma patient 

using GDC-0449 yielded only a transient therapeutic effect, 

due to an SMO mutation occurring soon after treatment.173 

The outcome data of current medulloblastoma clinical trials 

are not available, but there is still a high expectation.

There is evidence to support that rhabdomyosarcoma 

is very responsive to Hh signaling inhibitors. First, gene 

expression analyses revealed elevated Hh target gene 

expression in embryonic rhabdomyosarcomas.111 Second, 

preliminary studies used forskolin or SMO inhibitor to 

shrink tumors in mouse models.174 In addition, evidence for 

Hh signaling in meningiomas and SCLC is quite clear, and 

Table 1 A list of hedgehog signaling inhibitors in clinical trials (from http://clinicaltrials.gov)a

Molecule Other names Phase Tumor types FDA approval Company

GDC-0449 vismodegib/erivedge i/ii/iii BCCs and solid tumors BCCs Hoffmann-La Roche Ltd
iPi-926 i/ii Solid tumors Infinity Pharmaceuticals, Inc.
LDe225 i/ii Leukemia and solid tumors Novartis AG
LeQ506 i Solid tumors Novartis AG
PF-04449913 i/ii Leukemia and solid tumors Pfizer, Inc.
TAK-441 i Solid tumors Millennium Pharmaceuticals, inc.
BMS833923 XL-139 i/ii SCLC and solid tumors Bristol-Myers Squibb
LY2940680 i/ii SCLC/advanced cancer eli Lilly and Company

Notes: aAll small molecules target smoothened molecule. GDC-0449 has been approved by the FDA to treat locally advanced and metastatic BCCs. There are no ongoing 
clinical trials for LeQ506, TAK-441, and BMS833923.
Abbreviations: BCC, basal cell carcinoma; FDA, US Food and Drug Administration; SCLC, small cell lung cancer.
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Hh signaling inhibitors should be effective in these tumor 

types as well.

Hh signaling, cancer stem cell,  
and residual cancer cells
Increasing evidence indicates that Hh signaling is critical 

for cancer stem cell maintenance and function.138,175,176 For 

example, leukemia stem cell maintenance and expansion are 

dependent on Hh signaling.138,175 The effect of Hh signaling 

on a normal hematopoietic stem cell population, however, is 

still quite controversial, with some showing effects but others 

with no effects.138,177–180 Based on cancer stem cell theory, it 

is anticipated that Hh signaling activation exerts resistance 

to cancer chemotherapy and radiotherapy.181 Several studies 

have indeed shown that Hh signaling activation is associ-

ated with chemotherapy or radiotherapy resistance.182–183 

Hh signaling inhibitor IPI-926 enhances delivery of the 

chemotherapeutical drug gemcitabine in a mouse model of 

pancreatic cancer. Relevance to the cancer stem cell theory is 

the link between Hh signaling activation and cancer relapse 

from drug resistance.

Based on the published data, we propose that Hh signaling 

may help maintain the stemness of cancer stem cells, which 

are generally insensitive to chemotherapy and radiotherapy. 

There is evidence to indicate that Hh signaling regulates 

expression of cancer stem cell-related markers, such as alde-

hyde dehydrogenase, Bmi1, snail, Wnt2, PDGFRα, jagged-1, 

CD44, and c-MET.135,155,184–188 The level of Hh expression is 

often higher in the cancer stem cell population in several 

cancer types.189–193 Thus, we have reasons to believe that 

inhibition of Hh signaling may be effective in reducing the 

number of cancer stem cells, which may play an important 

role in chemotherapy and radiotherapy resistance.

Chemotherapy and radiotherapy play an important role 

in the clinical care of cancer patients, but resistance to these 

treatments remains a major obstacle in cancer patient care. 

Recent studies revealed a few examples for the role of Hh 

signaling in chemotherapy and radiotherapy resistance. 

Resistance to docetaxel is a major clinical challenge for 

prostate cancer patients. A recent study revealed an impor-

tant role of Hh signaling on docetaxel resistance in prostate 

cancer.194 Combination of notch and Hh signaling inhibitors 

was able to reverse docetaxel resistance both in cultured 

cells and in xenografts. Activation of Hh signaling via PI3 K 

is also reported in tamoxifen-resistant breast cancer,195 and 

a combination of Hh signaling inhibitor GDC-0449 with 

tamoxifen significantly reduced cell colony formation and 

tumor development in xenografts. In addition, activated Hh 

signaling is shown to be responsible for drug resistance 

in ovarian cancer, cervical cancer, and myeloid leukemic 

cells.196–198 A recent study also suggests that Hh signaling 

may be associated with antiepidermal growth factor receptor 

therapy (targeted therapy) resistance observed in head and 

neck cancer.144 The exact mechanisms by which Hh signal-

ing activation confers drug resistance are not entirely clear, 

but it is reported that Hh signaling can regulate expression 

of several drug resistance-related genes such as ABCG2 and 

MDR.198,199 The cancer stem cell theory can also explain some 

of the mechanisms.

Overcoming recurrence to radiotherapy is also very chal-

lenging, but recent studies suggest that inhibiting Hh signal-

ing may help mitigate radiotherapy resistance in pancreatic 

and head/neck cancer. For pancreatic cancer, we found that 

a combination of Hh signaling inhibitor BMS833932 (see 

Table 1 for details) and radiation could significantly reduce 

the number of lymph node metastasis.135 Similarly, high 

expression of Gli1 is reported to be associated with lymph 

node metastases and tumor progression after radiotherapy in 

squamous cell carcinomas of the head/neck.200

Summary and future perspectives
In summary, the link of Hh signaling activation to a variety 

of human cancer implies the relevance of studying Hh signal-

ing to human health. Rapid advancement in the discovery of 

novel Hh signaling inhibitors has provided many opportu-

nities for developing novel cancer therapeutic strategies. It 

is not surprising to learn that several major challenges still 

exist to prevent the use of Hh signaling inhibitors in clinics. 

These challenges include a lack of basic understanding of 

the molecular mechanisms by which Hh signaling mediates 

carcinogenesis; no clear criteria to identify the right tumors 

for therapeutic application; only a few reliable, physiologi-

cally relevant, and reproducible mouse models for cancer 

metastases to test and optimize drug dosages in order to 

minimize side effects; and a lack of clear strategies to miti-

gate drug resistance. Over the last 3 years, research in this 

area has greatly improved, as indicated in this review. It is 

anticipated that additional novel therapeutic strategies will 

be developed for cancer clinical trials using Hh signaling 

inhibitors in the next few years.
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