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Abstract: The underlying source of brain imaging by T2*-weighted magnetic resonance imaging 

(T2*MRI) is mainly due to the intracranial inhomogeneous magnetic susceptibility distribution 

(denoted by χ). We can reconstruct the source χ by two computational steps: first, calculate a 

fieldmap from a T2* phase image and then second, calculate a χ map from the fieldmap. The 

internal χ distribution reconstruction from observed T2* phase images is termed χ tomography, 

which connotes the digital source reproduction with spatial conformance by solving inverse 

problems in the context of medical imaging. In the small phase angle regime, the T2* phase 

image remains unwrapped (−π ,phase angle ,π) and it is linearly related to the fieldmap by 

a scaling factor. However, the second inverse step (calculating a χ map from a fieldmap) is a 

severely ill-posed 3D deconvolution problem due to an unusual bipolar-valued kernel (dipole 

field kernel). We have reported on a 3-subproblem split Bregman iteration algorithm for total 

variation-regularized 3D χ reconstruction; in this paper, we report on a 2-subproblem split 

 Bregman iteration algorithm with easy implementation. We validate the 3D χ tomography algo-

rithms by numerical simulations and phantom experiments. We also demonstrate the feasibility 

of 3D χ tomography for obtaining in vivo brain χ states at 2 mm spatial resolution.

Keywords: T2*-weighted MRI (T2*MRI), magnetic susceptibility tomography (χ tomography), 

dipole effect, 3D deconvolution, filter truncation, total variation (TV), split Bregman iteration, 

computed inverse magnetic resonance imaging (CIMRI)

Introduction
It is known that the source of T2*-weighted magnetic resonance imaging (T2*MRI) 

involves a diversity of causes,1 including fieldmap inhomogeneity (T2′ effect), random 

spin–spin interaction (tissue-specific T2 effect), as well as random spin diffusion. 

Through the use of an EPI (echo-planar imaging) sequence, a T2*MRI study produces 

an output of complex-valued image (denoted by T2* complex image) consisting of a 

pair of magnitude and phase components (denoted by T2* magnitude image and T2* 

phase image). For brain imaging, the underlying source of T2*MRI is primarily an 

inhomogeneous magnetic susceptibility distribution (denoted by χ) of brain tissues, 

which undergoes a magnetization process (or magnetic polarization) in a main field 

and incurs an inhomogeneous fieldmap for T2*-effect image formation. The intra-

cranial dynamic χ perturbation associated with a neuronal activity has been described 

by the BOLD fMRI model (blood oxygenation level dependent functional MRI).2–4 

In principle, for brain imaging, we can reconstruct the χ-expressed source from T2* 

complex images by solving an inverse problem (a 3D deconvolution problem), which 

provides a more direct representation of the brain state (either a static anatomic or a 
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dynamic functional state) than the T2*MRI-acquired image 

(experimental raw data), primarily due to the removal of 

dipole effect. This consensus has inspired discussion of the 

hot topic of quantitative susceptibility mapping (QSM),5–12 

which is also termed magnetic susceptibility tomography 

(denoted by χ tomography) in the context of medical imag-

ing,13–15 conveying the digital internal source reproduction 

from observed images with spatial conformance by compu-

tationally solving an inverse problem.

A T2*MRI procedure involves a 3D spatial convolution 

that describes a fieldmap formation as a result of mate-

rial magnetization in a main field.7,13,16 Due to the spatial 

spread and anisotropy of the 3D convolution kernel (dipole 

field distribution), the 3D magnetization process dictates 

a morphological mismatch between the input source χ 

(intrinsic magnetic property of material) and either the mag-

nitude or phase of the output T2* complex image. Recent 

research7,12,13,17,18 has shown that the χ tomography can be 

implemented by performing an inverse T2*MRI  computation, 

as described by computed inverse MRI (CIMRI).13 The core 

technology of CIMRI-based χ tomography lies in solving 

the inverse problem of the 3D convolution, an ill-posed 

3D deconvolution problem.

In principle, 3D magnetic susceptibility reconstruction 

from a fieldmap could be completely solved via matrix 

algebra,17,19,20 which involves converting the 3D convolution 

operation into a matrix equation (with a 2D convolutional 

matrix) and performing a Tikhonov regularization on the 

 ill-conditioned matrix. In practice, this matrix inverse method 

is limited to a small χ map reconstruction (typically less than 

16 × 16 × 16),17 due to the computational difficulty of finding 

the inverse of a large matrix.

In the Fourier domain, a 3D deconvolution is represented 

by a 3D inverse filtering that involves 3D element-wise 

 division. Due to a zero surface embedded in the 3D convolu-

tion kernel, the inverse filtering suffers from a divide-by-zero 

problem. The simplest way to regularize the divide-by-zero 

singularity is to truncate the inverse filter at the zero surface 

by thresholding (called filter truncation), which has been used 

for reconstructing brain χ maps.6,8,10,12,21 However, the data 

alteration due to truncation regularization may cause stripe 

artifacts6,10,12 and non-conservation of image energy (image 

intensity values).13

Recently, total variation (TV) regularization has 

been explored for iterative image restoration.22–25 It has 

been shown that a TV-regularized minimization problem 

can be effectively implemented by a split Bregman iteration 

technique.22,23 In the framework of numerical methods and 

convex optimization theory, the split Bregman TV iteration 

method is excellent for image restoration in the presence 

of noise, blurring, and in-painting contaminations. More 

details about the 2D TV-regularized image restoration theory 

can be found in various studies.22,23,26–28 We have general-

ized the 2D TV-regularized image restoration method for 

3D χ tomography with a 3-subproblem split scheme.13 In 

this paper, we will report on a 3D TV-regularized iteration 

with a 2-subproblem Bregman split algorithm, which can 

efficiently provide an intact brain magnetic susceptibility 

state from T2* phase image.

Methods
Feldmap establishment in T2*MRI
Let χ(x, y, z) denote the χ expression (intrinsic magnetic 

property) of an object under scanning, and b(x, y, z) the 

fieldmap (specifically, the z-component of the vector field 

resulting from material magnetization in a main field B
0
). 

Under linear magnetization of non-magnetic (strictly weak-

magnetic) material such as brain tissues for brain imaging, the 

χ-induced fieldmap is related to the susceptibility distribution 

by a 3D convolution by16,29
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where * denotes a 3D convolution, r = (x, y, z) the space 

domain, h(r) is a convolution kernel (the field distribution 

of a point magnetic dipole),30 and ε(r) the additive noise. By 

configuring the random vascular geometry in a brain corti-

cal region, we can simulate χ-expressed brain physiological 

state. Under vascular blood magnetization in a B
0
 field, we 

can calculate the χ-induced fieldmap by Equation 1, thereby 

numerically simulating the multivoxel brain functional 

imaging.13,31,32 According to h(r) ≠ δ(r), b(r) is morpho-

logically different from χ(r) by a 3D spatial convolution in 

Equation 1, which is described as the dipole effect.

Implementation of χ tomography: CIMRI
Let C(x, y, z) denote a T2* complex image acquired by 

T2*MRI with an echo time T
E
, its magnitude image is defined 

by A
0
(x, y, z) = |C(x, y, z)|, and its phase by P

0
(x, y, z) = 

∠C(x, y, z). For magnitude images, we are concerned with 

the magnitude loss which assumes minimal zeros in the 

non-decay regions and maximal numbers in the most decay 

regions. For convenience, we normalize the magnitude image 

to [0,1], whereas the phase image is normalized to the range 
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(−π, π] radian. For an n-bit digital phase data, we convert the 

digital number into a radian expressed by

 P x y z
P x y z n

n
( , , )

( , , )
( , ] ( ).= ∈−

0
1

1

2

2

−
−

−

π π π radian  (2)

For numerical simulations, we can directly calculate the 

magnitude loss images and phase angle accrual images from 

T2* complex images.33

In a small phase angle regime (a linear phase approxima-

tion condition: exp(iφ) ≈ 1 + iφ), the fieldmap is related to 

the phase image by34

 b x y z
P x y z

T
i

E

( , , )
( , , )

, exp( )= ≈
γ

φ φs.t. i 1+  (3)

where ‘s.t.’ stands for ‘subject to’. It is observed that the phase 

angle accrual is linearly proportional to T
E
 and b(x, y, z) in 

Equation 3, and the main field B
0
 plays a scale factor in the 

fieldmap establishment in Equation 1. The linear scale rela-

tion in Equation 3 indicates no information loss between the 

fieldmap and the T2* phase image, which allows us to calcu-

late the susceptibility source (denoted by χ recon(x, y, z)) from 

the fieldmap by solving the inverse problem of  Equation 1, 

that is,

 χ recon x y z b x y z h x y z( , , ) ( , , ) * ( , , )= −1  (4)

where *−1 denotes deconvolution, and h(x, y, z) the same 

kernel as used for the 3D convolution defined in Equation 1. 

The main topic in this report focuses on technically solving 

the 3D deconvolution problem in Equation 4, or conceptually 

implementing dipole inversion.

The small phase angle regime in Equation 3 is a strict condi-

tion of theoretical linear approximation of intravoxel dephasing 

signal (subject to |P|,,π). In practice, the  fieldmap is usually 

calculated from a phase image (unwrapping is needed when 

phase angle is wrapped, |P|.π).6 For brain imaging experiments 

with 30 milliseconds T
E
, the phase angle of complex EPI data 

is usually small (typically ,0.3 rad) such that it remains phase 

unwrapped in the brain cortex region. Approximately, we can 

calculate the intracranial fieldmap from the brain T2* phase 

image using Equation 3, and thereby proceed to reconstruct 

the intracranial χ distribution using Equation 4.

Deconvolution solvers
In general, the 3D deconvolution solvers can be classi-

fied into three categories:13 Tikhonov-regularized matrix 

inverse, inverse filtering by truncating the singular inverse 

filter, and iteration minimization. It has been shown that the 

matrix inverse solver is limited to applications to small 3D 

multivoxel images,17 and that both the 3D inverse filtering 

and 3D TV iteration solvers manipulate the 3D matrices in 

a manner of element-wise arithmetic (addition, subtraction, 

multiplication, and division), which allows us to accommo-

date a large 3D matrix effortlessly (eg, 512 × 512 × 512). In 

what follows, we will only address the filter truncation and 

TV iteration solvers.

Inverse filtering (filter truncation solver)
In the Fourier domain, the 3D convolution in  Equation 1 is con-

verted into a 3D multiplication formula. The inverse filtering 

with truncated inverse filter can be expressed by6,13,33,35,36
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where FT and IFT stand for Fourier transform and inverse 

Fourier transform, respectively, b(k) denotes the Fourier 

transform of b(r), sgn a sign function (sgn(t) =1 for t0  

and =–1 for t,0), and ε
0
 a small constant for truncation 

threshold.6,13 The implementation of filter truncation in 

Equation 5 may assume a variation, such as using a distribu-

tive threshold map rather than a constant6 and ignoring the 

sign.12 Due to data alteration resulting from thresholding, 

the χ reconstruction by using Equation 5 suffers from stripe 

artifacts10,11 and image energy non-conservation.33

TV-regularized split Bregman iteration  
(TV iteration solver)
In this subsection, we generalize the TV-regularized  iteration 

algorithm to accommodate our 3D deconvolution  problem 

that has a 3D anisotropic bipolar-valued convolution 

kernel.13

Mathematically, the TV norm for 3D χ(r) is defined as

 || || sup ( ) ( )χ χTV d≡ ∇⋅











∫ ∞r g r r g
Ω

,|| || <1  (6)

where g denotes a vector functional variable that is bounded 

by |g|#1, and Ω the 3D space domain over which χ(r) is 

defined, ∇ the spatial gradient operator, and ||⋅||∞ the infinite 
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norm (maximum norm). Strictly speaking, ||χ||
TV

 is a semi-

norm in which ||χ||
TV

 =0 is allowed for χ≠0. For a 3D smooth 

function χ(r), the TV norm is also given by37

 

|| ( ) || | ( ) |
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= ∇
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∫ r r
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3

2 2 2 3

Ω

Ω
∫∫  

  
(7)

For a non-differentiable function χ(r), the gradient is 

interpreted as subgradient (a subgradient of J at v, denoted 

by ∂J(v), is defined by an inequality: J(u) – J(v)  , ∂J(v), 

u– v. for all u around v, where ,x, y. denotes the inner 

product between x and y). Assuming a Gaussian noise model 

for ε(r), we can solve the inverse problem (as expressed in 

Equation 4) by a TV-regularized unconstrained minimization 

problem,22,23,26–28 as expressed by

χ χ λ χ
χ

recon

BV
TV B h b( ) min || ( ) || || ( ) * ( ) ( ) ||r r r r r= + −

∈ 2 0 2
2  (8)

where BV is a bounded variation function space, and λ is the 

Lagrange multiplier or the regularization parameter. The TV 

regularization lies in its searching over all possible distribu-

tions in a bounded variation space (χ∈BV) to find an optimal 

distribution χrecon such that it minimizes TV norm and the data 

fidelity error simultaneously. The algorithm implementation 

of Equation 8 is nontrivial. Recent research13,22,38 has shown 

that the TV iteration can be effectively implemented by a 

split Bregman iteration algorithm. The basic idea of the split 

Bregman algorithm is to transform a constrained optimiza-

tion problem into a series of unconstrained subproblems, and 

then to solve each subproblem by a Bregman-distance-based 

iteration. The Bregman distance is defined for an objective 

function J(u) as

 D u v J u J v J v u vJ ( , ) ( ) ( ) ( ),= − − < ∂ − >  (9)

where ∂J(v) is a subgradient of function J(v) at v. The 

 subgradient ∂J(v) is used to relax the differentiation con-

dition so as to admit spatial discontinuity (jumps) and 

non- smoothness. For a spatial differentiable distribution, 

a subgradient reduces to a regular gradient. Intuitively, 

the Bregman distance in Equation 9 can be construed to 

be the difference between the value of function J at point 

u and the value of the first-order Taylor expansion of J 

around point v evaluated at point u. It has been proved that 

the use of  Bregman distance in Equation 9 can ensure fast 

convergence.22,23

Let J(χ)=||χ||
TV

 with an initialization of χ
0
 =0, then the 

Bregman iteration produces a series {χ
k
, k =1, 2, …} by

 

χ χ χ λ χ
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The Bregman iteration can also be equivalently achieved 

by introducing an auxiliary variable u and carrying out the 

following iteration (with initiation u
0
 =0)

χ λ χ
χ

k
BV

TV k

k k

B h b u

u u b B h

+
∈

+

= + − −{ }
= −

1 0 2
2

1 0

2
arg min || || || * ||

( *

χ

+ χχk +1).

 (11)

In the result, the Bregman iteration produces a series 

{(χ
k
, u

k
), k =1, 2, …}. It is noted that u

k
 is updated by add-

ing back the residual in Equation 11, which may manifest as 

comeback noise (usually appearing randomly and sparsely in 

uniform regions). The iteration is stopped when a criterion 

is satisfied or the specified maximum iteration number is 

reached.

To solve our 3D deconvolution problem in Equation 8, we 

need to cope with the Bregman iterations in Equation 10 or 

Equation 11 in 3D scenarios. In our previous publication,13 we 

report on a 3-subproblem split Bregman iteration algorithm, 

which splits the TV-regularized minimization problem into 

three Bregman iteration subproblems. We refer readers to 

other studies22,23 for mathematical details. In what follows, 

we propose a 2-subproblem split Bregman iteration algorithm 

for 3D χ reconstruction with easy implementation. By intro-

ducing an auxiliary variable d=∇χ, we can convert the 3D 

deconvolution in Equation 8 into a minimization problem of 

two split Bregman TV iteration subproblems, that is

 

χ χ λ χ

γ
χ

χTV
recon

TV B h b= + −

+ − ∇ −

min || || || * ||

|| ||

2

2

0 2
2

1
2
2d a d1 with ==∇χ

 (12)

where the parameters {γ
1
, a

1
} are introduced for splitting the 

regularization term (the data fidelity term in Equation 8) and 

for fast convergence. In particular, γ
1
 is a built-in regulariza-

tion parameter in an iteration program, that can be set to a 

constant, for example, γ
1
 =5 as suggested by Goldstein and 
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Osher,23 and Chambolle and Lions;26 a
1
 is an iterative vector 

variable, that is updated during each iteration. The split two 

subproblems (with respect to {‘d’,‘χ’}) are alternatively 

iterated, solving one subproblem at a time while keeping the 

other fixed. There exist closed forms for the 2-subproblem 

Bregman iterations which can be described as follows.

1. The d-subproblem, with χ fixed, is

 min || || || || .
d 1d aχ

γ
χTV + − ∇ −1

2
2

2
 (13)

Its solution in a closed form is given by22,23

 d
a

a
a=

∇ +
∇ +

∇ + −
χ
χ

χ γ1

1
1 11 0

| |
max{| | / , }.  (14)

2. The χ-subproblem, with d fixed, is

 min || * || || || .
λ χ

γ
χ

2 20 2
2 1

2
2B h b− + − ∇ −d a1  (15)

In the Fourier domain, the optimization equation of the 

minimization problem in Equation 15 is given by22,23

 

λ
γ

π χ

λ
γ

1
0
2 2
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where ‘div’ denotes vector divergence, and FT stands 

for  Fourier transform. Therefore, the solution of the 

χ-subproblem minimization is given by
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 (17)

In programming implementation, the 2-subproblem split 

Bregman iteration algorithm for the TV-regularized mini-

mization problem in Equation 12 can be summarized by the 

following algorithm22,23

Initialize χ=0, d=a
1
=0

Do

Minimization of χ-subproblem with d fixed;

Minimization of d-subproblem with χ fixed;

Update a
1
: =a

1
+∇χ–d

While ‘not converged’

The solution of the split Bregman iteration in Equation 12 is 

dependent upon the selection of the  regularization  parameter λ, 

which produces spatial over-smoothing effect if λ is too 

small (eg, λ,20) and textural enhancement if λ is too large 

(eg, λ.1000). It has been shown22,23,26 that the regularization 

parameter λ may assume a wide range of settings for obtain-

ing an optimal solution. In practice, for brain χ tomography, 

where the ground truth is unknown, the appropriate setting 

for the regularization parameter λ is based on experimen-

tal calibrations through the use of brain-tissue-equivalent 

phantoms.

Goodness of χ tomography
We tested our χ reconstruction algorithms using both numeri-

cal simulations and phantom experiments. With numerical 

simulation, we can predefine a digital input source χtrue, and 

then calculate the output T2* complex image by numerically 

simulating T2*MRI, and proceed to reconstruct χ using a 

CIMRI solver. For numerical characterization of the good-

ness of χ tomography, we suggest a measure of pattern cor-

relation (a spatial correlation coefficient), that is defined as

 
corr recon true

recon recon true true

recon re
( , )

,

||
χ χ χ χ χ χ

χ χ
=

< − − >
− ccon true true|| || ||2 2⋅ −χ χ

 (18)

where ,⋅,⋅. denotes inner production, the overbar denotes 

mean (or average). The pattern correlation is bounded 

between –1 and 1, with corr =1 representing a perfect match. 

For example, in the small phase angle regime we have 

corr(b, P) =1 due to the linear relationship in Equation 3. 

The 3D pattern correlation in Equation 18 is also used to 

numerically characterize the phantom experiments of χ 

tomography, where the phantom geometry defines a ground 

truth of χtrue.

Numerical simulations  
and experiment results
In the context of medical imaging development, we demon-

strate the CIMRI-based χ tomography with two numerical 

simulations, one dye phantom experiment, and one in vivo 

subject brain imaging experiment. We compare two χ map 

reconstruction methods: inverse filtering with a truncated 

filter and TV iteration with a split Bregman algorithm.

Numerical simulation of cylindrical  
χ reconstruction
We defined a cylindrical χ source (ground truth) in a field of 

view (FOV) using a 3D matrix of 64 × 64 × 64 voxels, in which 

the cylinder is located along a central axis with a  diameter of 
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16 voxels. Assuming that the cylinder axis is perpendicular 

to a main field B
0
(=3T), we calculated its χ-induced fieldmap 

by 3D convolution in Equation 1, in which we added a 3D 

Gaussian noise (noise level =0.1). By T2*MRI simulation, the 

fieldmap can be obtained from the T2* phase image with a 

scale difference. From the 3D fieldmap, we reconstruct χ by 

solving the 3D deconvolution in Equation 4 by three methods: 

filter truncation in Equation 5 (denoted by ‘trunc recon’), 

2-subproblem split TV iteration in Equation 12 (denoted 

by ‘TV2 recon’), and 3-subproblem split TV (denoted by 

‘TV3 recon’).13 The reconstruction results are shown in 

Figures 1 and 2. The reconstruction goodness measures for 

‘trunc recon’, ‘TV3 recon’, and ‘TV2 recon’ are 0.790, 0.996, 

0.995, respectively (calculated by Equation 18). It is seen that 

both TV3 and TV2 could produce similar reconstructions that 

almost reproduce the predefined truth (corr.0.99). In what 

follows, we only provide the susceptibility reconstruction by 

the ‘TV2 recon’ method (denoted by ‘TV recon’ henceforth) 

without the repetition of ‘TV3 recon’, and provide the com-

parison with ‘trunc recon’.

Numerical simulation of blob-shaped  
χ reconstruction
For numerical simulation of a T2*MRI capture of a dynamic 

brain BOLD process, we configure a cortical FOV using a 

support matrix of the size of 2048 × 2048 × 2048 gridels 

(a gridel is a grid element at a grid resolution,32,39 which can be 

construed as a 1 × 1 × 1 µm3 cube in our numerical simulation) 

and fill the FOV with random beads (radius =3 µm) with 2% 

blood volume fraction. It is noted that the reason we filled the 

FOV with beads, instead of with random cylindrical vessels as 

reported previously,13,40 was to have a good control of the 2% 

blood volume fraction for each cortical voxel in the cortical 

FOV. To simulate a local neuron stimulus on the cortical region, 

we defined a local Gaussian-shaped neuronal activity blob 

(NAB), with (σ
x
, σ

y
, σ

z
) = (0.125, 0.125, 0.167) size (FOV), 

and assumed that it induces a local vascular χ perturbation 

by modulating the blood magnetism of cortical vasculature 

(random beads in our simulation). That is, we predefined a 

NAB-induced χ perturbation source (χtrue) using the spatial 

multiplication between the Gaussian distribution of the local 

NAB stimulus and the binary sparse volume of the bead-filled 

FOV, based on a linear neurovascular coupling model.40

Considering χtrue a χ-expressed brain functional state, we 

carried out the T2*MRI simulation. Firstly, we calculated the 

3D fieldmap (in a 3D matrix of 2048 × 2048 × 2048 gridels) 

using Equation 1 with B
0
 =3T and an additive Gaussian noise 

ε(x, y, z) (with 0.1 noise level). Then, we calculated the T2* 

complex image (in a 3D matrix of 64 × 64 × 64 voxels) in 

the presence of spin diffusion41 with the following settings: 

T
E
 =30 milliseconds, δt=1 millisecond, and voxel size =32 × 

32 × 32 gridels. Finally, we obtained the T2* magnitude and 

phase images from the T2* complex image using Equation 

2. The results of the T2*MRI simulation are shown in Figure 

3, in which χtrue(x, y, z) and b(x, y, z) are represented in mul-

tivoxel matrices of the size of 64 × 64 × 64 voxels.

From the T2* phase images, we carried out χ reconstruc-

tion by implementing the filter truncation solver (threshold 

ε
0
 =0.12, which was slightly higher than the noise level 

0.1) and the TV iteration solver (λ=50). We calculated the 

reconstruction goodness by Equation 18 and obtained 0.99 

for the TV iteration solver and 0.91 for the filter  truncation 

solver. In Figure 4A, we show the central z-slices for the 
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Figure 1 Numerical simulation results of cylindrical magnetic susceptibility 
reconstructions. The 3D cylindrical volumes are displayed with three orthogonal 
central slices (x-slice, y-slice, and z-slice). (A) A predefined cylindrical susceptibility 
map (ground truth). (B) T2* phase image (calculated by T2*MRI simulation). Note 
that the main field B0 (marked in red arrow) is perpendicular to the cylinder axis; 
(C) χ reconstruction by filter truncation solver (‘trunc recon’) (Equation 5 with 
threshold ε0=0.12); (D) χ reconstruction by TV-regularized 3-subproblem Bregman 
iteration solver (‘TV3 recon’);13 (E) χ reconstruction by TV-regularized 2-subproblem 
Bregman iteration solver (‘TV2 recon’) (Equation 12). Both TV3 recon and TV2 
recon were performed with the same settings: λ=50 and 15 iterations.
Abbreviations: MRI, magnetic resonance imaging; TV, total variation.
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Figure 5 A typical iteration behavior of the split Bregman TV iteration algorithm 
(with the initial setting χ1(x, y, z) = 0).
Abbreviation: TV, total variation.

predefined χ truth and reconstructed χ maps for visual 

comparison. In Figure 4B, we provide scan line profiles and 

the pattern correlations (calculated using Equation 18) for 

numerical comparison. Figure 5 shows the typical iteration 

behavior of the split Bregman TV iteration method used for 

the 3D χ reconstructions. In our experience, the TV iteration 

algorithm converges typically in fewer than 15 iterations at 

an acceptable tolerance.

Phantom experiment
We created a dye phantom by adding diluted Gadolinium 

(Gd) dye to a plastic tube (made of polycarbonate, wall 

thickness =1 mm, diameter =15 mm, length =100 mm) 

with a 0.4 mL/30 mL dilution of clinical Gd injection 

(Gd concentration =287 mg/mL) in water. We used the static 

Gd-tube phantom to simulate a single snapshot state of a 

dynamic magnetic susceptibility perturbation. The Gd-tube 

was immersed in a water container and posed in a vertical 

orientation, perpendicular to the main field B
0
 during scanning 

on a Siemens TrioTim 3T system (Munich, Germany; stan-

dard gradient-recall EPI sequence with complex output, flip 

angle =75°, T
E
 =30 milliseconds, voxel size =3 × 3 × 3 mm3). 

The Gd-tube provided a cylindrical χ distribution on the 

water background. Since we are concerned with the spatial 

distribution of susceptibility contrast, we normalized the sus-

ceptibility distribution of the Gd solution relative to the water 

background in a range of [0,1]. As a result of normalization, 
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the Gd-tube phantom provided a binary χ distribution, 

χtrue ∈[0,1] in dimensionless units, which is different from 

the distribution of absolute χ values (in units of ppm) by a 

constant scale. Along a scan line across a cylinder diameter, 

the Gd-tube phantom provides a ground truth of 1D rectan-

gular χ distribution relative to the water background. The 

experiment output was a complex-valued image in a matrix 

of 32 × 32 × 32 voxels. From the phase image, we calculated 

the interim fieldmap and then calculated the source χ using 

both the filter truncation and TV iteration solvers. The image 

results are shown in Figure 6A and the scan line profiles along 

a tube diameter are shown in Figure 6B. The reconstruction 

goodness is 0.98 for the TV iteration solver and 0.91 for the 

filter truncation solver (calculated using Equation 18). We 

should point out that this Gd-tube phantom experiment was 

intended to justify the numerical simulation of cylindrical χ 

reconstruction (see Figure 1). To avoid the phase wrapping 

problem, we needed to dilute the clinical Gd injection such that 

the T2* phase image in Figure 6B remained phase unwrapped 

(|P(x, y, z)|,π). It is noted in Figure 6 that the left-hand side 

1

0.5

0

−0.5

−1
5 10 15 20 25 30

0.5 1 0.50−0.5 1 0.50 1 0.50 1

Voxel: 3 x 3 x 3 mm3

Water Water

au Radian Dimensionless

Voxels along scanline

Dimensionless

T2* magnitude

T2* magnitude

Scanline profiles

T2* phase

T2* phase

χrecon
trunc

χtrue

χrecon
trunc

χrecon
TV

χrecon
TV

Gd

A B C D

E

Corr(χrecon, χtrue) =0.98
TV

Corr(χrecon, χtrue) =0.91
trunc

B0

Scanline

Figure 6 Magnetic susceptibility reconstructions of a phantom experiment. Experiment setting: B0=3T, FOV matrix: 32 × 32 × 32 voxels, voxel size: 3 × 3 × 3mm3, phantom: 
a round water tank containing a Gd-filled tube (diameter =15 mm, length =100 mm), scanning direction: B0 is perpendicular to the tube axis. The data matrices (at a size of 
32 × 32 × 32) are displayed with the central z-slices (z=16) in (A) for the T2* magnitude image in dimensionless arbitrary units (au); (B) the T2* phase image in units of radian; 
(C) the reconstructed χ map by ‘trunc recon’; and (D) the reconstructed χ map by ‘TV recon’, where the reconstructed susceptibility values in units of ppm are different 
from the absolute values by an undefined constant scale. The scan line profiles from the corresponding z-slices in (A) through (D) are plotted in (E). The scan line assumes 
a diameter of the water container (through a plastic tube diameter as marked in B). The uniform diluted Gd solution inside the tube defines a ground truth of rectangular 
susceptibility distribution (normalized to [0,1] by scaling) along the scan line. The reconstructed χ values are represented in dimensionless units due to normalization. The 
corr values (calculated in Equation 18) represent the goodness of χ reconstructions.
Abbreviations: FOV, field of view; TV, total variation.

(water region) of χrecon is slightly lower than the right-hand 

side (water region), which was due to imperfect field shim-

ming over the FOV, as indicated by the unevenness of the T2* 

magnitude (that is, the left side appears to be slightly lifted 

relative to the right side). Upon this observation, we attributed 

the unexpected slopes in χrecon (both inside and outside the tube 

regions) to the systematic experimental error (eg, imperfect 

field  shimming) during the phantom scanning, not to the 

reconstruction algorithms.

Subject experiments
Figure 7 provides a human subject experiment for in vivo 

brain χ tomography. The T2* complex images were acquired 

with a complex-enabled gradient-recall EPI sequence by 

scanning a healthy human brain performing a finger tap-

ping task in a  Siemens TrioTim 3T scanner, with a task 

paradigm: five repetitions of ‘30 seconds off | 30 seconds 

on’ pattern. The experimental settings were as follows: 

T
R
/T

E
 =2000/29 milliseconds, B

0
=3T, flip angle =75°, 

voxel size =2 × 2 × 2 mm3, FOV =256 × 256 × 60 mm3 in the 
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primary motor cortex, pixel bandwidth =2,170 Hz, GRPPA 

reconstruction of 12-channel Head Matrix coils, B
0
 // superior–

inferior axis.

We normalized the T2* magnitude images using [0,1] 

to produce a representation in dimensionless arbitrary units, 

and converted the T2* phase images using Equation 2 into 

a representation in units of radian and in range of (-pi, pi). 

From the 3D magnitude image, we calculated a 3D volume 

mask by thresholding with a threshold of 0.20. By spatially 

multiplying the 3D mask, we excluded the airspace outside 

the brain  (setting to 0). For the 3D phase image, we performed 

a complex division on the 4D complex-valued fMRI dataset 

(dividing the complex time series dataset using the complex 

image from the starting time point) to reduce the phase wrap-

ping effect.42,43 In Figure 7A and B are respectively shown the 

preprocessed magnitude and phase images with a snapshot 

capture at an onset =20T
R
 out of 150 time points, where 12 

z-slices out of 128 × 128 × 30 data matrices are montage dis-

played. It is noted in Figure 7B that inside the brain interior, the 

phase image takes on small values (|P|,0.3 rad), and that at 

the anterior and posterior boundaries, the phase image suffers 

from large values (|P|.1 rad) resulting from residual air/tissue 

interface effects during complex-division processing.

Based on the linear identity between phase and fieldmap 

in Equation 3, we proceeded to reconstruct 3D χ maps using 

both the filter truncation solver (in Equation 5 with thresh-

old ε
0
 =0.12) and the TV iteration solver (in Equation 12 

with λ=60 and γ
1
=5). With a computer setting of Intel Core 

i7CPU860 @2.80 GHz, 3GB Ram, the calculation time for 

reconstructing a 64 × 64 × 32 χ matrix is 0.03 seconds for 

the filter-truncation solver and 2 seconds for the TV-iteration 

solver (for 15 iterations). Figure 7C and D show the recon-

structed intracranial functional χ maps using two different 

3D deconvolution solvers. Figure 8 displays the z-slices at 

z
0
 =3 in Figure 7 for visual scrutiny, where the arrows indi-

cate the air/tissue effect that occurs at the brain boundaries 

in the phase image and propagates to the reconstructed χ 

maps. It can be seen that the filter truncation solver induces 

gritty textural noise and the TV iteration solver produces a 

smooth reconstruction. It is worth mentioning that, in this 

particular experiment, both reconstructions suffer from air/

tissue interface effects at the brain boundaries (at the anterior 

and posterior regions in Figure 8D) where the complex divi-

sion operation cannot completely remove the phase wrapping 

phenomenon.

For an in vivo human subject experiment, the true χ 

 distribution in the subject brain is always unknown (to 

be reconstructed using χ tomography), therefore, strictly 

speaking, we do not have the ground truth for a human brain 

susceptibility state that we may use to compare with the recon-

structions. In principle, for tomographic medical  imaging, 
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Figure 7 An in vivo brain χ tomography experiment. The MRI scanning on a healthy 
subject performing finger tapping in a Siemens 3T TrioTim System produced both 
magnitude and phase time series images (EPI sequence, TR/TE =2000/29 milliseconds, 
voxel =2 × 2 × 2 mm3, FOV =256 × 256 × 60 mm3), image matrix: 128 × 128 × 30. 
(A) Magnitude image volume at a snapshot captured at an onset =20TR in the 
time series dataset; (B) phase image volume (processed); (C) brain χ volume 
reconstructed by filter truncation solver (Equation 5, with ε0 =0.12); and (D) brain χ 
reconstructed by TV iteration solver (Equation 12, with λ =60 and γ1 =5).
Notes: Units: au (arbitrary units), rad (radian), ppm (parts per million in SI metric). 
Only 12 z-slices out of 128 × 128 × 30 data matrices are montage displayed (with 
the z labels in A).
Abbreviations: FOV, field of view; TV, total variation.
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the reconstructed χ distribution in Figures 7D and 8D can 

be accepted for in vivo brain state depiction as long as 

the brain χ tomography is well calibrated through the use 

of brain-tissue-equivalent phantoms.

Discussion
The main challenge of brain χ tomography lies in an ill-posed 

3D deconvolution problem due to an unusual 3D bipolar-

valued anisotropic kernel. The embedded zero surface of 

the 3D kernel manifests as a divide-by-zero problem in both 

matrix inverse and inverse filtering. The filter truncation 

method is conceptually intuitive (dealing with the 3D zero 

surface of dipole filter in Fourier domain) and computation-

ally simple (data manipulation by element-wise division 

during 3D inverse filtering). However, this reconstruction 

method suffers from certain types of noises (eg, uniform 

random textural patterns), as demonstrated in Figure 1 with 

numerical simulations, in Figure 6 with a phantom experi-

ment, and in Figure 7D with a subject experiment.

Based on numerical simulations, we conclude that the 

split Bregman TV iteration solver outperforms the filter trun-

cation solver in the following aspects: 1) it denoises the data 

while preserving edges, therefore there is no need to smooth 

an MR phase image (note that the TV iteration method was 

originally developed for image denoising44 and that smooth-

ing is prone to suppressing image features and incurs irrevers-

ible information loss); 2) it is an iterative algorithm that is 

of numerical stability, and in particular, the split Bregman 

iteration ensures a fast convergence;23,25,45 3) it is insensitive 

to the setting of regularization parameters due to the mini-

mization searching of TV iterations. In our experience, the 

setting of λ=[30,500] could produce similar iteration results.13 

Based on numerical simulations (in Figures 1 and 2), we show 

that both 3-subproblem split Bregman iteration algorithm13 

and the 2-subproblem split algorithm in Equation 12 reveal 

similar convergence, λ-selection dependence, and reconstruc-

tion performance. The 2-subproblem split is preferable for 

its easy implementation.

In a small phase angle regime, all the phase values are 

small and unwrapped, such that the phase image differs 

from the fieldmap by a T
E
-dependent factor (related by the 

 Larmor law; see Equation 3). The small phase angle condi-

tion may be invalid for long T
E
, high field B

0
, and high spatial 

resolution.46 For whole brain imaging, the phase wrapping 

phenomenon primarily occurs in sinus/tissue and air/brain 

boundary regions. In our subject finger tapping experi-

ments, we were concerned with the primary motor cortex 

in the parietal lobe, where the T2* phase image using the 

complex-enabled EPI sequence (with T
E
 =30 milliseconds, 

B
0
 =3T) maintains phase unwrapping (|P|,π). During T2* 

phase image processing, we excluded the extra-cranial air-

space by 3D masking (with a binary mask volume calculated 

from the magnitude image volume). For fMRI dataset pro-

cessing, we performed complex division to find the relative 

phase changes, which serves three purposes: 1) to remove 

the static brain χ distribution for functional brain χ tomo-

graphy, 2) to remove the phase wrapping phenomenon if it 

existed; and 3) to reduce the static background field effect. 

From a time series of T2* phase images (4D dataset), 4D 

brain χ tomography can be implemented by repeating the 

3D χ reconstruction for each snapshot volume. Obviously, 

this practice demands tremendous computation cost. Under 

the linear T2*MRI model, the susceptibility-based brain 

functional mapping can be calculated from the phase action 

map by rendering a 3D deconvolution only once, without 

repeating 3D χ map reconstructions for all the time points.33 

In comparison, the brute-force 4D χ tomography (based 

on individual 3D χ tomography at snapshots) is in general 

applicable for T2*MRI-based MRI datasets, not subject to 

the linear MRI data acquisition condition.

For large phase angle scenarios, the linear approximation in 

Equation 3 is not well held for calculating the interim fieldmap 

from the output T2* phase image due to the emergence of 

high-order nonlinearity in the spin precession signal expansion. 

A very large phase angle (|P|.π) can incur a phase wrapping 

phenomenon that must be corrected (by a phase unwrapping 

algorithm) for fieldmap calculation.6 For brain functional 

imaging, the complex division on phase image processing can 

reduce the phase wrapping effect to some extent. However, it 

cannot completely remove large phase jumps at the air/tissue 

interface at brain boundaries (see Figures 7B and 8B). The 

residual of the air/tissue interface effect due to incomplete 

phase image processing will propagate to the reconstructed χ 

maps (see Figures 7D and 8D). The T2* phase nonlinearity 

and air/tissue interface effect are practical aspects of brain χ 

tomography, which deserve further investigation.

In this report, we are concerned with functional brain 

χ tomography for each snapshot in an fMRI dataset. The 

complex division operation may largely remove static 

information during phase image processing. The dynamic 

information (including neurovascularly-coupled BOLD 

perturbation and inherent physiological oscillation) is retained 

in the processed phase images, and it will propagate to the 

reconstructed χ dataset. Upon the dynamic χ dataset, we can 

render χ-depicted functional brain mapping and investigate the 

cardiac and respiration effect on the functional χ perturbation 
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using statistical χ data analysis, in the same way as statistical 

parametric mapping (SPM) is widely adopted for fMRI data 

analysis. These are ongoing research topics.

Conclusion
The goal of magnetic susceptibility (χ) tomography is to 

reconstruct the internal magnetic susceptibility distribution 

of an object from T2* phase images (as acquired by T2*MRI 

experiments) by rendering a computed inverse T2*MRI pro-

cedure (as described in the framework of computed inverse 

MRI: CIMRI).13 The core technology of CIMRI consists of 

solving a 3D ill-posed deconvolution problem, for which 

we have reported on a 3D total variation (TV) minimization 

method with a 3-subproblem split Bregman iteration algo-

rithm in Chen and Calhoun13 and in this paper we report on 

a 2-subproblem split Bregman iteration algorithm for easy 

implementation. Based on numerical simulations and phan-

tom experiments, we show that the 3D χ tomography can be 

successfully implemented by the TV iteration solver (source 

reproduction ≈99% in terms of pattern correlation). By repro-

ducing the intact internal χ distribution from the acquired 

T2* phase image, brain χ tomography provides a new χ data 

space for more direct and truthful brain state depiction due 

to the removal of dipole effect and other transformations 

introduced during T2* image acquisition.

In this report, we claim that the internal magnetic sus-

ceptibility distribution can be reconstructed from T2* phase 

images (called brain χ tomography) by solving the dipole 

inversion problem using a TV-regularized split Bregman 

iteration algorithm. This claim is applicable for T2*MRI data 

acquisition in small phase angle condition. For more general 

practical applications, the T2* phase image may suffer from 

air/tissue interface effect and phase-wrapping phenomenon, 

which should be removed for the interim fieldmap calculation 

and the final χ calculation. Another practical aspect of brain 

χ tomography is the system calibration through the use of 

brain-tissue-equivalent phantom experiment.
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