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Abstract: Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central 

nervous system (CNS). The neurological disability and clinical course of the disease is highly 

variable and unpredictable from one patient to another. The cause of MS is still unknown, 

but it is thought to occur in genetically susceptible individuals who develop disease due to a 

nongenetic trigger, such as altered metabolism, a virus, or other environmental factors. MS 

patients develop progressive, irreversible, neurological disability associated with neuronal and 

axonal damage, collectively known as neurodegeneration. Neurodegeneration was traditionally 

considered as a secondary phenomenon to inflammation and demyelination. However, recent 

data indicate that neurodegeneration develops along with inflammation and demyelination. 

Thus, MS is increasingly recognized as a neurodegenerative disease triggered by an inflam-

matory attack of the CNS. While both inflammation and demyelination are well described and 

understood cellular processes, neurodegeneration might be defined by a diverse pool of any of 

the following: neuronal cell death, apoptosis, necrosis, and virtual hypoxia. In this review, we 

present multiple theories and supporting evidence that identify common biological processes 

that contribute to neurodegeneration in MS.

Keywords: lipid and one-carbon metabolism, hypoxia, oxidative stress, autoantibodies, nuclear 

receptors

Introduction
Historically, neurodegeneration in multiple sclerosis (MS) was viewed as a secondary 

process resulting from inflammatory demyelination. While demyelination may play an 

important role in relapsing remitting stage, it doesn’t correlate well with the progres-

sive forms of the disease. Over the past several years, a major shift in thinking about 

the pathogenesis of progressive forms of MS has occurred.1–13 Axonal loss, rather than 

demyelination, correlates better with clinical disability.5,14 A new concept emerging in the 

MS literature theorizes that axonal loss may occur independently of or may even be the 

cause of the demyelination in MS.5,14 Evidence indicates that neurodegeneration occurs in 

all stages of the disease.9,13,15,16 In addition, the neurodegeneration seen in the progressive 

forms of MS does not correlate with white matter plaque location but instead, correlates 

with gray matter and cortical pathology.6,13,15,17–21 A post-mortem analysis of spinal cords 

from MS patients showed that axonal loss in the white matter tracts did not associate 

with the demyelinated plaques in the region.4 This indicates that there might be some 

pathological mechanisms independent of myelin loss that contribute to the axonal loss 

and neurodegeneration present in MS. Further evidence has shown that axonal injury 

can occur before myelin loss,4,5,9,22 suggesting that axonal injury and neurodegeneration 
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could be independent of demyelination and may occur prior 

to or in parallel with demyelination. Neurodegeneration is a 

very complicated mechanism that involves several factors. 

Perhaps the best way to understand the process of neuro-

degeneration is to dissect the protein targets and molecular 

pathways involved. In this review, we will discuss multiple 

theories of myelin loss and axonal degeneration as the basis 

of disease pathology, with the goal of shedding light on the 

common pathways of neuronal destruction.

Hypoxia
Over the years, multiple hypotheses have been proposed to 

explain the pathogenesis of MS, ranging from viral infec-

tion, cytokine-induced apoptosis, and oxidative stress (OS) 

to molecular mimicry and metabolic disorders.23–26 How-

ever, none have successfully identified a single pathological 

mechanism, mainly because MS is a heterogeneous disease, 

with a multifaceted etiology.27,28

One school of thought suggests MS pathology is due to 

axonal damage and loss, which occurs when chronically demy-

elinated neurons reach a state of “virtual hypoxia” associated 

with reduced adenosine triphosphate (ATP) production, and 

ion channel and mitochondrial dysfunction. It is believed that 

the loss of myelin results in an increased energy demand and 

a relative cellular energy deficit, which eventually leads to 

neuronal death (Figure 1). In a viable neuron, Na+/K+ ATPase 

is located at the nodes of Ranvier (regions between myelin 

sheaths). Evidence suggests that after demyelination, the Na+ 

channels undergo redistribution, from localization predomi-

nantly on the nodes of Ranvier to a diffuse spread along the 

axon.29,30 Thus, NA+/K+ ATPase increases along a demyelinated 

axon in order to continue saltatory conduction. The increase 

in Na+/K+ ATPase results in an increased energy demand for 

neuronal firing. In MS patients, this increased energy demand 

cannot be met because of impaired mitochondrial energy 

production in the central nervous system (CNS).4,22,31 The 

impaired mitochondrial energy production leaves neurons in 

a depleted energy state, which has been shown to reduce the 

ability of Na+/K+ ATPase function.32 Depleted mitochondrial 

energy production and reduced firing ability in the overpopu-

lated Na+/K+ ATPase within demyelinated neurons in MS leads 

to several deleterious downstream effects, among which is 

impaired neurotransmission. With a lack of efficient Na+/

K+ ATPase, the cell, in theory, should enter a state of axonal 

depolarization. This state of axonal depolarization causes 

the overpopulated Na+/K+ ATPase to become leaky, resulting 

in increased intracellular Na+ concentrations (Figure 1). It is 

believed that if axonal Na+ rises to a concentration greater 

than 20 mM, the Na+/Ca+ exchanger will operate in reverse, 

thus acting as a system to dump Ca2+ into the axon.33 The 

increase in Ca2+ within the axon is known as Ca2+ loading. 

Additional sources may contribute to axonal Ca2+ loading, 

including release from intracellular Ca2+ stores,34 voltage-

gated Ca2+ channels,35 and Ca2+-permeable cation channels, 

such as glutamate-gated receptors.36–38 Large quantities of 

glutamate released by activated immune cells, in turn, activate 

glutamate receptors, which results in axonal Ca2+-loading and 

subsequent neuronal death.39,40 In hypoxic cells, the reversal 

of Na+-dependent glutamate transporters results in glutamate 

release.41 In addition, astrocytes can release glutamate, by exo-

cytosis or hemichannels,42,43 and unmyelinated callosal axons 

release glutamate in a vesicular manner, similar to the normal 

release at the synapse.44 This increase in vesicular release of 

glutamate within the white matter has implications for the 

mechanisms of ischemia-induced myelin damage, which can 

possibly occur through the activation of glial cells.44

Hypoxia might also play a role in the formation of MS 

lesions. Decreased oxygen availability (hypoxia) is often 

seen in tissues at the sites of chronic inflammation. Inflamed 

tissue has increased metabolic activity, due to the presence 

of inflammatory cells and poor perfusion, which is related  

to blood vessel stenosis and microthrombosis. Therefore, 

chronically inflamed tissue has an increased demand for 

and a limited supply of oxygen. This imbalance results in 

hypoxia at inflammatory sites. Hypoxia also increases the 

permeability of the blood–brain barrier (BBB) and results in 

Virtual hypoxia
and oxidative stress

Autoimmunity
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            autoantigens

Cause: metabolic deregulation
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Effects
Effects

– ↑ Na+/K+ ATPase (energy demand)
– ↑ Nitric oxide, oxidation, necrosis

– ↑ Apoptosis

– Redistribution of
  endogenous protein
– Demyelination

– ↓ Axonal firing

– ↓ ATP

– ↑ Intracellular Na+, Ca2+ 
– ↑ Glutamate release

– ↑ Oxidation
– ↑ Hcy
– ↓ B12, B6, HDL 
– Damage to lipids/
  proteins/DNA
–  Activation of genes and
  transcription factors

Figure 1 Schematic representation of the neurodegeneration theories.
Note: Arrows represent increase (upward) and decrease (downward) in cellular 
processes and metabolites.
Abbreviations: ATP, adenosine triphosphate; B6, vitamin B6; B12, vitamin B12; DNA, 
deoxyribonucleic acid; Hcy, homocysteine; HDL, high-density lipoprotein; ROS, 
reactive oxygen species.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Degenerative Neurological and Neuromuscular Disease 2014:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

51

Neurodegeneration in multiple sclerosis

the overexpression of proinflammatory genes.45–47 Hypoxia 

is often accompanied by hypoperfusion. In about 50% of 

MS patients, the blood flow through normal-appearing 

white matter is reduced.48–52 Taken together, both hypoxia 

and hypoperfusion might be a precipitating factor for MS 

lesion formation.

Hypoxia-inducible factor (HIF) is an important transcrip-

tion factor that regulates cellular metabolism and survival 

under hypoxic stress. HIF is composed of an alpha and beta 

subunit (HIF-α and HIF-β). Active HIF requires a heterodi-

meric complex formation of the two subunits, which then 

translocates to the nucleus, binds to the hypoxia-response 

Table 1 Genes involved in oxidative stress, hypoxia, lipid, and one-carbon metabolism

Gene Theory Pathway References

AMPA/kainate receptor Oxidative stress AMP kinase 8, 37, 82, 83
Apo A1 
HDL

Oxidative stress 
Inflammation

Inflammation, immune response,  
Lipid metabolism, cholesterol transfer

23, 167, 169, 180

CBP/p300 Hypoxia Apoptosis NF-k-ß 47, 54
TNF α 
TNF ß

Inflammation 
Hypoxia oxidative stress

Apoptosis 
Cytokines

57, 70

iNFγ 
iNF1ß

Inflammation Inflammation 70, 167

iCAM-1 
vCAM-1

Autoimmunity 
virtual hypoxia

Apoptosis, 
Inflammation

40, 64

iL-1ra 
iL-2ra 
iL-18 
iL-6 
iL-1ß

Inflammation 
virtual hypoxia 
Oxidative Stress

Cytokines 
T cell survival 
Proliferation

168–171

HiF 
HiF-1 
HiF α 
HiF ß

Hypoxia Inflammation, 
Apoptosis 
Pi3K/AKT

47, 53, 55–60, 71, 73, 74

NADPH oxidase 
NOS 
NMDA

Oxidative stress Apoptosis 62, 78, 149, 172, 180

NF-k-ß Hypoxia, oxidative stress 
Autoantibodies 
Metabolic disturbances

Apoptosis 
eRK

40, 47, 
57–60, 107, 115, 149

HnRNP A1/B2 
NF-155, 
NF-186 
MOG 
MAG 
PLP

Autoantibodies Autoimmune response 
Cell survival, 
Proliferation, 
Apoptosis 
immune response

10, 11, 85, 
90–92, 94, 100, 106–108, 
110–112, 117, 120, 122, 
123

BHMT 
MAT 
GNMT 
CBS 
Methyl transferase 
Methionine synthase 
MTHFR

Metabolic disturbances One-carbon metabolism 23, 138, 144, 148, 151, 
152, 157, 160, 173

PPAR α 
PPAR β/δ 
PPAR γ

Oxidative stress, 
Hypoxia, 
Lipid and amino acid metabolism

immune response 
Lipid metabolism 
Cholesterol transfer 
Apoptosis

23, 180, 
182–201

PLA2 Oxidative stress immune response 77, 78

Abbreviations: AKT, protein kinase B; AMP, adenosine monophosphate; AMPA, isoxazolepropionic acid; Apo A1, apolipoprotein A1; BHMT, betaine-homocysteine-S- 
methyl transferase; CBP, CReB-binding protein; CBS, cystathionine beta synthase; CReB, cyclic AMP response element binding protein; eRK, extracellular signal-regulated 
kinase; GNMT, glycine N-methyltransferase; HDL, high-density lipoprotein; HiF, hypoxia inducible factor; HnRNP, heterogeneous nuclear ribonuclear proteins; iCAM, 
intracellular adhesion molecule 1; iL, interleukin; iNF, interferon; MAG, myelin-associated glycoprotein; MAT, methionine adenosyltransferase; MOG, myelin oligodendrocyte 
glycoprotein; MTHFR, methylenetetrahydrofolate reductase; NADPH, nicotinamide adenine dinucleotide phosphate; NF, neurofascin; NF-kβ, nuclear factor-kappa β; NMDA, 
N-methyl-D-aspartate receptor; NOS, nitric oxide synthase; p300, e1A binding protein p300; Pi3K, phosphoinositide 3′-kinase; PLA, phospholipase A; PLP, proteolipid 
protein; PPAR, peroxisome proliferator-activated receptor; TNF, tumor necrosis factor; vCAM, vascular-cell adhesion molecule 1.
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element, and associates with coactivators, such as CREB 

(Cyclic AMP response element binding protein)-binding 

protein (CBP)/E1A binding protein p300 (p300) (Table 1). 

The binding results in the activation or suppression of many 

genes involved in metabolism and cell survival. These changes 

include an increase in HIF-1α protein levels, expression of 

HIF1-inducible genes in the MS brain,53 blood vessel density, 

and endothelial cell proliferation.47,54 HIF-1α has been shown 

to play a proinflammatory role in cells of the myeloid lineage 

and anti-inflammatory role in intestinal epithelial cells.55,56

HIFs regulate cellular stress responses in tandem with 

nuclear factor-kappa β (NF-kβ) to control hypoxic inflamma-

tion through activation of cytokine and hypoxia pathways.47 

In fact, there is a cross talk between these two transcription 

factors during hypoxic inflammation. HIF can be activated 

in response to multiple stimuli, such as bacterial lipopoly-

saccharide, microtubule disruption, interleukin (IL)-18 and 

tumor necrosis factor α (TNF-α), hepatocyte growth fac-

tor, and reactive oxygen species (ROS). The mechanism of 

HIF activation involves a NF-kβ-dependent upregulation of 

HIF-1α messenger ribonucleic acid (mRNA) levels.57 HIF-1α 

contains an active binding site for NF-kβ, upstream of the 

transcription start position.58 A recent study demonstrated 

that NF-kβ controls the HIF pathway in response to TNF-α.59 

While NF-kβ controls HIF-1α expression levels, HIF-1α can 

regulate NF-kβ signaling. Mice overexpressing HIF-1α 

exhibited increase in pro-inflammatory NF-kβ targets.60 As 

it appears from the evidence mentioned, hypoxia alters ATP 

potential and gene and protein expression, and may contribute 

to MS lesion formation.

Oxidative stress
Oxidative stress (OS) resulting from the formation of ROS, 

secreted primarily by macrophages, is believed to play a role 

in the pathogenesis of MS. ROS are free radicals and related 

molecules that are defined as any chemical species that contain 

one or more unpaired electrons.24 The most common ROS are 

hydroxyl radical (OH−), superoxide radical (O
2
−), and nitric 

oxide (NO) as well as other molecules, such as hydrogen per-

oxide (H
2
O

2
) and peroxynitrite (ONOO−). Unpaired electrons 

cause ROS to act as electron acceptors, which results in the 

“stealing” of electrons by ROS (oxidation). ROS occur within 

a normal cell to a certain extent, and a number of mechanisms 

are in place to guard against ROS-induced damage; however, 

it appears that in patients with MS, the ROS exceed the capac-

ity of the cellular defense mechanisms. ROS are known to 

cause damage to lipids, proteins, and deoxyribonucleic acid 

(DNA), leading to cellular death by necrosis and apoptosis 

(Figure 1). Metals, such as iron, are normally stored within 

iron-binding proteins. However, injured cells release iron, 

which is then available to catalyze the free-radical reactions 

of ROS formation. Other sources of free radical production 

are the result of oxygen use in mitochondria and enzymatic 

pathways, such as xanthine oxidase, nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, lipoxygenases, 

and cyclooxygenase.24 The “respiratory burst” system of 

activated microglia has also been shown to produce large 

quantities of ROS. In addition, reactive astrocytes have been 

shown to produce NO.24,61

The oxygen- and nitrogen-free radicals generated by 

macrophages have been shown to cause demyelination 

and axonal injury in experimental autoimmune encepha-

lomyelitis (EAE) and MS.62,63 Furthermore, free radicals 

activate transcription factors, resulting in the upregula-

tion of the expression of many genes that are associated 

with MS, such as NF-kβ, TNF-α, intracellular adhe-

sion molecule 1 (ICAM-1), and vascular-cell adhesion 

molecule 1 (VCAM-1)40,64 (Table 1). A study by Langemann 

et al revealed that MS plaques had increased free radical 

activity as well as decreased levels of important antioxi-

dants, such as glutathione, alpha-tocopherol, and uric acid.65 

Further evidence has shown that oxidative damage to DNA 

in MS includes damage to mitochondrial DNA, implicating 

mitochondria not only in the formation of ROS but pos-

sibly as a pathway directly affected by OS.66 Studies have 

also shown that nitric oxide synthase (NOS) is upregulated 

in inflammatory lesions62,67 and that NO and its derivative 

peroxynitrite inhibit mitochondrial respiration.68 NO is both 

essential for life and toxic. Its immunomodulatory effect 

helps sustain healthy homeostasis; however, large NO quanti-

ties damage axons.67 Inflammation induces the production 

of NO. Excessive generation of NO is an indicator of aging 

and neurodegeneration. Increased NO concentration raises 

intracellular Ca2+ and Na+ levels and may be responsible for 

mitochondrial dysfunction.67,69 The tissue damage in MS 

is caused, in part, by elevated levels of NO. In the CNS, 

NO is produced by macrophages and microglia following 

the induction of NOS by the proinflammatory cytokines 

TNF-α and interferon (INF)-γ.70 Notably, NO mediates the 

destabilization of HIF through increased ROS production.71,72 

Another oxidative agent, H
2
O

2,
 has been shown to decrease 

the HIF-DNA binding capacity and the expression of its 

target genes.73,74 Taken together, these studies suggest that the 

redox system plays an important role in HIF regulation.

NO can also react with the sulfhydryl groups of proteins, 

resulting in the S-nitrosylation of target proteins, which 
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initially can act as a protective mechanism in OS, to defend 

proteins from degradation. However, increased OS and 

the overaccumulation of NO results in irreversible cell dam-

age caused by the oxidation of free thiols, nitration of tyrosine 

residues, and lipid peroxidation.75 Increased S- nitrosylation 

has been detected in the normal-appearing white matter 

of MS patients’ brain compared with that of normal con-

trols, indicating that nitrosative damage is involved in the 

pathophysiology of MS.76

In addition to ROS, glutamate appears to be another 

major source of OS in the brain, through the activation of 

ionotropic glutamate receptors. It is possible that damage 

induced by free radicals can occur via the stimulation of 

phospholipase A2 and the release of amino acids, which in 

the presence of free radicals, results in an enhanced release of 

glutamate.77,78 The cerebrospinal fluid (CSF) of MS patients 

has elevated levels of glutamate.79,80 Increased glutamate, 

via an interaction with alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA)/kainate receptors, has also 

shown to be deleterious to oligodendrocytes (which appear to 

be highly vulnerable to glutamate excitotoxicity).81,82 Interest-

ingly, AMPA/kainate receptors are known to have increased 

permeability to Ca2+, resulting in Ca2+-loading by cells.83 As 

the OS theory stands, it appears that ROS in the presence of a 

weakened antioxidant cellular defense results in the damage 

of cellular components, such as lipids, proteins, nucleic acids, 

and mitochondrial DNA. These damaged components alter 

multiple pathways associated with ATP production, upregula-

tion of the genes associated with MS pathology, and increase 

in glutamate levels (via AMPA/kainate receptors).

Antibodies in neurodegeneration
The hypothesis of molecular mimicry explains the patho-

genesis of MS as an autoimmune response to an environmental 

agent.84–89 The antibodies resulting from molecular mimicry 

have profound effects on neurons and implicate molecular 

mimicry as a contributor to neurodegeneration and the 

pathogenesis of neurological disease90–96 (Figure 1). The 

antibodies present in MS patients can be categorized into 

two major groups: myelin and nonmyelin antibodies. Both 

types of antibodies have sufficient evidence to support their 

involvement in the pathogenesis of MS11 (Figure 1). The 

antimyelin antibody targets include myelin oligodendrocyte 

glycoprotein (MOG), myelin basic protein (MBP), myelin-

associated glycoprotein (MAG), and proteolipid protein 

(PLP).97–100 These antibodies have been found in the sera 

and CSF of MS patients; however, the exact role of such 

myelin antigens in MS remains contradictory. One study 

demonstrated that the development of clinically definite MS 

could be predicted based on the presence of anti-MOG and 

anti-MBP antibodies in patients’ sera;101 others found no 

association between anti-MOG and anti-MBP antibodies and 

MS progression.102,103 The immunopathogenic effects of 

antimyelin antibodies might be epitope-specific98 or depend 

on the antibody confirmation.104–106 These earlier studies did 

not specify the cellular pathways affected by autoan-

tibodies. In a recent study, Ho et al showed that MAG 

autoantibodies targeted the following natural brain lip-

ids: 1- palmitoyl-2- glutarol-sn-glycero-3-phosphocholine 

(PGPC), 1- palmitoyl-2-oleoyl-sn-glycero-3-(phospho-L-

serine), (POPS), 1-hexadecyl-2-azelaoyl-sn-glycero-3-  

phosphocholine (azPC), and 1-palmitoyl-2-azelaoyl-sn-

glycero-3- phosphocholine (azPC ester).107 Moreover, the 

authors showed that POPS, PGPC, azPC, and azPC ester 

affected inflammatory, survival, and apoptotic signaling 

pathways – specifically, canonical NF-kβ and extracellular 

signal-regulated kinase (ERK) pathways were activated, in 

stimulated T-cells isolated from EAE mice. Overall, their 

data suggest that myelin phospholipids are targeted by 

autoimmune responses in MS.

A growing number of studies point to the fact that 

antibody-mediated axonal injury could be initiated by anti-

bodies to nonmyelin antigens. Nonmyelin antibodies present 

in MS patients have been found to target neuronal surface 

molecules (axolemma-enriched fractions, neurofascin, 

and gangliosides), cytoskeletal proteins (neurofilaments 

[NFs] and NF light chains [NF-Ls]), intracellular enzymes, 

signaling molecules and chaperones (β-arrestin, retinal 

arrestin, heat shock proteins, glutamate decarboxylase, and 

proteasomes), and nuclear antigens (nuclear ribonuclear 

proteins).108 These antibodies present a different mechanism 

of immune-mediated axonal injury. For example, antineuro-

fascin-186 and antineurofascin-155 antibodies were shown 

to cause an exacerbation of EAE without demyelination, in 

the spinal cord of rats. When antineurofascin antibodies were 

cotransfected with MOG-specific T-cells, they selectively 

targeted the nodes of Ranvier and inhibited neurotransmission 

in an MS animal model.109 In other work, chronic progressive 

MS patients had significantly higher levels of NF-L-specific 

antibodies in their sera compared with that in patients with 

other neurological diseases.110,111 How the anti-NF and anti-

NF-L antibodies arise and their specific effects on the axon 

are unclear, but their correlation with disease progression 

appears applicable, in a biomarker-specific manner.109–111

Antibodies to heterogeneous nuclear ribonuclear pro-

teins (hnRNP) A1 and B2 were present in the CSF of MS and 
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human T-lymphotropic virus 1 (HTLV-1)-associated myel-

opathy/tropical spastic paraparesis (HAM/TSP) patients 

but not in normal controls.10,85,90–92,94,112 These RNA-binding 

proteins play a major role in the adjustment of pre-mRNA 

splicing, through various factors.113 They also participate in 

mRNA stability,114 NF-kβ-dependent transcription,115 and 

telomerase activity.116 HnRNP A1 plays several key roles in 

neuronal functioning, and its depletion, either due to debili-

tated cholinergic neurotransmission117 or due to autoimmune 

reactions, causes drastic changes in RNA metabolism.10 

Recently, RNA-binding proteins have gained attention 

because a large number of these proteins were mutated in 

neurodegenerative diseases.118,119 RNA-binding proteins use 

protein aggregation as part of a normal regulated, physi-

ological mechanism that controls protein synthesis. The pro-

cess of regulated protein aggregation is most evident in the 

formation of stress granules.120 HnRNP A1 has been shown 

to relocate into cytoplasmic stress granules in the presence 

of stress stimuli, such as osmotic shock or OS.121 Recent 

studies showed that the addition of antibodies to hnRNP A1 

affected its distribution, from a primarily nuclear location 

to a mixed nuclear/cytoplasmic distribution.10,122,123 It was 

known that anti-hnRNP A1 antibodies decreased neuronal 

firing in vitro, but it was not clear whether the antibodies to 

this intracellular protein could penetrate neurons and find 

its target.92 Recent studies have revealed that anti-hnRNP 

A1 antibodies penetrate neuronal cells via clathrin-medi-

ated endocytosis and cause deleterious effects.10,92,122,123 

Anti-hnRNP A1 antibodies were also shown to increase 

apoptosis, reduce ATP levels, and cause the redistribution 

of endogenous hnRNP A1 protein. Thus, anti-hnRNP A1 

antibodies altered endogenous protein localization as well 

as inhibited normal cellular processes in vitro.

In MS patients, the presence of the two types of auto-

antibodies may not be mutually exclusive. It is possible that 

antibodies to myelin antigens may have an impact on the 

early, relapsing stages of disease, while the nonmyelin anti-

gens play a more dominant role in the progressive stages of 

MS. More importantly, both types of antibodies may cause 

neurodegeneration through the activation of apoptotic inflam-

matory cytokines and immune response pathways.

Role of homocysteine  
in neurodegeneration
Axonal loss is a key contributor to disability in neurodegenera-

tive diseases. In MS, many studies have suggested that axonal 

damage is a consequence of demyelination triggered by inflam-

mation.124–127 However, substantial axonal loss has also been 

detected at the early stages of MS, and several studies suggest 

that axonal loss is independent of demyelination.128–130 Exactly 

how CNS damage develops is unclear, but it is unlikely to be a 

direct result of viral infection.131 Rather a complicated mecha-

nism, involving innate immunity, genetic predisposition, and 

environmental agents, is at play. The penetration of blood-borne 

neurotoxins through the compromised blood–brain barrier 

might play a significant role in axonal degeneration in MS.132,133 

In addition, microglia cells can produce  neurotoxins endog-

enously and seem to play an important role in neurodegenera-

tion, by acting as an accelerator of neurotoxicity.134 One of the 

neurotoxins is homocysteine (Hcy), a sulfur molecule produced 

from amino acid methionine. Hcy promotes the activation 

and proliferation of microglia.135 Hcy is a major contributor 

to oxidative injury and DNA damage136 (Figure 1). Elevated 

Hcy levels are toxic to neurons and might compromise the 

blood–brain barrier (a hallmark of MS pathology).137–142 MS 

patients have been shown to have elevated Hcy levels, which 

were associated with cognitive decline.143–147 Interestingly, 

a recent study from our laboratory revealed that patients with 

primary and secondary progressive MS had significantly higher 

Hcy levels in their plasma compared with relapsing remitting 

stage patients and controls.148 Hcy can be elevated in biological 

fluids as a result of genetic or metabolic disturbances. Elevated 

Hcy levels induce adverse effects either directly, through lipid 

metabolism, or indirectly, via oxidative and endoplasmic 

reticulum stress (Figure 1). In addition, OS might stimulate the 

accumulation of Hcy because ROS impair the Hcy conversion 

to methionine. Hcy modulates substrate levels for various cata-

lytic processes and regulates the expression of genes involved 

in complex diseases through the activation of NF-kβ.149,150 

Sharma et al used a literature mining approach to identify the 

genes and related pathways affected by Hcy. They identified 

112 genes modulated by Hcy levels and 23 genes that affected 

Hcy.149 Not surprisingly, many of these genes were involved in 

hypoxia, apoptosis, ROS, inflammation, and lipid metabolism. 

According to their study, a common link between apoptosis 

and the inflammatory pathways was endoplasmic reticulum 

stress, which is closely related to OS. Hcy may induce OS and 

apoptosis through NADPH oxidase or through the activation of 

c-Jun N-terminal kinases (JNKs). Hcy is one of the metabolites 

in the one-carbon cycle (Figure 2), which plays an important 

role in disorders of the nervous system.

Importance of the one-carbon 
metabolism in MS
The one-carbon metabolic pathway plays an important role 

in many biological processes and clinical symptoms, such 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Degenerative Neurological and Neuromuscular Disease 2014:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

55

Neurodegeneration in multiple sclerosis

as hypomethylation, homocysteinemia, liver dysfunction, 

and the accumulation of white-matter hyperintensities 

in the human brain.138,148 In addition to Hcy, the one-

carbon cycle contains other important molecules, such as 

S- adenosylmethionine (SAM), S-adenosylhomocysteine 

(SAH), and methionine (Figure 2). These metabolites 

are synthetized within the cycle, through a cascade of 

biochemical reactions involving  vitamins, enzymes, and 

cofactors. For example, the essential amino acid methi-

onine is converted to SAM in the presence of the enzyme 

methionine adenosyltransferase, ATP, and magnesium.151,152 

SAM is further metabolized into SAH, and in the presence 

of SAH hydrolase, SAH is converted to Hcy. Hcy can be 

remethylated or recycled back to methionine, in the pres-

ence of methionine synthase, vitamins B12, and folate; 

formed into cystathionine, in the presence of cystathionine 

beta synthase and vitamin B6; or transformed into Hcy thi-

olactone by methionyl-tRNA synthetase enzyme (Figure 2). 

The simultaneous measurements of major metabolites of the 

one-carbon cycle in MS patients uncovered aberrations in 

the Hcy conversion back to methionine, and the formation 

of SAM and SAH.148

MS patients often have low levels of vitamins B12 

(cobalamin), B6 (pyridoxine), and B9 (folate).153–157 A severe 

vitamin B12 deficiency can cause a breakdown of the 

myelin sheath.158 B12 deficiency associated either with 

poor nutrition, defects in absorption, or disease progression 

results in neuronal demyelination. The early studies on B12 

status in MS patients produced conflicting results; however, 

as improved techniques became available, the consensus was 

reached that MS patients have lower levels of B12 in com-

parison with controls.138,153,156,157,159 In addition, MS patients 

also have reduced B6 levels in their  plasma.148  Vitamin B6 

plays a significant role in normal brain  development and 

function, the formation of myelin, and the production 

of several neurotransmitters (such as serotonin and 

 norepinephrine). A key interaction between vitamin B12 and 

folate in the one-carbon cycle occurs during the synthesis 

of methionine from Hcy by methionine synthase, in which  

both 5-methyltetrahydrofolate (enzyme of the folate cycle) 

and methyl-vitamin B12 are cofactors. The folate cycle 

is essential for many genomic and nongenomic methyla-

tion reactions via SAM and indirectly, for the synthesis 

of purines and thymidine, and therefore, of nucleotides, 

DNA, and RNA.160 Methylation reactions of DNA and 

myelin, via SAM, are vitally important in the CNS. Folic 

acid (B9) deficiency also reduces the activity of methionine 

synthase.158 The CNS lacks the alternate betaine pathway 

of homocysteine remethylation; therefore, if methionine 

synthase is inactivated, the CNS has greatly reduced methy-

lation capacity.161 Deprivation of folate and B12 increases 

neurodegeneration, through the activation of ROS and 

Methionine
remethylation

MAT, ATP

MT

GNMT
MS, B12,

BHMT

Cystathionine

Transsulfuration

Hcy thiolactone

N-homoysteinylation

CBS, B6

Homocysteine

S-adenosyl-
homocysteine

MetRS SAHH

Folate
cycle

MTHFR

DNA, RNA, proteins,
polyamines

Methylation
S-adenosyl-
methionine

Figure 2 Diagram of the one-carbon cycle.
Notes: The major metabolites are presented in the blue frames (methionine, S-adenosylmethionine, S-adenosylhomocysteine, homocysteine); enzymes and cofactors are 
highlighted in the pink rectangles.
Abbreviations: ATP, adenosine triphosphate; B6, vitamin B6; B12, vitamin B12; BHMT, betaine-homocysteine-S-methyl transferase; CBS, cystathionine beta synthase; DNA, 
deoxyribonucleic acid; GNMT, glycine N-methyltransferase; Hcy, homocysteine; MAT, methionine adenosyltransferase; MetRS, methionine-tRNA ligase; MS, methionine 
synthase; MT, methyl transferase; MTHFR, methylenetetrahydrofolate reductase; RNA, ribonucleic acid; SAHH, S-adenosylhomocysteine hydrolase.
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apoptosis, and increase in cytosolic calcium and intracel-

lular Hcy.162 In summary, the one-carbon metabolism has 

profound effects on the CNS, where it plays a central role 

in DNA synthesis, methylation, gene regulation, synaptic 

function, and neurotransmission.

Disturbances in lipid metabolism
The human brain has a high lipid content; therefore lipids 

and their turnover should be considered as good candi-

date contributors to diseases of the CNS. However, the 

importance of lipid metabolism in MS has been understud-

ied, mainly due to the central focus on the immune system. 

 Disturbances in lipid metabolism lead to myelin loss, 

neuronal degeneration, and metabolic distress (Figure 1). 

Myelin glycolipids received some attention because of their 

role in autoimmune-mediated demyelination. Apart from 

the myelin autoantibodies, there is now some evidence for 

a potential role of cholesterol and lipids in MS. Among 

the three major pathways of lipid meta bolism (exogenous, 

endogenous, and reverse cholesterol), the cholesterol efflux 

from peripheral macrophages by microglia deserves special 

attention. Microglial cells regulate lipid homeostasis in the 

CNS by maintaining a careful balance between phagocytic 

and cytotoxic macrophages. A distorted lipid homeostasis 

results in an imbalance between the cytotoxic and phagocytic 

microglia.23 In a comprehensive review of MS, Corthals 

described the disease as a dysfunction of the metabolism 

of lipids.23 The author explained that the immune system 

relies on lipids for repair and for prevention of inflamma-

tion. Therefore, a disequilibrium in lipid metabolism causes 

deregulation of the immune system. Lipids, and especially 

oxidized lipoproteins, are the core agents of the immune 

response during acute inflammation. The oxidation of lipids 

could increase in hypoxic conditions and cause distortions 

in lipid metabolism. The importance of controlling dys-

lipidemia in MS patients has been recently emphasized in 

several studies.163–166 Dyslipidemia was linked to an increased 

risk for disability progression in a study that analyzed 8,993 

MS patients.163 Lipid profiles were shown to be associated 

with magnetic resonance imaging (MRI) outcomes as well 

as lesion formation in IFN-β-treated patients after the first 

demyelinating event.164–166 Patients treated with intramus-

cular IFN-β showed an association between higher serum 

low-density lipoprotein (LDL) cholesterol and total cho-

lesterol, with an increased risk for developing new lesions 

on T2 weighted scans.165 Interestingly, a different study 

showed that patients who had high levels of apolipoprotein 

A1 (ApoA1) adapted better to IFN-β therapy.167 ApoA1 is a 

major component of high-density lipoprotein (HDL). ApoA1 

inhibits contact-mediated activation of monocytes by binding 

to stimulated T-cells, thereby inhibiting TNF-α and IL-1β 

production.168,169 Others also found that an increased total 

cholesterol was associated with increases in the number of 

contrast-enhancing lesions in clinically isolated syndrome 

following the first clinical event.164 The results from these 

studies suggest the importance of controlling dyslipidemia 

in MS. Cholesterol-lowering drugs, such as statins, are used 

to lower cholesterol in humans; therefore it was logical to 

evaluate these therapies in MS. Animal studies showed that 

statins inhibited the production of NOS, TNF-α, and IL-6, 

and lowered disease scores.170,171 However, such therapeutic 

approach in humans resulted in controversial findings.172–176 

A pilot study using 80 mg simvastatin reported a reduction in 

the number and volume of gadolinium-enhancing lesions.176 

The next double-blinded clinical trial with atorvastatin 

(40 or 80 mg) as an add-on to IFN-β treatment showed 

that patients on statins had either new T2 lesions or more 

clinical relapses.177 In 2012, a new randomized clinical trial 

showed a benefit of simvastatin use in secondary progres-

sive MS patients.172 Simvastatin reduced brain atrophy by 

43% and improved clinical outcomes over the 2-year study 

period. Overall, statins are well-tolerated and widely used 

drugs that lower LDL, increase HDL, and reduce inflam-

mation. However, these drugs have been shown to increase 

ROS generation and suppress the activation of the protein 

kinase B (PKB)/AKT and extracellular signal–regulated 

kinase (ERK) pathways, elevate lipid peroxidation, and 

induce oxidative DNA damage, in human peripheral blood 

lymphocytes.178,179 Increased lipid peroxidation has been 

shown to be associated with disease exacerbation periods 

and lesion pathogenesis in MS patients.180 Statins block the 

hepatic enzyme 3-hydroxy-3-methyl-glutaryl-CoA (HMG-

CoA) reductase responsible for the production of cholesterol 

in the body. The inhibition of this enzyme also affects the 

pathways responsible for leukocyte migration and activa-

tion, thus providing a beneficial outcome in autoimmune 

inflammation. Animal studies have shown that Hcy inhibits 

simvastatin-induced ApoA1 upregulation,181 thus suggest-

ing a link between statins and Hcy metabolism. However, 

human studies did not provide detailed ApoA1and Hcy 

measurements in addition to the MS clinical outcomes in 

statin trials. At present, it is not entirely clear which statin 

drug, at what dose, and at which stage of the disease will 

provide the most benefit to MS patients. Therefore, future 

research is needed to uncover the protective and/or patho-

logical effects of statins in MS.
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Peroxisome proliferator-activated 
receptors in MS
Perturbations in lipid metabolism negatively affect myelin.182,183 

Therefore, special consideration should be given to the fac-

tors that control lipid turnover in health and disease. Lipid 

metabolism is regulated by peroxisomes and the peroxisome 

proliferator-activated receptors (PPARs).23,184–186  Remarkably, 

PPARs also control inflammation.184  Peroxisomes are 

responsible for oxygen metabolism, and α- and β-oxidation 

reactions.183 PPARs regulate the function and the number of 

peroxisomes within the cell as well as numerous biological 

pathways associated with MS (Figure 3). PPARs form 

heterodimers with the retinoid X- receptor (RXR). These 

heterocomplexes regulate the inflammatory response and 

cytotoxic cell apoptosis, myelin synthesis, neuronal cell pro-

liferation and differentiation, energy and lipid homeostasis, 

and reactive oxygen species.187–190 There are three subtypes of 

PPARs: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ 

are present in the lipid core of atherosclerotic lesions, mac-

rophages, foam cells, and smooth muscle cells.188,190 PPARα 

is one of the several factors that regulate the expression of 

HDL and ApoA1.191 PPARα is involved in the acetylcho-

line metabolism, neurotransmission, and OS defense.192,193 

PPARβ/δ is involved in the control of brain lipid metabolism, 

epidermal cell proliferation, fatty acid adipogenesis, and 

preadipocyte proliferation.194 All PPAR subtypes have been 

described in the adult and developing brain and in the spinal 

cord. Several publications have suggested that PPAR activa-

tion might directly affect the viability and differentiation of 

neuronal cells.195–199 Remarkably, the expression of PPARγ 

in the brain has been studied in relation to inflammation and 

neurodegeneration.195

For example, PPARγ was found to be increased in micro-

glia and astrocytes during EAE.200 This knowledge prompted 

an array of studies utilizing PPAR ligands to modulate the 

course of the disease in animals.198,200–202 These studies have 

shown that PPAR activation reduced leukocyte infiltration 

into the brain parenchyma and decreased inflammation and 

axonal demyelination.

Use of the PPARγ antagonist GW347845 in peripheral 

blood mononuclear cells (PBMCs) from MS patients has 

been shown to result in suppressed T-cell proliferation and 

reduced secretion of TNF-α and INF-γ.194 However, these 

antiproliferative effects were accompanied by reduced cell 

viability and induced apoptosis in activated lymphocytes. 

Preincubation of PBMCs with pioglitazone was shown to 

increase the DNA-binding activity of PPARγ and decrease 

NF-kβ DNA-binding activity, in the absence of an acute MS 

relapse.194 Interestingly, Hcy is known to downregulate PPARα 

expression by competing with its ligands (Figure 4).48,149,181,191 

These results underscore a cross talk between the two types 

of transcription factors NF-kβ and PPARs in the regulation 

of the immune response. The Hcy downregulation of PPARα 

suggests that PPAR activation could benefit patients with 

normal Hcy levels.

Discussion: common pathways  
of destruction
Hypoxia, OS, ROS, autoantibodies, and disturbances in lipid 

and one-carbon metabolism affect the health of neurons. 

Cell proliferation 
and differentiation

Integrity of the
blood–brain barrier

Apoptosis

Inflammation

Oxidative
stress

Myelin synthesis
Angiogenesis

One-carbon
metabolism

Lipid
metabolism

Virtual
hypoxia PPARβ/δ

PPARα PPARγ

RXR

RXR RXR

Figure 3 PPARs regulation of cellular processes.
Note: PPARs form complexes with RXR to control multiple cellular processes.
Abbreviations: PPAR, peroxisome proliferator-activated receptor; RXR, retinoid 
X-receptor.

ROS Hypoxia

Autoantibodies

Lipid and
one-carbon
metabolism

Neurodegeneration

PPARs HIF NF-kβ

Figure 4 Common pathways of neurodegeneration.
Note: Metabolic disturbances affect major regulators of cellular processes.
Abbreviations: HiF, hypoxia inducible factor; NF-kβ, nuclear factor kappa β; 
PPARs, peroxisome proliferator-activated receptors; ROS, reactive oxygen species.
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Hypoxia seems to be secondary to demyelination.  Oxidative 

stress could be caused either by external factors (such as 

viruses, bacteria, and other environmental agents) or by 

internal toxins that have accumulated inside neurons due 

to impaired metabolic processes. Excess ROS generated by 

macrophages or microglia can lead to inflammation, demy-

elination, and neuronal degradation (Figure 4). Antimyelin 

and other autoantibodies could cause significant damage to 

neurons and activate other destructive pathways.

It is not clear which of the factors precipitate the first 

signs of neuronal demise. However, from the evidence at 

hand, it appears that each theory of neuronal  degeneration 

and related pathway overlaps the next (Figures 1 and 4). 

 Autoimmunity (caused by the presence of myelin and 

nonmyelin autoantibodies), metabolic deregulation in one-

carbon and lipid metabolism, hypoxia and OS precipitated by 

inflammation, ROS, and cytokines can all result in neuronal 

degradation. Taken together, the studies suggest that all of 

these processes play important roles in neurodegeneration 

(Figure 4). Neurotoxins, such as Hcy, released in the vicinity 

of the CNS promote neuronal injury by inducing the cytokine 

or OS pathways. OS triggers lipid peroxidation, which in turn, 

negatively affects myelin. The reactive oxygen and nitrogen 

species released by invading inflammatory cells can cause 

demyelination and axonal destruction. Oxygen radicals 

cause damage by reacting with cellular lipids, proteins, 

carbohydrates, and DNA.

Impaired one-carbon metabolism adversely affects 

myelination, DNA methylation, and amino acid and protein 

conversion reactions, and can trigger inflammation through 

increased Hcy levels. Compromised Hcy conversion to meth-

ionine or cysteine might be a crucial factor responsible for 

the activation of transcription factors and stimulation of ROS 

formation (Figure 4). Very few studies have addressed the 

importance of lipid metabolism in MS; however, the current 

knowledge points to a possible missing link between the sim-

ple lowering of cholesterol and a reduced lesion load.  Statins 

reduce inflammation and lower LDL cholesterol through 

the inhibition of HMG-CoA reductase. At the same time, 

statins induce the formation of NO through the induction 

of endothelial NOS. Therefore, a deeper understanding of 

the cross talk between inflammation, OS, and cholesterol 

transport could lead to novel therapeutic strategies.

Neurons have another mechanism of response to stress – 

through upregulation of transcription factors, such as PPARs. 

These transcription factors are involved in a plethora of vital 

cellular processes (Figure 3). PPARs seem to be a common 

link between ROS, hypoxia, and apoptosis. They are also 

involved in the modulation of immune response and lipid 

metabolism. However, the activation of these transcription 

factors is deeply influenced by the cellular environment. 

For example, the presence of large quantities of Hcy and 

other toxins might result in PPAR inhibition. Hcy appears to 

play an important role in OS, lipid and one-carbon metabo-

lism, and the regulation of NF-kβ and PPARs (Figure 4). 

The cofactors affecting the one-carbon cycle metabolites, 

such as vitamins B6, B12, and folate, should be evaluated 

in MS patients. PPARs-activation agents are less likely to 

work in MS patients with high Hcy because of the ongoing 

production of Hcy in the one-carbon cycle. Hcy levels could 

be  lowered with the increased consumption of vitamins B6 

and B12. Therefore, future studies designed to combine 

PPAR- activation with homocysteine- and cholesterol-lower-

ing strategies could lead to novel therapeutic approaches.

Conclusion
MS is a complex disease, and most progressive MS patients 

develop a common final pathway of neurodegeneration. 

The molecules responsible for neurodegeneration remain an 

ongoing area of investigation. Neurons are very susceptible 

to OS, hypoxia, autoantibodies, and metabolic disturbances. 

This review highlighted several targets, mechanisms, and 

pathways that play important roles in neuronal degeneration. 

Because of the variability of MS, more than one pathway 

may contribute to neurodegeneration, and thus, targeted 

interventions designed to normalize these cellular processes 

could help delay neuronal degeneration and improve clinical 

outcomes in MS patients.
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