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Background: The alanine allele of P12A polymorphism in PPARG gene in a few studies 

has been associated with a reduced or increased risk of acute myocardial infarction (AMI). 

Yet, the risk relation has not been confi rmed, and data on ischemic stroke (IS) is scarce. We 

therefore investigated the role of this polymorphism on occurrence of AMI, coronary heart 

disease (CHD) and IS.

Methods and fi ndings: We performed a case-cohort study in 15,236 initially healthy Dutch 

women and applied a Cox proportional hazards model to study the relation of the P12A polymor-

phism and AMI (n = 71), CHD (n = 211), and IS (n = 49) under different inheritance models. In 

addition, meta-analyses of published studies were performed. Under the dominant inheritance 

model, carriers of the alanine allele compared with those with the more common genotype were 

not at increased or decreased risk of CHD (hazard ratio [HR] = 0.82; 95% confi dence interval 

[CI], 0.58 to 1.17) and of IS (HR = 1.03; 95% CI, 0.14 to 7.74). In addition no relations were 

found under the recessive and additive models. Our meta-analyses corroborated these fi ndings 

by showing no signifi cant association. For AMI we found a borderline signifi cant association 

under dominant (HR = 0.49; 95% CI, 0.26 to 0.94), and additive (HR = 0.51; 95% CI, 0.26 

to 1.00) models which could be due to chance, because of small cases in this subgroup. The 

meta-analysis did not show any association between the polymorphism and risk of AMI under 

the different genetic models.

Conclusions: Our study in healthy Dutch women in combination with the meta-analyses of 

previous reports does not provide support for a role of P12A polymorphism in PPARG gene in MI 

and CHD risk. Also our study shows that the polymorphism has no association with IS risk.

Keywords: genetics, myocardial infarction, polymorphism, PPARG gene, risk factors, popula-

tion-based

Introduction
The most prevalent human PPARG gene mutation is a cytosine to guanine substitu-

tion in exon B (codon 12) of this gene (Knouff and Auwerx 2004), resulting in an 

exchange of proline (P) to alanine (A) at amino acid (Temelkova-Kurktschiev et al 

2004). Initially recognized to play a role only in adipogenesis and glucose homeostasis, 

recent works have shown associations with regulation of cell growth, migration and 

infl ammation (Schiffrin et al 2003; Youssef et al 2004). Also, PPARG2 has a role in 

insulin signaling, insulin resistance, and development of type 2 diabetes (Memisoglu 

et al 2003).

There is some evidence that P12A polymorphism in PPARG gene is related to 

vascular risk factors (Deeb et al 1998; Altshuler et al 2000; Meirhaeghe et al 2000; 

Masud and Ye 2003; Ostgren et al 2003; Doney et al 2004). A meta-analysis showed 
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a 21% risk reduction for type2 of diabetes (Altshuler et al 

2000). Moreover, A12 allele carriers have signifi cantly 

higher body mass index (BMI) (Masud and Ye 2003), lower 

insulin resistance (Deeb et al 1998; Meirhaeghe et al 2000) 

and reduced blood pressure (Ostgren et al 2003; Doney et al 

2004). These fi ndings suggest that a possible role in athero-

sclerosis development. This is supported by recent fi ndings 

showing a relation of A12A genotype to reduced common 

carotid intima-media thickness (Temelkova-Kurktschiev et al 

2004; Al Shali et al 2004b).

However, information on the relation with acute myo-

cardial infarction (AMI), coronary heart disease (CHD) and 

ischemic stroke (IS) as the clinical endpoints is scarce, and 

inconsistent (Vos et al 2000; Ridker et al 2003; Doney et al 

2004; Tobin et al 2004; Pischon et al 2005; Li et al 2006) for 

CHD. A reduced risk for ischemic stroke has been reported 

(Lee et al 2006). We set out to investigate the relation of 

P12A polymorphism in PPARG gene on occurrence of AMI, 

CHD and ischemic stroke in middle-aged Dutch women. To 

expand the evidence further, we performed meta-analyses 

using published data from observational studies.

Methods
Prospect-EPIC study
Study design, general questionnaire, anthropometric and 

Laboratory measurements have been described in detail 

elsewhere (Zafarmand et al in Press). Briefl y, the study 

population consisted of participants of the Prospect-EPIC 

cohort. Participants were recruited between 1993 and 1997 

among women living in Utrecht and vicinity who attended 

the regional population-based breast cancer-screening 

program. A total of 17,357 women aged 49–70 were 

included. Follow-up event information was obtained from 

the Dutch Centre for Health Care Information, which holds 

a standardized computerized register of hospital discharge 

diagnoses. Using the International Classifi cation of Diseases, 

ninth Revision (ICD-9) codes for the main discharge reason, 

we categorized cardiovascular disease (codes 390–459) as 

CHD (codes 410–414), including acute myocardial infarction 

(code 410), as ischemic cerebrovascular disease (codes 

433–435), and other cardiovascular diseases. Whenever 

multiple events occurred, the fi rst diagnosis was taken as 

endpoint of interest. All women signed an informed consent 

form prior to study inclusion. The study was approved by 

the Institutional Review Board of the University Medical 

Center Utrecht.

We applied the case-cohort design introduced by Prentice 

(1986). In this design, data is collected on all subjects, but 

the data would only be analyzed on cases and sub-cohort 

members. Cases are those emerging in the total cohort; 

controls are subjects in the sub-cohort. The sub-cohort is a 

randomly selected sample of 10% (n = 1736) from the 17,357 

women in the total cohort. Women who did not consent to 

linkage with vital status registries or who were not traceable 

(cases n = 3/sub-cohort n = 38) were not included. Women 

who reported a diagnosis of cardiovascular disease (ICD-

9; 390–459) at baseline, who had missing questionnaires 

or blood or DNA samples were excluded. This resulted in 

15,236 women in the total cohort and 1519 women in the 

sub-cohort at baseline (as the control group). All fi rst fatal 

and non-fatal CHD and ischemic stroke events that arose 

during follow-up until January 1st 2000 were selected as 

cases. These were 211 CHD cases, including 71 AMIs, and 

49 ischemic cerebrovascular events. For all case subjects 

follow up ended at the date of diagnosis or at the date of 

death due to cardiovascular disease.

Genetic analysis
Genetic analysis was performed at the Cardiovascular Geno-

typing (CAGT) laboratory of the Department of Internal 

Medicine of the University Hospital Maastricht. Genomic 

DNA was extracted from buffy coats with the use of the 

QIAamp® Blood Kit (Qiagen Inc., Valencia, California, 

USA). Genotyping of the polymorphisms was performed 

using a multilocus genotyping assay for candidate markers 

of cardiovascular disease risk (Roche Molecular Systems 

Inc., Pleasanton, CA, USA) (Cheng et al 1999). Genotyping 

was preformed blinded to the case-control status. A random 

double-check was performed to detect potential genotyping 

errors.

Data analysis
To assess the relation of P12A polymorphism with the out-

come, we used a Cox proportional hazards model with an esti-

mation procedure adapted for case-cohort designs. We used 

the unweighted method by Prentice, which is incorporated in 

a SAS macro at http://lib.stat.cmu.edu/general/robphreg.

Baseline characteristics of sub-cohort by genotypes (P12P, 

P12A and A12A) is given. Hardy-Weinberg equilibrium 

(HWE) was evaluated with the χ2 test. Frequencies of A12 

allele and P12 allele were determined. We assessed the 

association between the polymorphism and events under 

different genetic models. The dominant genetic model 

compares individuals with one or more polymorphic alleles 

(P12A and A12A genotypes combined) with a group with 

no polymorphic alleles (P12P). The recessive genetic model 

Powered by TCPDF (www.tcpdf.org)



Vascular Health and Risk Management 2008:4(2) 429

P12A polymorphism and Risk of IHD

compares the A12A genotype with the combined P12P and 

P12A genotypes. The additive genetic model assumes that 

there is a linear gradient in risk between the P12P, P12A 

and A12A genotypes (P12P genotype baseline). This is 

equivalent to a comparison of the A12 allele versus the P12 

allele (baseline). All analyses were performed for AMI, CHD, 

ischemic stroke and total ischemic events. A value of p � 0.05 

(2-sided) was considered signifi cant.

Meta-analysis
Search strategy and data extraction
For the meta-analysis, published data was used concerning 

the P12A polymorphism in PPARG gene and MI, CHD and 

IS. The search was done on November 15, 2006. In addi-

tion, our own data were included. Studies were found with 

PubMed/Medline, ISI Web of Knowledge, and Embase using 

the following text search string: (Pro12Ala OR P12A) AND 

(“Peroxisome proliferator-activated receptor gamma” OR 

PPARG) AND (coronary disease OR coronary heart disease 

OR CHD OR myocardial infarction OR MI OR myocardial 

infarct OR coronary artery disease OR CAD OR ischemic 

heart disease OR IHD OR cardiovascular disease OR heart 

disease OR angina OR ischemic stroke OR CVA OR stroke 

OR cerebrovascular accident). The following constraints 

were applied to the search: (1) only published articles in 

journals or their supplements (English); and (2) studies only 

in human subjects. Manual bibliography review was added. 

This search (done by MHZ and MLB) identifi ed 36 poten-

tially relevant articles. Studies were included if they reported 

the relative risks, ORs or HRs and 95% confi dence intervals 

[CIs] for events related to PPARG2 P12A polymorphism or 

provided raw data that allowed estimation of these values. 

We excluded 24 studies because of other endpoints (such as 

vascular risk factors); one repeated publication; one study 

which did not provide suffi cient data; two review papers; and 

one study with carotid intima-media thickness as endpoint. 

Since only one paper had been found for ischemic stroke, 

we excluded ischemic stroke from the meta-analysis. Hence, 

data were available for these analyses from 8 original reports 

(6 studies found with databases, one additional article identi-

fi ed by a hand search and our data) involving 2793 cases and 

7680 controls (Table 4). As Pischon and colleagues (2005) 

had provided data from two different studies (Nurses’ Health 

Study [NHS] in women and Health Professionals Follow-up 

Study [HPFS] in men), we consider them in the analysis as 

two studies. The following information was extracted from 

each study: fi rst author, study design, year of publication, 

geographical location, defi nition and number of cases and 

controls, mean age of cases and controls, gender, genotype 

frequency, genotyping methods and consistency of genotype 

frequencies with Hardy-Weinberg equilibrium.

Data analysis
For the meta-analysis, Mantel-Haenszel was used as fi xed 

effects model and the DerSimonian-Laird method was used 

as random-effects model, all under different genetic mod-

els. The Egger’s test with 95% CI was used for evaluating 

publication bias. In each study, we tested for HWE by using 

an asymptomatic χ2 test or an exact test among the controls 

(Trikalinos et al 2006). We used Cochran’s χ2 – based Q 

statistic for between-study heterogeneity (Lau et al 1997), 

which is considered signifi cant for p � 0.10, as well as the 

I 2 statistic for estimation of inconsistency in meta-analyses. 

I 2 represents the percentage of the observed between-study 

variability due to heterogeneity rather than to chance and 

ranges from 0 to 100 percent where a value of 0% indicates 

no observed heterogeneity, and larger values an increasing 

degree of heterogeneity. Values above 75 percent imply high 

heterogeneity (Higgins et al 2003). Meta-analysis was carried 

out using STATA 9.1.

Results
Prospect-EPIC study results
General characteristics of the randomly sampled participants 

of the cohort (n = 1519) are given in Table 1. Of the partici-

pants 1143 (75.2%) had the common type allele (P12P), 346 

(22.8%) were heterozygous for the A12 allele (P12A), and 

30 (2%) were homozygous for the A12 allele. The genotype 

distribution was in HWE.

None of conventional risk factors were statistically 

signifi cantly related to the P12A polymorphism (Table 1). 

Median follow up time for the sub-cohort was 4.3 years, with 

a total of 6,525 person years. The actual follow-up in the 

baseline cohort of 15,236 women was 64,768 person years. 

Due to the case-cohort design, 23 women in the sub-cohort 

eventually were CHD cases and 5 of them were ischemic 

stroke cases (totally 28 cases). Clinical characteristics of 

CHD cases and controls are presented in Table 1.

Comparing allele frequencies in cases and control groups 

separately did not show signifi cant difference between them, 

except for myocardial infarction, which showed a borderline 

signifi cant relation (Table 2).

A lower risk of AMI with only borderline effects was 

found under dominant (OR = 0.51; 95% CI, 0.26 to 1.00; 

p = 0.05) and additive models (OR = 0.49; 95% CI, 0.26 

to 0.94; p = 0.03) but not under recessive inheritance mode 
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sub-cohort (N = 1519) p-valueb CHD cases Sub-cohort p-valuec

P12P P12A A12A

N total 1143 346 30 - 211 1519 -

Age at intake (yr)a 57.2 ± 6.1 57.1 ± 6.0 56.1 ± 5.4 0.63 60.5 ± 5.9 57.1 ± 6.1 �0.01

Body mass index (kg/m2)a 25.8 ± 3.9 25.8 ± 4.1 26.4 ± 3.6 0.69 26.8 ± 3.9 25.8 ± 4.0 �0.01

Weight (kg)a 69.5 ±11.2 69.9 ±11.8 72.7 ±11.6 0.28 71.1 ± 11.3 69.7 ± 11.3 0.08

Height (cm)a 164.2 ± 6 164.5 ± 5 165.8 ± 6 0.24 162.8 ± 6 164.3 ± 6 0.01

Waist to hip ratioa 0.78 ± 0.05 0.78 ± 0.05 0.79 ± 0.06 0.56 0.81 ± 0.06 0.79 ± 0.06 �0.01

Hypertension (%)d 34.6 29.8 33.3 0.25 51.7 33.4 �0.01

Systolic blood pressure (mm Hg)a 133.1 ± 20.2 131.3 ± 19.3 132.9 ± 19.5 0.35 143.3 ± 22.3 132.7 ± 20.0 �0.01

Diastolic blood pressure (mm Hg)a 79.1 ± 10.6 78.7 ± 10.5 79.8 ± 10.6 0.80 81.6 ± 10.7 79.0 ± 10.6 �0.01

Presence of diabetes (%) 2.3 2.0 3.3 0.88 5.7 2.2 �0.01

Presence of hypercholesterolemia (%) 4 4 0 0.53 11.4 3.9 �0.01

Current alcohol consumption (%) 87.9 88.3 88.9 0.97 80.9 88.0 �0.01

Smoking status (%) Past 34.6 35.3 33.3 0.96 26.1 34.8 �0.01

Current 23.1 21.4 33.3 0.31 34.1 22.9 �0.01

Pack- yearse 6.8 ± 9.5 6.1 ± 9.1 7.9 ± 11.3 0.38 9.8 ± 11.4 6.7 ± 9.5 �0.01

Total cholesterol (mmol/L)a 5.9 ± 1 5.8 ± 1 5.9 ± 1.1 0.14 6.4 ± 1 5.9 ± 1 �0.01

HDL cholesterol (mmol/L)a 1.6 ± 0.4 1.6 ± 0.4 1.5 ± 0.4 0.70 1.4 ± 0.3 1.6 ± 0.4 �0.01

LDL cholesterol (mmol/L)a 3.9 ± 0.9 3.9 ± 0.9 4.0 ± 1.1 0.28 4.4 ± 1 3.9 ± 0.9 �0.01

Serum glucose (mmol/L)a 4.5 ± 1.4 4.5 ± 1.5 4.2  ± 1.5 0.31 5.1 ± 2.5 4.5 ± 1.4 �0.01

Notes: aMean ± standard deviation; bComparison of risk factors across genotypes, using the ANOVA F test (continuous variables) and the χ2 statistic (categorical variables); 
cComparison of risk factors across disease status, using the independent samples t-test (continuous variables) and the χ2 statistic (categorical variables); dDefi ned as a systolic 
blood pressure �140 mm Hg and/or diastolic blood pressure �90 mm Hg and/or questionnaire positive; eThe number of packs of cigarettes smoked per day by the number 
of years the person has smoked.
Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; CHD, coronary heart disease (ICD 410–414). 

Table 1 Baseline characteristics of the sub-cohort according to genotype, and clinical characteristics of CHD cases and controls in 
the Prospect – Epic cohort

Table 2 Genotype and allele frequencies of the polymorphism among AMI, CHD, and ischemic stroke cases and sub-cohort of the 
Prospect – Epic cohort

Genotype/allele Acute myocardial infarction Coronary heart disease Ischemic stroke Sub-cohort

No. % No. % No. % No. %

No. of subjects 71 211 49 1519

Genotype 

P/P 61 85.9 167 79.1 38 77.6 1143 75.2

P/A 10 14.1 41 19.4 10 20.4 346 22.8

A/A 0 0.0 3 1.4 1 2 30 2

Allele

Pro 132 93.0 375 88.9 86 87.8 2632 86.6

Ala 10 7.0 47 11.1 12 12.2 406 13.4

χ2 = 4.77 χ2 = 1.61 χ2 = 0.10

Df = 1 df = 1 df = 1

p = 0.03 p = 0.20 p = 0.75
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(Table 3). The analyses were repeated for CHD and ischemic 

stroke as primary outcomes and also for all ischemic events 

(CHD and ischemic stroke). No statistically signifi cant 

association was seen for risks of CHD and ischemic stroke 

(Table 3). None of the risk factors was statistically signifi -

cantly associated with genotypes (Table 1) and we did not 

consider them as confounders in our data. The rationale for 

not adjusting for the risk factors is that we did not want to 

adjust in a primary analysis for intermediates in a potential 

causal pathway and that because genes are randomly assigned 

at conception (Mendelian randomization) confounding by 

lifestyle related factors (or intermediate phenotypes) should 

not be a problem in genetic epidemiology studies (Smith and 

Ebrahim 2004).

We examined the interaction between the P12A poly-

morphism and risk factors for each of the events separately 

by introduction of risk factor*A12 allele carriers term in 

the logistic regression models. No signifi cant interactions 

between P12A and risk factors in AMI, CHD and total isch-

emic events were seen, apart from smoking (current) and A12 

allele carriers (P = 0.027). In the light of the many associa-

tions we studied, this may actually be a chance fi nding.

Meta-analysis results
Table 4 shows the characteristics of studies included in 

this meta-analysis. The genotype frequencies in the stud-

ies were consistent with HWE. The meta-analyses did not 

show a signifi cant association under dominant genetic 

model (OR = 0.85; 95% CI, 0.61 to 1.17; p = 0.32), reces-

sive model (OR = 1.37; 95% CI, 0.77 to 2.47; p = 0.29) 

and additive model (OR = 0.94; 95% CI, 0.72 to 1.25; 

p = 0.69) (Figure 1). Furthermore, pooled estimate 

(Figure 2) did not show a signifi cant association between 

the polymorphism and CHD, under dominant genetic model 

(OR = 0.99; 95% CI, 0.79 to 1.23; p = 0.92), recessive model 

(OR = 1.40; 95% CI, 0.94 to 2.08; p = 0.10) and additive 

model (OR = 1.04; 95% CI, 0.87 to 1.25; p = 0.64). There 

was evidence for heterogeneity under dominant and addi-

tive genetic models for MI (p = 0.002, p = 0.006) and CHD 

(p = 0.002, p = 0.01), respectively. To deal with heterogene-

ity we used random-effect model (the DerSimonian-Laird 

method) for pooling data. There was not evidence for 

signifi cant publication bias (Egger’s test = 1.85; 95% 

CI, –4.86 to 8.56; p = 0.54).

Discussion
In this prospective study among healthy Dutch women aged 

49 to 70 years, no statistically signifi cant association for 

exchanging proline with alanine in PPARG gene was seen 

with CHD and ischemic stroke risk under different genetic 

models. We found a borderline effect for AMI risk under 

the dominant and additive models, which could be a chance 

fi nding. In the meta-analyses of published observational 

studies we did not fi nd any signifi cant association for the 

polymorphism and AMI and CHD risks under different 

inheritance models.

In this study, prevalent cases of CHD and cerebrovascu-

lar disease were excluded to prevent introducing bias due 

to potentially selective survival. The Prospect study is a 

population-based cohort, which makes it less susceptible 

to selection bias. Additional strengths are the comprehen-

sive data and sample collection, complete hospital admis-

sion and mortality follow-up, and the case-cohort design 

which combines the advantages of cohort studies (multiple 

outcomes and time-dependent covariates) with those of 

case-control analyses (fewer subjects), thus being more 

effi cient. Since the genotypes were in the Hardy-Weinberg 

equilibrium, we did not have misclassifi cation of exposure 

(genotypes). Limitations are the relative short period of 

follow-up and the relative small number of cases. The 

latter in general reduces the power to show a statistical 

signifi cant relations.

A new aspect is that we conducted meta-analyses on the 

relation between the P12A polymorphism and MI, CHD and 

ischemic stroke under different genetic models. Yet, due to 

Table 3 Hazard ratios of cardiovascular events under different 
genetic models for P12A polymorphism in PPARG gene in the 
Prospect – Epic cohort

Different  Inheri-  Hazard  95% CI p-value
events tance ratio
 Model

Acute Dominant 0.51 0.26−1.00 0.05

myocardial Recessive 0.34 0.00−2.68 0.47

infarction Additive 0.49 0.26−0.94 0.03

Coronary Dominant 0.82 0.58−1.17 0.27

heart disease ecessive 0.72 0.22−2.37 0.58

 Additive 0.81 0.59−1.12 0.20

Ischemic  Dominant 0.90 0.46−1.78 0.77

stroke Recessive 1.03 0.14−7.74 0.97

 Additive 0.90 0.49−1.67 0.75

All ischemic  Dominant 0.85 0.62−1.17 0.31

events Recessive 0.78 0.27−2.22  0.63

 Additive 0.83 0.62−1.11 0.21
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the genotype frequency, its power is limited for most studies 

especially under recessive genetic model. The results of these 

meta-analyses indicate no association between the poly-

morphism and risk of MI and CHD under different genetic 

models. However it must be noted that an important issue in 

every meta-analysis is publication bias as negative studies 

are less likely to be submitted or accepted for publication, 

especially when this concerns smaller studies. Although 

publication bias was not present based on Egger’s test, the 

performance of this test and the usual funnel plot have been 

challenged (Peters et al 2006) and so we can not completely 

rule out low probability for missing of small negative studies. 

MA for MI risk under the recessive genetic model

Odds ratio

0.1 0.2 0.5 1 2 5 10

Study

 Odds ratio
 (95% CI)

 2.05 (1.00, 4.20)Vos et al.

 0.77 (0.32, 1.86)Ridker et al.

 2.33 (0.73, 7.48)Tobin et al.

 0.57 (0.03, 11.95)Li et al.

 0.34 (0.02, 5.64)Zafarmand et al.

 1.37 (0.77, 2.47)Overall (95% CI)

Odds ratio
0.1 0.5 1 2 5 10

 Combined

 Doney et al.

 Zafarmand et al.

 Li et al.

 Tobin et al.

 Ridker et al.

 Vos et al.

MA for MI risk under the additive genetic model

Odds ratio

0.2 0.5 1 2 5

Study

 Odds ratio
 (95% CI)

 1.18 (0.92, 1.50) Vos et al.

 0.79 (0.63, 0.99) Ridker et al.

 0.87 (0.67, 1.14) Tobin et al.

 1.69 (1.00, 2.85) Li et al.

 0.49 (0.26, 0.94) Zafarmand et al.

 0.94 (0.72,1.25) Overall (95% CI)

Figure1 Meta-analyses of AMI risk under the different genetic models. These forest plots show the overall odds ratio for 6 studies included in the meta-analysis under 
the dominant, recessive, and additive models respectively. Doney and colleagues (2004) did not provide data for recessive and additive models. Size of cubes represents weight 
of each study.
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MA for CHD risk under the additive genetic model

Odds ratio
0.5 0.75 1 1.5 2

Study

 Odds ratio
 (95% CI)

 0.97 (0.56, 1.67) Bluher et al.

 1.69 (1.00, 2.85) Li et al.

 1.19 (0.85, 1.67) Pischon et al.(NHS study)

 1.41 (1.02, 1.97) Pischon et al.(HPFS study)

 0.81 (0.59, 1.12) Zafarmand et al.

 0.87 (0.67, 1.14) Tobin et al.

 1.18 (0.92, 1.50) Vos et al.

 0.79 (0.63, 0.99) Ridker et al.

 1.04 (0.87, 1.25) Overall (95% CI)

MA for CHD risk under the dominant genetic model

Odds ratio

0.1 0.2 0.5 1 2 5 10

 Combined

 Ridker et al.

 Vos et al.

 Tobin et al.

 Zafarmand et al.

 Pischon et al.(HPFS study)

 Pischon et al.(NHS study)

 Li et al.

 Bluher et al.

 Doney et al.

MA for CHD risk under the recessive genetic model

Odds ratio

0.1 0.2 0.5 1 2 5 10

Study

 Odds ratio
 (95% CI)

 1.64 (0.30, 9.09) Bluher et al.

 0.57 (0.03, 11.95) Li et al.

 1.33 (0.37, 4.74) Pischon et al.(NHS study)

 2.02 (0.50, 8.16) Pischon et al.(HPFS study)

 0.72 (0.22, 2.37) Zafarmand et al.

 2.33 (0.73, 7.48) Tobin et al.

 2.05 (1.00, 4.20) Vos et al.

 0.77 (0.32, 1.86) Ridker et al.

 1.40 (0.94, 2.08) Overall (95% CI)

Figure 2 Meta-analyses of CHD risk under the different genetic models. These forest plots show the overall odds ratio for 9 studies included in the meta-analysis 
under the dominant, recessive, and additive models respectively. Doney and colleagues (2004) did not provide data for recessive and additive models. Size of cubes represents 
weight of each study.
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Another limitation may be that our meta-analysis was based 

on published results and that we did not have access to origi-

nal individual data. Finally, the case control studies included 

in the meta-analysis could be potentially prone to selection 

bias if survival post-MI varies by genotype.

The Physician’s Health Study (Ridker et al 2003) reported 

a modest protective effect of P12A polymorphism in PPARG 

gene for incidence of AMI among 523 individuals who subse-

quently developed myocardial infarction and 2092 individuals 

who remained free of reported cardiovascular disease in a 

prospective cohort of 14916 initially healthy American white 

men (Physician’s Health Study cohort) aged 40 to 84 years 

over a mean follow-up period of 13.2 years. The Ala12 allele 

was associated with 23% reduction in myocardial infarction 

risk (OR 0.77; 95% CI, 0.60 to 0.98). In a recent case-control 

study of 844 subjects including 218 patients, increased risk of 

MI was seen under dominant mode of inheritance (OR 1.83; 

95% CI, 1.06–3.1) (Li et al 2006). Under dominant and addi-

tive modes of inheritance we found a statistically signifi cant 

association (p = 0.05 and 0.03, respectively) for risk of AMI, 

but it must be considered that the number of AMI cases was 

71. Since it has been documented that very large sample 

sizes are required to provide suffi ciently precise estimates of 

genotype–disease associations (Smith and Ebrahim 2004), the 

power in our study was low (under 20%) which means that the 

probability for having a false positive fi nding was around 80%. 

Therefore, we conducted a meta-analysis of 6 studies with 1739 

AMI cases and 5903 controls to obtain a more precise estimate. 

The meta-analysis did not show a signifi cant association under 

dominant, recessive and additive genetic models. Moreover, in 

a very recent prospective population-based study of multi-locus 

candidate gene polymorphisms by a group of investigators who 

had previously published a part of their results (Ridker et al 

2003), showed that neither these three polymorphisms nor the 

others were predictors of MI (Zee et al 2006).

Our fi ndings with respect to CHD are in accordance 

with results from Nurses’ Health Study and Health 

Professionals Follow-up Study respectively in women and 

men of 245 cases of nonfatal MI or fatal CHD in women 

(compared with 485 controls) and 250 in men (compared 

with 502 controls) during 8 and 6 years of follow-up that 

the P12A polymorphism is not associated with decreased 

risk of CHD (Pischon et al 2005). In a cross-sectional 

study of patients with diabetes mellitus type 2 in Germany 

(in 201 patients with and 164 without CHD) that the A12 

allele was not related to CHD risk (Bluher et al 2002). 

Our fi ndings and the meta analyses fi ndings agree with 

these fi ndings.

Recently, P12A polymorphism has been related to a 

reduced risk for ischemic stroke in patients with type 2 

diabetes (Lee et al 2006). We found no association between 

the polymorphism and risk of occurrence of ischemic stroke 

under different genetic models. As these two studies are the 

only ones available, further studies are needed.

In conclusion, this study in healthy women free from 

previous cardiovascular disease and the meta-analyses show 

that, the P12A polymorphism in PPARG gene is not associ-

ated with future risk of AMI, CHD, and ischemic stroke.
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