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Abstract: Nasopharyngeal carcinoma (NPC) is a common tumor in Southern China, but the 

oncogene mutational status of NPC patients has not been clarified. Using time-of-flight mass 

spectrometry, 238 mutation hotspots in 19 oncogenes were examined in 123 NPC patients. The 

relationships between mutational status and clinical data were assessed with a χ2 or Fisher’s 

exact test. Survival analysis was performed using the Kaplan–Meier method with the log-rank 

test. In 123 patients, 21 (17.1%) NPC tumors were positive for mutations in eight oncogenes: 

six patients had PIK3CA mutations (4.9%), five NRAS mutations (4.1%), four KIT mutations 

(3.3%), two PDGFRA mutations (1.6%), two ABL mutations (1.6%), and one with simultaneous 

mutations in HRAS, EGFR, and BRAF (1%). Patients with mutations were more likely to relapse 

or develop metastasis than those with wild-type alleles (P=0.019). No differences or correlations 

were found in other clinical characteristics or in patient survival. No mutations were detected in 

oncogenes AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and RET. 

These results demonstrate an association between NPC and mutations in NRAS, KIT, PIK3CA, 

PDGFRA, and ABL, which are associated with patient relapse and metastasis.
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Introduction
Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates in the upper 

lining epithelium of the human retronasal cavity.1 It is generally rare, but is more 

common in certain geographic regions, such as Southeast Asia, North Africa, and 

especially Southern China.2 The annual incidence of NPC is up to 30 per 100,000 in 

Guangdong (a province in Southern China), which is 50-fold higher than that in the 

Western world.3 There is a clear relationship between NPC and this specific region, 

with convincing evidence of a correlation with Epstein–Barr virus (EBV) infection.4 

Although this tumor is sensitive to radiotherapy, therapy can fail in patients with 

advanced stage disease, as the disease is highly invasive and metastatic in nature.5,6

Because of the significant correlation between NPC and EBV, most studies of 

NPC have focused on EBV-related proteins and genes, such as EBER (EBV-encoded 

RNA) and LMP (EBV-associated membrane antigen).7,8 Gene linkage studies have also 

been conducted.9 Moreover, several chromosome regions, such as 3p21.3-1-21.2, and 

the human leukocyte antigen (HLA) haplotypes have been linked to the development 

of NPC.10–12 Previous studies have also investigated the expression of other genes, 

such as TP53 in NPC.13–16 C-KIT and PIK3CA mutations have been detected in NPC 

cell lines and NPC specimens.17,18 However, few studies have examined the genomic 

mutations of NPC.
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Matrix-assisted laser desorption ionization–time of flight 

mass spectrometry (MALDI-TOF MS) can detect multiple 

gene mutations with high sensitivity and accuracy. Using this 

technology, Patrick et al showed that RAS mutations are more 

frequent in cutaneous squamous cell tumor patients treated 

with RAF inhibitors than in those not so treated.19 Kang 

et al also detected EGFR T790M mutations in patients with 

non-small-cell lung cancer using MALDI-TOF MS, which 

detected and quantified the mutations highly sensitively.20 In 

this study, a panel of 19 oncogenes including EGFR, RAS 

family genes, KIT, and PIK3CA, were analyzed for 238 pos-

sible mutations in tumor tissues from 123 NPC patients. The 

purpose of this study was to analyze the mutational status 

of multiple genes in NPC samples and clarify the possible 

relationships between these mutations and the characteristics 

of NPC patients.

Materials and methods
clinical samples
Formalin-fixed paraffin-embedded samples were obtained 

from 123 patients with pathologically diagnosed NPC 

between October 1991 and July 2002 at Sun Yat-sen Uni-

versity Cancer Center (SYSUCC) (Guangzhou, People’s 

Republic of China). Informed consent and clinicopatho-

logical information were obtained from all patients. Disease 

stage was classified or reclassified according to the People’s 

Republic of China 1992 NPC TNM staging system.21 The 

clinicopathological characteristics of the 123 NPC patients 

are summarized in Table 1. Institute Research Medical Ethics 

Committee of SYSUCC granted approval for this study.

Dna extraction
We chose paraffin blocks containing more than 60% tumor 

cells from hematoxylin and eosin stained sections of each 

tumor. Sections (4–6 µm) were cut and transferred to 1.5 mL 

Eppendorf tubes for DNA extraction. DNA was extracted 

using the QIAamp DNA Formalin-fixed Paraffin-embedded 

Tissue Kit (Qiagen, Hilden, Germany), according to the 

manufacturer’s protocol. The quantity and quality of the iso-

lated DNA were tested using a Nanodrop ND-2000 Spectro-

photometer (Thermo Scientific, Niederelbert, Germany). The 

final DNA samples were diluted to 10 ng/µL for analysis.

Oncocarta assay
A total of 238 possible mutations in 19 oncogenes were 

investigated in 123 NPC samples using the OncoCarta Panel 

(v 1.0; Sequenom Inc., San Diego, CA, USA). This panel is a 

set of predesigned and prevalidated assays for sensitive and 

efficient mutation screening by the parallel analysis of 238 

possible mutations across the following 19 common onco-

genes: ABL1, AKT1, AKT2, BRAF, CDK, EGFR, ERBB2, 

FGFR1, FGFR3, FLT3, HRAS, JAK2, KIT, KRAS, MET, 

NRAS, PDGFRA, PIK3CA, and RET. The mutation types of 

each gene are list in Table S1.

In brief, 20 ng of DNA was amplified using 24 sets of 

OncoCarta PCR primers. An extension reaction based on the 

OncoCarta extension primers was then performed. After a 

cation exchange resin was used to remove salts, the prod-

ucts were spotted onto a 384-well SpectroChipII using the 

MassARRAY Nanodispenser RS1000 (Sequenom Inc.) and 

analyzed on a MALDI-TOF mass spectrometer (Sequenom 

Inc.). We chose high performance liquid chromatography 

purified water as the blank control and normal human somatic 

cells as the negative control in each experiment.

Data analysis
Mutation data was analyzed using the software MassARRAY 

Typer (v4.0; Sequenom Inc.), using a cutoff mutation 

Table 1 clinical characteristics of 123 nPc patients

Characteristic Number of  
patients

sex
 Male 95 (77.2%)
 Female 28 (22.8%)
age (years)
 Median 46
 #46 66

 .46 57
Overall survival (months)
 Median 57
 range 6–120
Progression-free survival (months)
 Median 52
 range 5–118
clinical stage
 i+ii 32 (26.0%)

 iii+iV 91 (74.0%)
relapse/metastasis
 no 86 (69.9%)
 Yes 37 (30.1%)
Therapeutic modality
 no treatment 17 (13.8%)
 radiotherapy alone 83 (67.5%)
 chemotherapy alone 1 (0.8%)
 radiochemotherapy 22 (17.9%)
WHO histological classification
 nKUc 101 (82.1%)
 nKDc 22 (17.9%)
 Kscc 0 (0%)

Abbreviations: nPc, nasopharyngeal carcinoma; WhO, World health Organi-
zation; nKUc, non-keratinizing undifferentiated carcinoma; nKDc, non-keratinizing 
differentiated carcinoma; Kscc, keratinizing squamous cell carcinoma.
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frequency of 1%. A successful experiment should show that 

the sample figure was typical and the blank control had no 

peak (Figure 1).

statistical analysis
The statistical analysis was performed using SPSS software 

(v 16.0; SPSS Inc., Chicago, IL, USA). The relationships 

between the patients’ mutational status and clinical data 

were assessed with a χ2 or Fisher’s exact test. Kaplan–Meier 

analysis was used to compare differences in the survival rate 

of the groups. A P-value of less than 0.05 was considered 

statistically significant. A multivariate analysis was used 

to check the possible relationship between factors. Overall 

survival (OS) and progression-free survival (PFS) were cal-

culated for the 123 NPC patients from the date of surgery 

until death or the last follow-up. The clinical data follow-up 

date was updated to October 2012.

Results
Mutation profiles of NPC tumors
Mutations were detected in 17.1% (21/123) of NPC tumors, 

with one NPC patient having two simultaneous mutations. 
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Figure 1 Representative graphs showing the mutations detected by time-of-flight mass spectrometry using NRAS-8. (A) Blank control. Only a peak representing the 
uncombined probe is apparent, with no sample peaks. (B) negative control. a peak for the negative sample is shown, with no mutation peak or close chemical noise peak. 
however, there is a clear standard peak for the wild-type sample. (C) a typical mutation peak. The wild-type peak and a mutation peak are apparent, with no abnormality 
noted in the blank control (A) or negative control (B).
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Therefore, a total of 21 patients presented with 22 mutations. 

The mutations affected eight oncogenes, as follows: six in 

PIK3CA (three E542K, two H1047Y, and one R38H), five in 

NRAS (one G12D, two G13D, and two Q61K), four in KIT 

(two V559I, one V559A, and one D52N), two in PDGFRA 

(two T647I), and two in ABL (two E255K); HRAS (G13S) 

and EGFR (E709A) mutations were found in one NPC 

tumor each; one NPC tumor had a BRAF mutation (G464E) 

together with a PIK3CA mutation (E545K). No mutation was 

detected in the remaining 102 (82.9%) NPC tissues (with no 

mutations in AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, 

FLT3, JAK2, KRAS, MET, or RET). The mutational profiles 

and distributions of the NPC tumors are shown in Table 2.

correlations between oncogene  
mutations and patient clinicopathological 
characteristics
We divided the patients into groups according to their clini-

cal characteristics, and calculated the mutation rate in each 

group. We then assessed the relationships between the muta-

tional status and clinical data using the χ2 or Fisher’s exact 

test. The results are presented in Table 3. There was an asso-

ciation between oncogene mutations and relapse/metastasis 

of NPC (P=0.019, Table 3). We also tested the intersubject 

effects with a univariate analysis and found no effect between 

all factors (Table S2). No significant correlation between the 

presence of an oncogenic mutation and other clinicopatho-

logical parameters, such as age, sex, clinical stage, or WHO 

histological grade was found (P.0.05, Table 3).

correlation between oncogene  
mutation and patient survival
We estimated the survival of NPC patients by comparing 

the OS and PFS of the mutation and wild-type subgroups 

(Figure 2). The mean survival time (MST) in the mutation 

subgroup did not differ significantly from that of the wild-

type subgroup (OS: 86.5 vs 90.0, P.0.05, Figure 2A; PFS: 

83.6 vs 88.6, P.0.05, Figure 2B).

Because the PIK3CA, KIT, and NRAS oncogenes had 

higher mutation frequencies of the oncogenes analyzed, we 

also assessed the correlation between the clinicopathological 

characteristics of the patients and the presence of these muta-

tions, but found no significant correlation (Table S3).

Discussion
Various aspects of NPC have been widely investigated 

because it is an important cancer of the head and neck. 

However, few studies have examined the role of mutations 

in NPC, and the results of such studies are controversial. In 

this study, our data show that PIK3CA, KIT, and RAS are the 

oncogenes most susceptible to mutations in NPC, whereas 

mutations of BRAF, PDGFRA, ABL1, and EGFR occur less 

frequently. Many of the mutations described here have never 

been previously reported in NPC samples. A summary of 

Table 2 Mutation status of the 21 positive cases

Sample ID Gene Mutation Ratio

MT WT

nPc053 PIK3CA r38h 0.07 0.93
nPc125 PIK3CA h1047Y 0.07 0.93
nPc064 PIK3CA h1047Y 0.08 0.92
nPc041 PIK3CA e542K 0.07 0.93
nPc113 PIK3CA e542K 0.21 0.79
nPc029 PIK3CA e545K 0.05 0.95

BRAF g464e 0.18 0.82
nPc056 PDGFRA T674i 0.10 0.90
nPc087 PDGFRA T674i 0.10 0.90
nPc093 NRAS g12D 0.12 0.88
nPc042 NRAS g13D 0.10 0.90
nPc050 NRAS g13D 0.11 0.89
nPc022 NRAS Q61K 0.14 0.86
nPc044 NRAS Q61K 0.21 0.79
nPc021 KIT D52n 0.10 0.90
nPc120 KIT V559a 0.29 0.71
nPc099 KIT V559i 0.16 0.84
nPc121 KIT V559i 0.22 0.78
nPc030 ABL e255K 0.14 0.86
nPc038 ABL e255K 0.13 0.87
nPc019 EGFR e709a 0.14 0.86
nPc031 HRAS g13s 0.08 0.92

Abbreviations: WT, wild-type; MT, mutation.

Table 3 correlations between oncogene mutation and clinico-
pathological characteristics of nPc patients

Characteristics Mutation 
n=21 (17.1%)

Wild-type 
n=102 (82.9%)

P-value

age (years) 
 ,46

 
12 (20.3%)

 
47 (79.7%)

0.359

  $46 9 (14.1%) 55 (85.9%)
sex 
  Male

 
17 (17.9%)

 
78 (82.1%)

0.656

  Female 4 (14.3%) 24 (85.7%)
clinical stage 
  i+ii

 
5 (15.6%)

 
27 (84.4%)

0.800

  iii+iV 16 (17.6%) 75 (82.4%)
relapse/metastasis 
  no

 
10 (11.8%)

 
75 (88.2%)

0.019

  Yes 11 (28.9%) 27 (71.1%)
WhO histological  
classification 
  nKUc

 

16 (15.8%)

 

85 (84.2%)

0.437

  nKDc 5 (22.7%) 17 (77.3%)

  Kscc 0 (0%) 0 (0%)

Abbreviations: nPc, nasopharyngeal carcinoma; WhO, World health 
Organization; nKUc, non-keratinizing undifferentiated carcinoma; nKDc, non-
keratinizing differentiated carcinoma; Kscc, keratinizing squamous cell carcinoma.
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oncogenes’ mutations in NPC in our study and other literature 

is shown in Table 4.17,18,22–33

In a comparison of the mutation frequencies in the sub-

groups of patients with and without relapse or metastasis, 

we found that NPC patients who relapsed or developed 

 metastases had higher mutation frequencies (28.9% vs 

11.8%, respectively, P=0.019).

The PIK3CA gene encodes the p110α catalytic subunit of 

PI3K and plays an important role in many tumors.  Mutations 

of this gene are reportedly located in exons 9 and 20, with 
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Figure 2 Kaplan–Meier survival curves for nPc patients. (A) Overall survival (Os) of the nPc patients with oncogene mutations vs that of wild-type patients. (B)  Progression-
free survival (PFs) of nPc patients with oncogene mutations vs that of wild-type patients.

Table 4 summary of oncogene mutations in nPc

Gene Mutation status 
in this study

Mutation status in other NPC  
studies

More NPC literature

ABL1 1.6% (2 of 123) no report no report
AKT1 0% no report no report
AKT2 0% no report no report
BRAF 0.8% (1 of 123) 0% (0 of 65) (sequencing )33 no report
CDK4 0% no report expression of mrna and protein 

(rT-Pcr and ihc)22

EGFR 0.8% (1 of 123) 0% (0 of 60) (sequencing)23; 0% (0 of 102) 
(sequencing)24

expression rate 65.6% (ihc)25;  
expression rate 70.9% (ihc)26

ERBB2 0% no report expression rate 37.5% (ihc)25;  
amplification rate 43.3% (C-PCR)27

FGFR1 0% no report no report
FGFR3 0% no report no report
FLT3 0% no report no report
HRAS 0.8% (1 of 123) no report no report
KRAS 0% 0% (0 of 45) (sequencing )33; no mutation 

in 4 nPc cell lines (sequencing)28

no report

NRAS 4.1% (5 of 123) no report Amplification (CGH)25

JAK2 0% no report no report
MET 0% no report no expression (ihc)29; 

expression rate 91.1% (ihc)30

KIT 3.3% (4 of 123) 5 cell lines reported intron mutation  
(sequencing)18

no report

PDGFRA 1.6% (2 of 123) no report no report
PIK3CA 4.9% (6 of 123) 4.3% (2 of 46) (clone sequencing)17; 

0% (0 of 27) (sequencing)32; 
9.6% (7 of 73) (sequencing)33; 
1.13% (1 of 88) (sequencing)31

21.6% amplification (RT-PCR )31

RET 0% no report no report

Abbreviations: cgh, comparative genomic hybridization; ihc, immunohistochemistry; nPc, nasopharyngeal carcinoma; rT-Pcr, real-time polymerase chain reaction; 
c-Pcr, competitive polymerase chain reaction; mrna, messenger rna.
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hotspots at E542K, E545K, and H1047Y.34 In our study, 

83.3% (5/6) of all the PIK3CA mutations identified occurred 

at these hotspots. We found that NPC patient survival did not 

correlate significantly with the presence of PIK3CA muta-

tions, which is consistent with a previous study  (Figure S1).33 

In NPC cell lines, the inhibitor NVP-BEZ235 was found to 

selectively inhibit the proliferation of NPC cells carrying 

PIK3CA mutations.35 Currently, mTOR inhibitors are used 

as therapies for cancers in which the PI3K/AKT/mTOR 

pathway is activated. Although mutation rate is not so high, 

PIK3CA is also worthy as a research object of targeted 

therapy in NPC.

It is well established that the RAS/RAF/ERK pathway 

plays an important role in tumor development. KRAS, HRAS, 

and NRAS mutations occur in at least one-third of all human 

cancers, with KRAS mutations being the most common.28,36,37 

In the present study, we detected mutations of NRAS and 

HRAS, but not in KRAS. KRAS mutation rate in all tumors 

is estimated to be 25%–30%.38 But here, in NPC, KRAS 

mutation is particularly scarce. We detected NRAS mutations 

at Q61K, G13D, and G12D and a HRAS mutation at G13S, 

all of which are acknowledged hotspots. Consistent with 

our results, previous studies have detected no mutations in 

codons 12, 13, or 61 of KRAS in NPC specimens or NPC 

cell lines.28,33 These data suggest that RAS mutations exist in 

NPC, but that KRAS mutations are rare.

KIT is a type III receptor tyrosine kinase that initiates 

multiple downstream signaling pathways, such as the PI3K/

AKT and JAK/STAT pathways. KIT gene mutations are 

mainly found in melanomas, and imatinib is an effective 

inhibitor of this oncogene. Here, we observed mutations 

V559I and V559A, which are the most common KIT mutation 

types. V559I is considered to confer resistance to imatinib, 

whereas V559A reportedly confers sensitivity to imatinib.39,40 

PDGFRA belongs to the type III tyrosine kinase family. In 

fact, there appears to be a close relationship between KIT 

and PDGFRA, and the correlation between them has been 

widely investigated.41,42 PDGFRA mutation T674I confers 

imatinib resistance. In the present study, both mutations of 

KIT (3.3%) and PDGFR (1.6%) were detected in NPC tissues; 

this result is consistent with other reports.43,44 Further clinical 

trials are required to evaluate the correlation between NPC 

patients with KIT and PDGFR mutations and their response 

to the drug imatinib.

EGFR is a cell-surface protein that binds to EGF, and muta-

tions in EGFR are associated with a wide variety of tumors. 

EGFR mutations are very frequent in non-small-cell lung 

cancer, with exons 18, 19, 20, and 21 being the predominantly 

mutated regions.45 In our study, only one NPC patient was 

positive for an EGFR mutation, resulting in a mutation rate 

of less than 1%. This mutation was E709A, which is encoded 

in exon 20 and usually reported in lung cancer.46,47 This result 

may suggest that the treatment of NPC patients with tyrosine 

kinase inhibitors may not be an effective strategy.

Detection of multiple mutations status in NPC was also 

one of our aims. It can provide more information about treat-

ment and prognosis than single mutation detection. Herein, 

one NPC sample was detected to have two simultaneous 

mutations (PIK3CA and BRAF). Studies have suggested that 

the concurrent presence of PIK3CA and BRAF mutations 

predict resistance to everolimus.48,49

We should not ignore the negative results of this study. 

This report describes the analysis of 238 potential mutations 

in 19 oncogenes in 123 NPC samples to gain a preliminary 

understanding of mutational status of these 19 oncogenes. 

The negative results of this study indicate that mutations are 

rare in NPC, AKT1, AKT2, CDK, ERBB2, FGFR1, FGFR3, 

FLT3, JAK2, KRAS, MET, and RET, suggesting that drugs 

targeting these genes may be ineffective.

This study had several limitations. Compared with deep 

sequencing, MALDI-TOF MS offers high-throughput and is 

less expensive. However, the comprehensiveness of detec-

tion is inadequate. Many deserted or concealed mutations 

cannot be detected using this method, so we may miss some 

important genes in NPC.

Conclusion
In summary, a small number of mutations in NRAS, KIT, 

PIK3CA, PDGFRA, and ABL are present in NPC, whereas 

mutations in other genes, including AKT1, AKT2, CDK, 

ERBB2, FGFR1, FGFR3, FLT3, JAK2, KRAS, MET, and 

RET, are extremely rare. The presence of oncogene mutations 

in NPC patients is associated with relapse and metastasis.
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Table S1 Mutation subtypes detected by the Oncocarta Panel (v 1.0; sequenom inc., san Diego, ca, Usa) MassarraY

Gene Mutation subtypes

ABL1 g250e; F317l; M351T; e355g; F359V; h396r; Q252h; Y253h; Y253F; e255K; e255V; D276g; F311l; T315i

AKT1 rs11555435; rs11555431; rs11555432; rs12881616; rs11555433; rs11555436; rs34409589
AKT2 s302g; r371h
BRAF g464r; F595l; g596r; l597s; l597r; l597Q; l597V; T599i; V600e; V600K; V600r; V600l; K601n; K601e; g464V
CDK r24c; r24h
EGFR r108K; s768i; V769_D770insasV; V769_D770inscV; D770_n771>agg; V769_D770insasV; V769_D770insasV;  

D770_n771insg; n771_P772>sVDnr; P772_h773insV; h773>nPY; h773_V774insnPh; h773_V774insPh; h773_V774insh; 
V774_c775inshV; T263P; T790M; l858r; l861Q; a289V; g598V; e709K; e709h; e709a; e709g; e709V; g719s; g719c; 
g719a; M766_a767insai; e746_T751del; e746_a750del; e746_a750del; e746_T751del; e746_a750del; e746_T751del; s752D; 
l747_e749del; l747_T750del; l747_s752del; l747_T751del; l747_s752del; P753s; l747_T751del; a750P; T751a; T751P; 
T751i; s752i/F; l747_Qins; e746_T751del; iins; e746_a750del; T751a; e746_T751del; Vins; e746_a750del; Vins; l747_e749del; 
a750P; l747_T750del; Pins; l747_s752del; Qins; T751; s752_i759del

ERBB2 l755P; g776s; g776lc; g776Vc; a775_g776insYVMa; P780_Y781insgsP; P780_Y781insgsP; s779_P780insVgs
FGFR1 s125l; P252T
FGFR3 g370c; Y373c; a391e; K650Q; K650e; K650T; K650M
FLT3 i836del; D835h; D835Y
HRAS g12V; g12D; g13c; g13r; g13s; Q61h; Q61h; Q61l; Q61r; Q61P; Q61K
JAK2 V617F
KIT D52n; V559del; V559_V560del; V560del; P551_V555del; Y553_Q556del; Y570_l576del; e561K; l576P; P585P; D579del;  

Y503_F504insaY; K642e; D816V; D816h; D816Y; V825a; e839K; M552l; Y568D; F584s; W557r; W557r; W557g; V559D; 
V559a; V559g; V559i; V560D; V560g; K550_K558del; K558_V560del; K558_e562del

KRAS g12V; g12a; g12D; g12c; g12s; g12r; g12F; g13V; g13D; a59T; Q61e; Q61K; Q61l; Q61r; Q61P; Q61h; Q61h
MET r970c; T992i; Y1230c; Y1235D; M1250
NRAS g12V; g12a; g12D; g12c; g12r; g12s; g13V; g13a; g13D; g13c; g13r; g13s; a18T; Q61l; Q61r; Q61P; Q61h; Q61e; Q61K
PDGFRA V561D; i843_s847>T; D842V; T674i; F808l; D846Y; n870s; D1071n; D842_h845del; i843_D846del; s566_e571>K
PIK3CA r88Q; h1047Y; r38h; c901F; M1043i; M1043i; n345K; c420r; P539r; e542K; e545K; Q546K; h701P; h1047r; h1047l
RET c634r; c634W; c634Y; e632_l633del; M918T; a664D

Supplementary materials

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

466

Zhang et al

Table S2 Tests of between-subjects effects

Source Type III sum  
of squares

df Mean  
square

F P-value

corrected model 6.784a 20 0.339 1.777 0.033
6.318 1 6.318 33.087 0.000

sex 0.024 1 0.024 0.128 0.721
Mutation 1.250 1 1.250 6.544 0.012
age 0.012 1 0.012 0.065 0.799
WhO 0.258 1 0.258 1.351 0.248
clinical staging 0.003 1 0.003 0.018 0.893
sex * mutation 3.536×10-5 1 3.536×10-5 0.000 0.989
sex * age 0.284 1 0.284 1.486 0.226
sex * WhO 0.031 1 0.031 0.165 0.686
sex * clinical staging 0.053 1 0.053 0.276 0.600
Mutation * age 0.251 1 0.251 1.316 0.254
Mutation * WhO 0.012 1 0.012 0.065 0.800
Mutation * clinical staging 0.473 1 0.473 2.475 0.119
age * WhO 0.414 1 0.414 2.168 0.144
age * clinical staging 0.027 1 0.027 0.141 0.708
WhO * clinical staging 0.307 1 0.307 1.607 0.208
sex * mutation * age 0.000 0 – – –
sex * mutation * WhO 0.000 0 – – –
sex * mutation * clinical 0.000 0 – – –
staging
sex * age * WhO 0.462 1 0.462 2.419 0.123

sex * age * clinical 2.665×10-5 1 2.665×10-5 0.000 0.991
staging
sex * WhO * clinical 0.037 1 0.037 0.195 0.660
staging
Mutation * age * WhO 0.000 0 – – –
Mutation * age * clinical staging 0.000 0 – – –
Mutation * WhO * clinical staging 0.000 0 – – –
age * WhO * clinical staging 0.000 0 – – –
sex * mutation * age * WhO 0.000 0 – – –
sex * mutation * age * 0.000 0 – – –
clinical staging
sex * mutation * WhO * 0.000 0 – – –
clinical staging
sex * age * WhO * 0.000 0 – – –
clinical staging
Mutation * age * WhO * 0.000 0 – – –
clinical staging
sex * mutation * age * 0.000 0 – – –
WhO * clinical staging
error 19.476 102 0.191
Total 38.000 123
corrected total 26.260 122

Note: Dependent variable: relapse/metastasis.
Abbreviation: WhO, World health Organization.
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Table S3 correlations between PiK3ca, nras, KiT mutations and clinicopathological characteristics of nPc patients

Characteristics PIK3CA NRAS KIT

Yes No P-value Yes No P-value Yes No P-value

age (years) 1.000 1.000 1.000

  ,46 3 47 2 4 2 47

  $46 3 55 3 5 2 55
sex 0.334 1.000 1.000
  Male 6 78 4 7 3 78

  Female 0 24 1 2 1 24
clinical stage 0.333 0.611 1.000
  i+ii 0 27 2 2 1 27

  iii+iV 6 75 3 7 3 75
relapse/metastasis 0.333 0.611 0.068
  no 6 75 3 7 1 75

  Yes 0 27 2 2 3 27
WHO histological classification 0.587 1.000 0.147
  nKUc 6 85 4 8 2 85

  nKDc 0 17 1 1 2 17

  Kscc 0 0 0 0 0 0

Abbreviations: nPc, nasopharyngeal carcinoma; WhO, World health Organization; nKUc, non-keratinizing undifferentiated carcinoma; nKDc, non-keratinizing 
differentiated carcinoma; Kscc, keratinizing squamous cell carcinoma.
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Figure S1 Kaplan–Meier survival curves for NPC patients classified as either with or without PIK3CA mutations. (A) Overall survival (Os) curve of nPc patients with 
PiK3ca mutations have no difference in wild-type nPc patients; (B) progression-free survival (PFs) curve of nPc patients with PiK3ca mutations also have no difference 
in wild-type nPc patients.
Abbreviation: nPc, nasopharyngeal carcinoma.
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