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Abstract: Genomic studies have become commonplace, with thousands of gene expressions 

typically collected on single or multiple platforms and analyzed. Unaccounted time-ordered or 

epigenetic aspects of genetic expression may lead to a version of Simpson’s paradox, ie, time-

aggregated overall effects that do not reflect within strata patterns. Without clear functional 

models to motivate clustering and fitting algorithms, these confounding related issues require 

consideration. Several basic examples motivate discussion and more appropriate models for 

analysis of expression data are reviewed.
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Time, ordering, and aggregation effects
In the context of developmental biology, genes express through time, often across 

a multistage developmental process, subject to various epigenetic triggers.1 Recent 

Encyclopedia of DNA Elements (ENCODE) work2 has shown that gene methylation-

related signals in developmental processes typically underlie clusters of gene expres-

sions, with many of these clusters having essentially time-ordered triggers. When 

attempting to model such data, if these considerations are not addressed in the basic 

statistical or mathematical model underlying gene expression analysis, results can be 

misleading. The noninclusion of gene clusters, noninclusion of multistage expression 

patterns through time, and lack of appropriate scaling can all affect the accuracy and 

relevance of the model to be employed, regardless of the statistical analysis. In larger 

datasets with many variables and levels of stratification, this is even more relevant. 

Recent advances in detecting the geometry of chromosomes in the cell have under-

lined the need to consider more complex models than are currently being employed 

in genome-wide association studies (GWAS) and related work. The three-dimensional 

aspect of the information in the chromosome3 may affect the automatic use of a linear 

model-based analysis for expressions of genetic components of the chromosome.

Aggregation effects typically arise in statistical analysis under the name Simpson’s 

paradox. This occurs when the aggregate or overall pattern in the response differs 

from the response pattern observed when the overall sample is stratified by levels of a 

secondary variable. Typically observed associations or correlations are not sustained 

in the stratified analysis. This is a situation that often arises due to poor design and 

limited understanding of the factors affecting the response of interest,4,5 or it is due 

to the cutting edge nature of the science such as, for example, epigenetics. Indeed, in 

the setting of epigenetics, the very definitions motivating the conceptual layering of 

triggers related to epigenetic factors are a subject of debate.1
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In settings where there is a large dependence on empiri-

cal or data-analytic methods, such as clustering techniques 

or tree-based analysis, with limited understanding of the 

functional or model-based elements underlying the relation-

ships among variables, the risk of inappropriate aggregation 

effects must be considered.

If latent variables are thought to be present and can be 

identified, even if not directly measured, the use of structural 

equation models may be appropriate. These models are 

commonly used, for example, to examine relative genetic 

and environmental variables in the context of twin studies.6 

Given the increasing use of epigenetic and environmentally 

sensitive triggers in relation to interpreting gene expression 

data, structural equation models may become more relevant 

in the analysis of gene expression data in the future. A special 

case of structural equation models, ie, path analysis, has also 

been a component of more complicated genetic design over 

many years.7

This paper reviews several simple yet applicable empiri-

cal counter-examples demonstrating misleading aggrega-

tion effects that may arise when time or ordering-related 

aspects of gene expression are not a component of the 

underlying design or model. If a related Simpson’s paradox 

effect cannot be ruled out, results should be interpreted 

carefully. Use of more appropriate models such as path 

analysis and structural equation models for these types of 

settings are discussed.

Simpson’s paradox
Aggregation effects occur when the factors affecting the 

response in question are not well or completely understood. 

In such a situation, key variables may not be collected as part 

of the study design or collected and left out of the statistical 

model and subsequent analysis. Simpson’s paradox arises 

in this type of situation with the additional aspect that the 

marginal response patterns in the aggregated data are typi-

cally null or the opposite of the conditional response patterns 

within strata. This is not really a paradox as it is more a 

design or content flaw or limitation in the science or study 

itself. There has been formal study of this phenomenon,5 

with little application to genetics. The approach taken tends 

to focus on the concept of independence, both in general 

and conditionally.

Mathematically, Simpson’s paradox may be stated in its 

simplest form as:

 Y ∼ X

 Y ∼/ X, W = W
1

 Y ∼/ X, W = W
2

where ∼ denotes association or correlation. Practically, this 

states that the overall association or correlation observed 

between the response variable (Y) and an explanatory 

variable (X) does not hold within strata defined by a third 

variable (W). Sometimes this is referred to as association 

reversal.4 These types of considerations overlap into issues 

regarding causation and conditional independence generally, 

but we do not examine those issues here.

Simpson’s paradox occurs both for continuous and dis-

crete random variables in a similar manner. Here we give 

several basic examples with relevance to genetic studies 

examining expression through time or ordered stages of 

secondary variables.

example 1
Consider a study examining a relationship of standardized 

gene expression differences between cases and controls at 

a specific loci y
i
 and dosage levels of a specific drug x

i
. All 

subjects have been taking the treatment for at least 1 year. 

A secondary variable reflecting severity of oxidative stress 

(high/low) is suspected of affecting underlying epigenetic 

triggers (w
i
). A simple linear model, y

i
 = β

o
+β

1
x

i
+ε

i
, is fitted 

to the overall data. It is obvious that the aggregated data can 

mislead, leaving undetected patterns within the strata and 

giving incorrect magnitude and sign to the coefficient of the 

regression. See Table 1 and Figure 1.

example 2
We assume here two time-ordered methylation triggers and 

examine the association between phenotype A (yes/no) and 

gene B, where expression beyond a given threshold is taken 

to indicate gene expression (yes/no). If time and degree of 

methylation are not accounted for, there is a possibility that 

we are aggregating gene expressions that may be distinct in 

terms of ordered expression and related functional impact and 

relevance. Categorical summaries are as susceptible to this as 

are continuous measures. Many early GWAS-related testing 

approaches did not account for time-ordering in expression data 

or the layered effects of epigenetic triggers. See Table 2.

example 3
The potential for Simpson’s paradox extends to broader and 

more detailed correlation-based studies where clusters or net-

works of correlated gene expressions collected through time 

or according to the ordered levels of a secondary epigenetic 

or exposure variable are to be analyzed. These settings may 
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also reflect aggregated data effects, with the resulting overall 

analysis being very different from the stratified analysis.

Here we create an empirical example, simulating a 

setting with standardized gene expression differences 

between cases and controls measured at five specific loci 

(x
1i
, …, x

5i
) with a related two-level epigenetic expression 

pattern (w
1i
, w

2i
), all measured in relation to a phenotypic 

continuous response y
i
 among cases. Twelve matched cases 

and controls are examined. Correlation matrices are obtained 

for (y
i
, x

1i
, …, x

5i
) both overall and for levels (w

1i
, w

2i
). As 

can be observed, overall correlations and correlations within 

strata are not in agreement. See Table 3.

Without functional models that accurately model or 

reflect the series or network of gene expressions that underlie 

most developmental and maintained genetic processes, many 

gene expression correlation and empirically defined network 

studies require careful interpretation. As the number of 

genetic, epigenetic, and exposure levels relevant to the gene 

expression process increase, this type of aggregation effect 

may become more pronounced and difficult to detect.

Simulation studies
Data-dependent algorithms such as singular value decomposi-

tion and the many related clustering algorithms8 are prone to dif-

ficulty when there are multilayered data and limited functional 

data. In this setting, the simulation of various models and model 

structures may prove useful to understand potential models and 

related observed structures in the generated data.

To generate appropriately correlated or clustered data-

sets it is useful to consider a continuous setting and assume 

normality to begin. Modifications and extensions to more 

complex datasets can be developed directly. For example, 

to generate specific correlations corresponding to levels 

of a stratification variable, say with increasing levels of 

correlation, we can use a two-step approach, first generat-

ing a set of explanatory variables x
i
 and then generating 

the related response y
i
. We then repeat this, increasing the 

correlations as we move across strata. An approach might 

be to generate a set of p explanatory variables x
i
 accord-

ing to a multivariate normal distribution N
n
(0, Σ), where 

we set the correlations ρ(x
i
, x

j
) =0.5|i−j|. This will give a 

set of correlated explanatory variables subject to some 

random noise. We can then generate responses of various 

forms, including both highly correlated and less correlated 

response variables; response variables. For example with 

three explanatory variables we can simulate;

 y = c+5x
1
+3x

2
+1.6x

7

where c is a mean level of response. To define and simulate 

correlation levels across various strata we need only alter the 

value of c and the set of included x
i
.

Latent variables
To limit the potential for Simpson’s paradox, the effects of 

latent variables can be modeled in a study either directly 

or via simulation or application of Bayesian methods with 

minimally informative priors. Typically, structural equa-

tion models are employed when secondary variables are 

thought to be relevant to the modeling of the response vari-

able and its relationships to key variables in the data. In the 

genetic setting, such models under the name path analysis 

date from the 1930s, long before the availability of modern 

genomic data.

Path analysis
In genetics, the use of path analysis9 dates back to the work 

of Sewal Wright.7 The approach examines the various inter-

related and independent sources of variation and correlation 

that must be parsed out in relation to their effect on a response 

of interest. A typical path analysis model can be expressed 

in terms of variables, measured or latent, that are thought 

to relate to a specific outcome or phenotype. For example, 

consider a setting where two epigenetic triggers are related 

to two gene expressions and two resulting phenotypes. In 

such a setting, a path diagram might look like that shown in 

Figure 2, where the correlations between variables are defined 

along each path. Note that not all values and variables can be 

directly modeled. Unknown correlations can be given values 

across a set of possibilities and the robustness of the overall 

correlation examined. To obtain the correlation between 
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Figure 1 Gene expression differences across secondary variable levels.
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elements in the path diagram, we multiply the correlations of 

elements along the path of interest. If there are multiple paths 

connecting the two variables of interest, we sum the obtained 

correlations for each path to obtain the overall correlation 

of interest. Here, the correlation between epigenetic factor 1 

and phenotype 1 is given by a
11

 ⋅ b
11

 + a
21

 ⋅ b
21

.

Path analysis is theoretically based on a set of equations 

that incorporate all possible linkages among the variables. 

It allows researchers to visualize and organize the vari-

ous potential relationships among the variables. Potential 

aggregation effects and Simpson’s paradox may occur here 

as well. Identified path analytic trees may differ in their pat-

terns and structure from an overall, averaged tree. Object-

oriented analysis10 has emerged in recent years providing 

more detailed statistical analysis of tree structures in data, 

often based on bootstrap resampling,11 to achieve statistical 

significance of differences among tree structures.

Structural equation model
The model structure underlying the path analysis diagram 

can be generalized and applied much more broadly through 

a structural equation model. The approach has wide appli-

cation in the social sciences, genetics,12 and genetic twin 

studies where both genetic and environmental elements are 

to be assessed in a controlled setting, as well as any potential 

gene-environment interaction. Note that the idea of epige-

netic signaling may correlate and overlap with the simpler 

concept of “environmental effect”. As a clearer view of epi-

genetic variables develops, reflecting a more nuanced gene-

environmental interaction concept, researchers may wish to 

apply structural equation models more consistently.

In general, a structural equation model is typically com-

posed of several equations. For the path analytic model con-

sidered above, the corresponding structural equation model 

can be interpreted from the diagram and written as:

 y
1
 = b

11
w

1
+b

21
w

2
+e

1

 y
2
 = b

22
w

2
+e

2

 w
1
 = a

11
x

1
+a

12
x

2

 w
2
 = a

21
x

1
+a

22
x

2

where the y
i
 variables define phenotypes of interest, w

i
 the 

gene expression levels, and x
i
 the epigenetic levels. Additional 

structure, such as correlated error terms, potential interac-

tion, and nonlinearities may also be added into the equations. 

The errors e
i
 are assumed to be normally distributed. Note 

that the w
i
 variables exist within the overall context of the 

system of equations. Specific hypotheses can be examined, 

including specified correlations, and models can be fit to the 

data. Software for structural equation models includes the 

well known LISREL (version 9.1, 2013, Scientific Software 

International, Inc., Skokie, IL, USA) package.13

Discussion
It is essential to carefully model and interpret aggregate 

versus conditional or stratified effects in research disciplines 

Epigenetic 1

Epigenetic 2

Gene
expression 1

Gene
expression 2

Phenotype 1

Phenotype 2

e1

e2

a11

a22

a21

a12

b11

b22

b21

Figure 2 path analytic diagram for epigenetic triggers, related gene expressions, and 
resulting phenotypes.

Table 1 Standardized gene expression differences and dosages 
with latent variable level

W1 W2

y: 15, 12, 14, 13, 10, 5, 7, 6, 5,  
4.5, 5.8, 5 0, 6.0, 5.6, 4.3

32, 30, 31, 28, 26, 25, 28.9, 27.2,  
25, 23, 22, 20, 19, 20.1, 17

x1: 3, 7, 6, 5, 4, 5, 6, 9, 10, 11,  
9, 8, 8.9, 9, 9.3

20, 24, 25, 27, 28, 29, 32, 33, 32,  
30, 30, 32, 33, 34, 35

Abbreviations: y, phenotypic response; x, dosage; W, secondary variable.

Table 2 Association between gene and phenotype mediated by 
methylation

Gene B Phenotype A Total Detection rate

Y N

Overall
 Y 31 31 62 50%
 N 16 24 40 40%
 total 47 55
Methylation 1
 Y 28 22 50 56%
 N 6 3 9 66%
 total 34 25
Methylation 2
 Y 3 9 12 25%
 N 10 21 31 32%
 total 13 30

Abbreviations: Y, yes; N, no.
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applying statistical models, especially if primarily data 

analytic techniques are to be used. The idea of paradox 

here arises from limited experimental or study design and 

scientific understanding. In a rapidly moving science such 

as genetics or genomics, the chances that time as a variable, 

or other ordered epigenetic trigger variables related to gene 

expression are being aggregated inappropriately is high. Even 

simple empirical counter-examples show the need to care-

fully approach multilayered or time-ordered phenomena. The 

empirically driven methods underlying much gene expression-

related cluster analysis are all technically susceptible to such 

aggregation effects. This, in addition to the file-drawer effect 

of unpublished negative results, should lead to careful assess-

ments of results.

If the time or ordering aspect of gene expression is dis-

regarded or unknown, or the epigenetic triggers have not 

yet been identified, comparisons across the genome using, 

for example, standard GWAS or clustering methods may be 

misleading. Recent work on the three-dimensional structure 

of chromosomes within cells3 suggests that the linear struc-

ture of current GWAS analysis may not be appropriate. This 

structure allows for a wide variety of gene sharing between 

chromosomes across widely disparate sections of various 

chromosomes as a natural occurrence, one that is unexpected 

if the GWAS analysis is viewed from a one-dimensional linear 

perspective.

The often massive size of expression data collections 

does not preclude application of the effects discussed here 

or other difficulties arising related to the design of experi-

ments.14 In fact, the collapse of standard errors in such set-

tings may make it more difficult to detect association reversal, 

as significance in general becomes difficult to interpret. The 

art of simulation is very useful in these settings to generate 

toy datasets that, with appropriate structures can be used to 

carefully assess and examine the relevance and stability of 

various potential models.

As functional and related hierarchical models become 

more commonly available for relating genotype to pheno-

type, and the related ordered expression of genes is better 

understood, more useful analytic models for many genetic 

phenomena will emerge and issues of aggregation and para-

dox should diminish.
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