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Abstract: Multiple genetic variants and environmental factors interact resulting in the causation 

of type 2 diabetes. The advent of genome-wide association studies has accelerated the pace of 

discovery of genetic variants associated with type 2 diabetes. These variants could potentially 

be useful for the prediction, prevention, and early treatment of diabetes. Although a number of 

studies have been conducted on the predictive value of genetic polymorphisms, its value in the 

general population is unclear. Although in monogenic forms of diabetes genetic screening yields 

excellent predictive value, genetic profiling for polygenic type 2 diabetes currently appears to 

be limited in its predictive ability compared with conventional clinical risk scores. Performing 

a genetic profiling of strongly associated and replicated genetic variants seem to be the way 

forward, although such analysis is not yet successful. It is hoped that combined analyses of 

these genetic factors or hitherto unidentified genes would help in better genetic prediction of 

type 2 diabetes in the future.

Keywords: predictive value, genomics, monogenic diabetes, polygenic type 2 diabetes, genes, 

genetic risk variants, clinical risk factors

Introduction
Type 2 diabetes (T2D) is a metabolic disorder characterized by hyperglycemia, insulin 

resistance, and relative insulin deficiency. Diabetes is a leading cause of blindness, 

renal failure, and limb amputation, and a major risk factor for cardiovascular mor-

bidity and mortality.1 It is possible to slow, or sometimes even reverse the disease 

process by early intervention, weight loss and physical activity, and the judicious use 

of medications.

Identification of population subgroups at particularly high risk for T2D might 

facilitate the targeting of prevention efforts to those who might benefit from them. 

This is the goal of risk prediction of a disease.

Prediction of diabetes risk for healthy individuals is commonly attempted using 

multivariate diabetes risk scores, and some of them are recommended in current 

practice guidelines for diabetes prevention2 and are also implemented in prevention 

programs in some Western countries.3 –6 However, the predictive ability of diabetes 

risk scores, which have been developed in populations of varying ethnic backgrounds, 

differs considerably between populations.

Clinical T2D risk-prediction model
Based on the information available in routine clinical practice and gathered through 

questionnaires, a number of risk scores exist that help in prediction of T2D. 
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Large studies such as the Framingham Offspring Study 

and the Atherosclerosis Risk in Communities Study have 

developed prediction models for T2D in middle-aged adults 

using common clinical measurements (Table 1).7–9 These 

models usually include measures of glycemia, adiposity, 

dyslipidemia, and blood pressure, in addition to age, family 

history of diabetes, physical activity, and, in some cases, 

race.10 They discriminate future cases from noncases, with 

a C-statistic (also called the area under the receiver operat-

ing characteristic [ROC] curve) ranging from 0.7 to 0.9. 

It has been possible to derive risk scores that predict T2D 

using basic clinical information, examples being the Finn-

ish Diabetes Risk Score and diabetes risk calculator, and 

the Indian Diabetes Risk Score (IDRS; Table 1).9,11,12 Using 

these scores, prediction has been considered to be modest, 

leading to the question whether genetic risk prediction might 

prove to be superior. This article will focus on the genetic 

risk prediction for diabetes.

Genetic risk prediction  
model for T2D
Risk models that include genetic variants exclusively or 

genetic variants added to clinical risk factors have been 

assessed for their clinical predictive ability. For a genetic 

marker, its predictive value is its ability to predict disease. 

Predictive genetic tests can be used to identify persons who 

have a disease at the time of testing (diagnosis) or who will 

develop the disease in the future (prediction). Before ordering 

genetic tests as routine investigations, it is very important to 

see if they have both clinical validity and utility. For clinical 

validity to be proved, the discriminative accuracy of the test 

is a very important factor. As the name indicates, it is the 

extent to which a marker can discriminate between individu-

als who will develop the disease and those who will not. The 

important indicators are the sensitivity and specificity. The 

proportion of carriers among persons who will develop the 

disease is sensitivity and the proportion of noncarriers who 

will not develop the disease is specificity. Sensitivity is known 

as “true positive rate” and specificity is known as “true nega-

tive rate”. Conversely, the false positive rate is equal to one 

minus the specificity, and the false negative rate is equal to 

one minus the sensitivity.

The ability to predict disease risk by a genetic marker 

is its predictive value. If genetic testing improves disease 

prediction beyond conventional risk factors, then it is said to 

have good clinical utility. When a genetic marker is associ-

ated with risk of disease, carriers of a risk genotype have a 

higher risk of disease and noncarriers have a lower risk of 

disease compared with the average disease risk. A test that 

is useful for predicting disease in one population may not 

be useful in another population, since among populations 

disease risks and genotype frequencies are likely to vary.13 

Common diseases such as T2D are caused by an interaction 

of several genetic and nongenetic factors, each of which 

conveys a minor increase in the risk of disease.14 For this 

reason, the genetic prediction of common diseases has proved 

to be more challenging.

Genetic prediction  
of monogenic diabetes
Monogenic forms of diabetes mellitus constitute a hetero-

geneous group of single-gene disorders that are character-

ized by impaired insulin secretion of the pancreatic β-cells. 

They account for up to 2%–5% of all cases of diabetes 

mellitus. Monogenic disorders are characterized by  different 

modes of inheritance and different ages of disease onset.15,16 

 Maturity-onset diabetes of the young (MODY) and neona-

tal diabetes mellitus (NDM) are two main types of mono-

genic diabetes. In addition, there are syndromic forms of 

 monogenic diabetes (Table 2).

In MODY, the clinical pattern is characterized by young 

age at diagnosis – usually below 25 years – with a marked 

Table 1 Type 2 diabetes risk prediction using clinical variables

Serial 
number

Study (references) Variables used for type 2 diabetes risk prediction

1 Framingham Offspring Study7 Parental diabetes, obesity, and metabolic syndrome traits
2 The Atherosclerosis Risk in  

Communities study8

waist, height, hypertension, blood pressure, family history of diabetes, ethnicity, age, fasting 
glucose, triglycerides, and HDL-cholesterol

3 Finnish Diabetes Risk Score Study9,11 Age; body mass index; waist circumference; history of antihypertensive drug treatment; high 
blood glucose; consumption of vegetables, fruits, or berries; physical activity; and family history 
of diabetes 

4 German Diabetes Risk Score Study10 Age; waist circumference; height; history of hypertension; physical activity; smoking; and 
consumption of red meat, whole-grain bread, coffee, and alcohol

5 indian Diabetes Risk Score Study12 Age, abdominal obesity, family history of diabetes, and physical activity

Abbreviation: HDL, high-density lipoprotein.
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Table 2 Genetics of monogenic diabetes

Serial  
number

Phenotype Gene Clinical features

1 Neonatal diabetes mellitus (NDM) KCNJ11 Often PNDM, rarely TNDM; non-autoimmune  
diabetes, ketoacidosis

2 ABCC8 Often PNDM, rarely TNDM; non-autoimmune diabetes
3 INS Often PNDM, rarely TNDM; non-autoimmune diabetes
4 GCK PNDM; non-autoimmune diabetes
5 PDX1 PNDM with pancreatic agenesis/hypoplasia; non- 

autoimmune diabetes
6 HNF4A PNDM; non-autoimmune diabetes
7 GLIS3 PNDM with congenital hypothyroidism
8 HNF1B TNDM/PNDM with renal abnormalities
9 PAX6 PNDM with severe microcephaly and eye defects
10 NEUROD1 PNDM with cerebellar hypoplasia
11 NEUROG3 Rare form of congenital malabsorptive diarrhea  

secondary to enteroendocrine cell dysgenesis
12 PTF1A PNDM with cerebellar and pancreatic agenesis
13 IER31P1 PNDM with microcephaly
14 RFX6 PNDM with intestinal atresia, gall bladder hypoplasia
15 6qchro TNDM
16 wolcott-Rallison syndrome (wRS) EIF2AK3 6q chro-TNDM with facial dysmorphism, reduced birth weight,  

wolcott–Rallison syndrome: liver disease, skeletal dysplasia
17 Fanconi-Bickel syndrome (FBS) SLC2A2 Fanconi-Bickel syndrome: liver disease, proximal renal tubule 

defect
18 immunodysregulation, polyendocrinopathy,  

enteropathy, X-linked (iPeX) syndrome
FOXP3 immunodysregulation, polyendocrinopathy,  

enteropathy, X-linked syndrome
19 wolfram syndrome WFS1 Diabetes insipidus, diabetes mellitus, optic  

atrophy, deafness (DiDMOAD)
20 Thiamine-responsive megaloblastic anemia (TRMA) SLC19A2 Vitamin B12 deficiency leading to folate deficiency
21 Berardinelli-Seip syndrome (BSCL) BSCL, AGPAT2 Loss of subcutaneous fat
22 Rabson-Mendenhall syndrome (RMS) INSR Severe insulin resistance
23 MODY 1 HNF4A Mild-moderate plasma glucose concentrations that  

increase over time due to progressive decrease in  
insulin secretion; respond well to sulfonylurea agents

24 MODY 2 GCK Mild fasting hyperglycemia due to impaired glucose  
tolerance and microvascular complications of diabetes  
are rare

25 MODY 3 HNF1A Same as MODY 1
26 MODY 4 IPF1 Phenotypes ranging from impaired glucose tolerance  

to overt DM; associated with pancreatic agenesis
27 MODY 5 HNF1B Overt DM in association with renal cysts
28 MODY 6 NEUROD1 Rare, with phenotype characterized by obesity and  

insulin resistance
29 MODY 7 KLF11 very rare; phenotype ranges from impaired glucose  

tolerance or impaired fasting glucose to overt DM
30 MODY 8 CEL very rare; associated with both exocrine and  

endocrine pancreatic deficiency and with  
demyelinating peripheral neuropathy

31 MODY 9 PAX4 very rare; crucial transcription factor for beta cells 
development

32 MODY 10 INS very rare (,1% cases); mutations in the insulin gene;  
usually associated with neonatal diabetes

33 MODY 11 BLK Contributes to the qualitative and quantitative control  
of B-cell signaling

34 MODY 12 ABCC8 very rare; usually associated with neonatal diabetes
35 MODY 13 KCNJ11 very rare; usually associated with neonatal diabetes

Abbreviations: PNDM, permanent neonatal diabetes mellitus; TNDM, transient neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; DM, diabetes 
mellitus.
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family history of diabetes in multi-generations due to auto-

somal dominant inheritance, and negativity for pancreatic 

autoantibodies such as glutamic acid decarboxylase 65 and 

islet antigen 2.17 NDM is a rare form of monogenic diabetes 

with onset below 6 months of age,18 and glutamic acid decarb-

oxylase antibody-negative NDM is of two types: permanent 

NDM,19 requiring lifelong treatment; and transient NDM, 

where the diabetes may spontaneously remit (before 1 year 

of age) but will often relapse, usually during adolescence or 

early adulthood.20

MODY and NDM are caused by mutations in a single 

gene. Predictive testing for these mutations is very informa-

tive since the risk of disease between carriers and noncarriers 

of mutations is substantially different, with the former being 

high and the latter approximating the population average. 

With a large difference in disease risk between carriers and 

noncarriers, genetic testing can be useful for predicting dis-

ease, and targeting preventive or therapeutic interventions to 

the relatively small group of individuals at increased risk.

A number of subtypes of MODY exist based on the gene 

involved in the disease subtype. A more prevalent subtype 

is the HNF1A-MODY. Based on genetic characterization 

of the HNF1A-MODY patient, the antidiabetic treatment 

can be tailored. These patients show much better response 

to sulfonylureas than to metformin, as sulfonylureas act on 

the beta cells and increase the insulin secretion.21 In the case 

of GCK-MODY, diet control is mostly sufficient to manage 

the affected subjects.

GCK-MODY is frequently misdiagnosed and clinical 

diagnosis depends on the age of the patient: slim children 

with GCK mutations are often diagnosed to be in the ini-

tial stages of type 1 diabetes; pregnant women with GCK 

mutations are diagnosed as gestational diabetics; and older 

patients with GCK mutations are diagnosed as having T2D. 

Therefore, identification of GCK mutations is imperative in 

the diagnosis and treatment of the condition. The involve-

ment of glucokinase gene mutations in the evolution of 

gestational diabetes and subsequent development of T2D 

in adulthood has been shown in various studies.22 Women 

with glucokinase mutations often present with gestational 

diabetes, as their asymptomatic hyperglycemia is detected 

by routine testing in pregnancy. The diagnosis of a glu-

cokinase gene mutation is very important for both mother 

and child. In the absence of this knowledge, treatment 

with insulin could lead to macrosomia in the fetus. These 

subjects need to be treated by diet alone. It is thus possible 

to tailor the treatment strategy based on genetic screening 

of GCK mutations.

Yet another very important example of tailoring treatment 

based on genetic prediction is permanent NDM. Conventional 

treatment for neonatal diabetes has been to give insulin injec-

tions, however this is not warranted in patients with KCNJ11 

mutations. Patients with KCNJ11 mutations are characterized 

by a very good response to sulfonylurea treatment – indeed, 

even better than with insulin injections. Here the action of 

sulfonylurea corrects the mechanism underlying this type 

of diabetes by closing the activated potassium channel of 

the beta cells; hence exogenous insulin is not necessary for 

these patients.23,24 In a recent study we identified KCNJ11 

and ABCC8 mutations in Indian NDM children with onset of 

diabetes below 6 months of age. As the KATP mutations are 

sulfonylurea responsive, children with KCNJ11 (Cys42Arg 

and Arg201Cys) and ABCC8 (Val86Ala, Asp212Tyr, and 

Pro254Ser) gene mutations were also successfully shifted 

from insulin injections to oral sulfonylurea drugs.25

Genetic prediction of polygenic  
or multifactorial T2D
T2D is a classic example of a common multifactorial dis-

ease in which both genetic and nongenetic factors play an 

important role.26 In Mendelian disorders, rare genetic variants 

usually referred to as mutations, confer a major portion of 

disease risk. A precise genotype–phenotype correlation is 

possible in monogenic disorders and hence genetic testing to 

assess the probability of disease occurring in individuals and 

the first-degree relatives of an affected proband is feasible. It 

has to be noted that for predicting risk for disease in general 

populations, monogenic mutations causing Mendelian dis-

orders have very limited value because of their infrequency. 

For analysis of risk in populations, genome-wide associations 

are used as a tool based on the “common disease – common 

variant” hypothesis. In polygenic diabetes, one looks for the 

associated susceptibility alleles with modest effect, rather 

than for sequence differences with strong causal effects.

The predictive value of testing for a single genetic variant 

is limited for a multifactorial disease such as T2D. This is 

because T2D results from an interplay of a number of genetic 

and nongenetic factors. These risk variants are generally com-

mon (.1%), and hence carriers and noncarriers have disease 

risks that are only slightly higher or lower, respectively, than 

the population average, and the differences in disease risk 

are also small. Since multiple genetic variants are involved 

in T2D, simultaneous testing for these variants can be per-

formed, resulting in genetic profiling. Genetic profiling has 

the ability to predict disease risk as a function of the combined 

effects of genetic variants. Not all genetic factors predict 
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disease in the same manner. Therefore, an individual’s disease 

risk is dependent on both the number of risk genotypes car-

ried and the specific risk carried by each genotype. As can be 

expected, genotypes more strongly associated with disease 

contribute more to a person’s disease risk.

Three attributes compare the risk or odds of disease in 

carriers versus noncarriers of risk genotypes. One is the rela-

tive risk, which by definition is the ratio of the disease risk 

in carriers divided by the disease risk in noncarriers. Risk 

difference is defined as the absolute difference between the 

disease risk of carriers and noncarriers. The odds ratio by 

definition is the ratio of the odds of disease in carriers divided 

by the odds of disease in noncarriers; it also explains the ratio 

of odds of the risk genotype in individuals who will develop 

the disease from those who will not. Risk models have been 

developed including exclusively the genetic variants, or 

genetic variants added to clinical risk factors.

More than 1,000 genome-wide association studies 

(GWAS) have been carried out by analyzing hundreds of 

thousands of single-nucleotide polymorphisms (SNPs) 

in very large samples,27,28 which have identified several 

loci associated with many common diseases (http://www.

genome.gov/gwastudies).29 Common variants with minor 

allele frequency .5% have been looked into. The results of 

these studies have shown the best associated genes to have an 

odds ratio of 1.1–1.5.30 Moreover, a large number of loci are 

needed to significantly influence any single disease. Using 

these data for prediction of development of polygenic T2D is 

very tricky. Although unlike clinical markers genetic markers 

do not change with time, and hence possess the advantage 

of identifying high-risk individuals several decades before 

the disease onset, enabling early prevention, their predictive 

power has so far been rather limited. To date, 75 susceptibil-

ity loci associated with T2D and metabolic traits have been 

identified,31 mostly in European, African, and South Asian 

populations. In various ethnic populations at least about 

20 SNPs have been firmly replicated.32–37 However, data 

from these studies explain only a small proportion of T2D 

susceptibility. A high proportion of missing heritability is 

yet to be unravelled.38 Table 3 summarizes the recent GWAS 

in T2D published from 2011 to date. Previous studies have 

investigated the predictive value of the genomic results, 

either based on GWAS or replication studies. A few have 

been reviewed in the following paragraphs. A comparison 

of genetic prediction and traditional clinical markers from 

the most positively associated TCF7L2 gene and yet another 

important gene, namely the CDKAL1 gene, in our own 

population has shown that genetic markers do not add any 

predictive advantage over conventional clinical factors, as 

shown in Table 4.

Mohan et al52 compared the effectiveness and costs of 

screening for undiagnosed T2D using oral glucose tolerance 

testing (OGTT) alone, or following a positive result from 

the IDRS, or following a positive result from genotyping 

of the TCF7L2 polymorphisms in Asian Indians. In sub-

jects without known diabetes (n=961) recruited from the 

Chennai Urban Rural Epidemiology Study (CURES),53 

OGTT, IDRS, and genotyping of rs12255372(G/T) and 

rs7903146(C/T) of TCF7L2 polymorphisms was done. IDRS 

includes four parameters: age, abdominal obesity, family 

history of T2D, and physical activity. Seventy-two subjects 

were identified with newly diagnosed diabetes (NDD) by 

OGTT, using World Health Organization criteria.54 IDRS 

screening (cut off $60) yielded 413 positive subjects, 

which included 54 (75%) of the NDD subjects identified 

by OGTT.  Genotyping yielded 493 positive subjects, which 

only included 36 (50%) of the 72 NDD subjects identified by 

OGTT, showing less discriminatory power. Screening with 

both SNPs missed 27 (37.5%) NDD subjects identified by 

IDRS. In contrast, IDRS missed only nine (12.5%) of the 

NDD subjects identified by  genotyping. The conclusion of 

the study was that a simple IDRS is more effective and far 

less expensive for screening of undiagnosed T2D compared 

with genotyping TCF7L2 SNPs, the strongest genetic marker 

for T2D so far. In this study only one gene was considered. 

The scenario could turn out to be somewhat different if 

additional powerful SNPs were included. However, at the 

present time it appears unlikely that even a combination of 

genes can beat a set of clinical markers in predicting preva-

lent or future diabetes.

The evaluation of T2D risk in individuals carrying many 

risk variants is critical for a potential clinical use of a genetic 

test in the general population. In our population, the two 

variants that showed strongest association with T2D are the 

rs7903146 SNP of the TCF7L2 gene and the rs7756992 SNP 

of the CDKAL1 gene. Hence we have considered these two 

SNPs for analysis. We calculated a weighted genetic score 

based on these two SNPs using the following formula:55

Weighted genetic score =2 × (w1 × SNP1 + w2 × SNP2)/

(w1 + w2)

where w = log (odds ratio).

An ROC curve analysis was then performed to explore the 

discriminatory power of the weighted genetic score (WGS) 

in predicting the presence of diabetes (Figure 1).
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Figure 1 ROC curve analysis for the weighted genetic score in predicting the 
presence of diabetes.
Notes: wGS – weighted Genetic score for TCF7L2 rs7903146 SNP and CDKAL1 
rs7756992 SNP Clinical covariates – age, sex, BMi, waist circumference; ROC curve 
analysis was performed using the TCF7L2 and CDKAL1 SNP based wGS only (Area 
under ROC curve =58%), the clinical covariates only (Area under ROC curve =79%) and 
the combination of the wGS and the clinical covariates (Area under ROC curve =80%).
Abbreviations: ROC, receiver operating characteristic; wGS, weighted genetic 
score; SNP, single-nucleotide polymorphism; BMi, body mass index.

The area under the ROC curve (AUC) is known as the 

measure of the discriminatory power of a test. A perfect test 

would have an AUC of 1; a test with no discriminatory power 

would have an AUC of 0.5.56 The value for the AUC for the 

two SNP-based WGS was 0.57, whereas the value for the 

clinical covariates (age, sex, body mass index [BMI], waist 

circumference) was 0.79. Adding the WGS to the clinical 

covariates led to a limited improvement in the AUC to 0.80. 

However, the limitation of this study is the small sample size 

used for analyses. Table 4 gives an overview of diagnostic 

accuracies obtained from earlier empirical studies, including 

ours, on genetic variants and T2D.

It is likely that although a single susceptible SNP is not of 

value in prediction of diseases such as T2D that are polygenic 

in nature, with a number of variants contributing in small mea-

sures, each SNP is necessary but not sufficient by itself in con-

tributing to the risk of the disease. Although independently the 

variants may not be useful, combined information from these 

multiple variants is likely to be beneficial in identifying subjects 

at high risk or low risk of developing complex diseases.61

The first study to look at the combined predictive value 

of three common genetic variants (Lys23 of KCNJ11, Pro12 

of PPARG, and the T allele at rs7903146 of TCF7L2) that 

have individually reached genome-wide significance in 

meta-analysis was that of Weedon et al.57 The study looked at 

2,409 T2D cases and 3,668 population-based controls in the 
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white UK population. Subjects with all six risk alleles had an 

odds ratio of 5.71 (95% CI [confidence interval], 1.15 to 28.3) 

when compared with those with no risk alleles. The 8.1% of 

participants that were double-homozygous for the risk alleles 

at TCF7L2 and Pro12Ala had an odds ratio of 3.16 (95% CI, 

2.22 to 4.50), compared with 4.3% with no TCF7L2 risk alleles 

and either no or one Pro12Ala risk alleles. To evaluate the dis-

criminatory power of the three-SNP combined genetic risk, an 

ROC curve was plotted and the AUC was 0.58. One reason why 

the genetic risk did not reach sufficient risk could be because 

of the number of genetic variants used in the study. The fact 

that only three genetic variants were included is justifiable 

because at that point of time only those three genetic variants 

were reproducibly associated. With the emergence of GWAS, 

now there are a number of genetic risk variants associated with 

diabetes, and eventually a number of studies have included 

more than 15 SNPs to carry out genetic prediction.

One such study is that of Cauchi et al,60 carried out in a 

French population. About 15 T2D-associated SNPs identi-

fied by GWAS were selected for the study and the cumula-

tive genetic risk of carrying risk alleles on T2D prevalence 

was determined. Subjects with at least 18 risk alleles had 

 approximately nine-fold higher risk of developing T2D 

compared with the reference group, with an AUC of 0.86. 

However, this was not calculated for genes and clinical char-

acteristics separately.

Another study by van Hoek et al62 in a Caucasian popula-

tion investigated 18 polymorphisms from GWAS studies on 

T2D and found nine SNPs in nine different gene loci to be 

associated with T2D in their population.  Researchers predicted 

T2D based on genetic polymorphisms alone (AUC =0.6), clini-

cal characteristics (age, sex, and BMI) alone (AUC =0.66), and 

both together (AUC =0.68). The study demonstrated the lack 

of improvement in discriminatory accuracy of disease predic-

tion even when gene markers and clinical characteristics were 

combined. A similar study was published by Lango et al63 on 

subjects from the Genetics of Diabetes Audit and Research 

Tayside study in Scotland, selecting a set of 18 SNPs (the 

majority of them were same as selected by van Hoek et al62), 

studying their association with diabetes, and assessing the 

predictive value of genetic testing. Of individuals with .24 

risk alleles, 1.2% had an odds ratio of 4.2 (95% CI, 2.11– 8.56) 

against the 1.8% with 10–12 risk alleles. The AUC for genetic 

variants alone was 0.60; for age, BMI, and sex it was 0.78; 

Table 4 Overview of diagnostic accuracies obtained from earlier empirical studies on genetic risk variants and type 2 diabetes

Study Number of  
genetic variants

Gene SNP (MAF in the  
total population)

AUC genetic  
variants

AUC clinical  
variants

AUC 
combined

weedon et al57 3 KCNJ11 
PPARG  
TCF7L2

Glu23Lys (0.36)  
Pro12Ala (0.11) 
rs7903146 (0.34)

0.58 NR NR

Lyssenko et al58 2 PPARG 
CAPN10

Pro12Ala (0.14) 
SNP44 (0.21)

NR 0.68* 0.68

vaxillaire et al59 3 GCK 
TCF7L2 
IL6

30G/A (0.18)  
rs7903146 (0.30) 
174G/C (0.40)

0.56 0.82† 0.84

Cauchi et al60 15 EXT2 
EXT2 
EXT2 
EXT2 
HHEX 
HHEX  
LOC646279 
SLC30A8  
MMP26 
KCTD12 
LDLR  
CAMTA1 
LOC387761  
NGN3

rs1113132 (0.24) 
rs3740878 (0.23) 
rs11037909 (0.24) 
rs729287 (0.25) 
rs1111875 (0.38) 
rs7923837 (0.27) 
rs1256517 (0.13) 
rs13266634 (0.36) 
rs2499953 (0.02) 
rs2876711 (0.39) 
rs6413504 (0.49) 
rs1193179 (0.26) 
rs7480010 (0.30) 
rs10823406 (0.21)

NR NR 0.86

CXCR4 rs932206 (0.40)

Present study/ 
Asian indian

2 TCF7L2 CDKAL1 rs7903146 (0.30) 
rs7756992 (0.24)

0.58 0.79# 0.80

Notes: *Clinical characteristics: fasting plasma glucose and BMi; †clinical characteristics: age, sex and BMi; #clinical characteristics: age, sex, BMi, and waist circumference. 
Courtesy: National Human Genome Research institute.84

Abbreviations: SNP, single-nucleotide polymorphism; MAF, minor allele frequency; AUC, area under the curve; NR, not reported; BMi, body mass index.
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and adding the two groups (genetic risk variants and clinical 

characteristics) only marginally increased the AUC to 0.80. 

The discriminatory power to predict T2D thus did not improve 

after addition of genetic risk variants.

Genetic risk calculation based on the number of risk 

alleles carried does not take into account the effect size 

of each risk allele. In an attempt to account for variability 

in allelic contribution, Lin et al55 constructed an additive 

genetic risk score in the population-based cross-sectional 

CoLaus study in Switzerland,64 taking into consideration the 

most replicated SNPs within 15 T2D susceptibility genes, 

and weighting each SNP with its reported effect. Adding 

the weighted genetic score to the clinical covariates led to 

a limited yet significant improvement in the AUC to 0.87 

(P=0.002).

The one advantage of genetic risk calculation is that the 

genotype does not change over the life course, while risk 

factors for T2D such as overweight, dyslipidemia, elevated 

fasting glucose, and even parental history of diabetes may 

not manifest early in life. Genotype information in young 

adulthood might therefore have greater predictive value over 

clinical risk predictors. Based on this hypothesis, Vassy et al65 

carried out a study where data from the Coronary Artery Risk 

Development in Young Adults study was used to examine 

whether 38 common genetic variants known to be associated 

with diabetes in cross-sectional adult case-control studies66,67 

predicted the onset of T2D and improved diabetes prediction 

models based on clinical risk factors alone. The authors 

found that the addition of genetic score did not improve T2D 

risk prediction over the risk factors already measured in the 

model. One of the main limitations of the study as cited by 

the authors was that the SNPs selected were those that showed 

association with T2D at the genome-wide significant level, 

and the majority of them were not actually the causal variants 

and were in intronic regions of the genome. Franks,68 in his 

commentary on the study by Vassy et al,65 brings out a very 

important point on why this study could not prove that genetic 

risk models perform better at younger ages. If the risk alleles 

for specific loci truly vary by age, genetic risk algorithms 

derived in adulthood will be inappropriate for use in younger 

populations, and algorithms that are specific to this younger 

age group, where effect alleles are coded appropriately, will 

be required. It is to be noted that the risk alleles for eleven 

of the 38 SNPs studied by Vassy et al contrast those reported 

in the published literature.

The genetic risk prediction models have so far not been 

very successful. There could be a number of reasons for this. 

Possibly the genes identified so far are not strong enough 

for prediction. It is possible that newer and stronger genes 

for T2D might be identified in future. Inclusion of these 

genes might improve the predictive value. Moreover, most 

of the SNPs used in prediction models may not be the causal 

variants; they might be in linkage disequilibrium with the 

causal variant. It is possible that identification of the causal 

SNPs might further improve prediction.62 The genetic risk 

prediction models for T2D examined to date have focused on 

common gene variants, and it would be wrong to conclude at 

this stage whether rare variants will or will not be clinically 

useful for prediction.68

Sanghera et al69 examined the role of nine most significant 

SNPs reported in GWAS – PPARG2 (rs1801282), IGF2BP2 

(rs4402960), CDK5 (rs7754840), SLC30A8 (rs13266634), 

CDKN2A (rs10811661), HHEX (rs1111875), TCF7L2 

(rs10885409), KCNJ11 (rs5219), and FTO (rs9939609) – in 

an Asian Sikh community from North India. They found that 

four of the nine SNPs from PPARG2, IGF2BP2, TCF7L2, and 

FTO showed significant association with T2D.  However, in 

this study the authors did not explore the possibility of genetic 

prediction using these four SNPs. Most of the studies that 

have investigated the predictive value of multiple genetic 

variants in T2D are in Caucasian populations.55,57–65,68,74,75 

It remains to be seen whether studies in other populations 

yield different results.

Genetic risk scores alone, consisting of between two and 

40 SNPs, have C-statistics for T2D prediction ranging from 

0.54 to 0.68. In the Framingham Offspring Study, cumulative 

T2D incidence over 28 years of follow-up increased signifi-

cantly with genotype risk score, and each 1-point increase 

in the score increased the odds of T2D over 8 years by 12%. 

The group with the highest genotype scores had an odds ratio 

for T2D of 2.6 compared with those with the lowest scores. 

However, the clinical T2D prediction models that consist of 

basic demographic, clinical, and laboratory predictors have 

C-statistics ranging from 0.66 in the Rotterdam Study70 to 

0.90 in the Framingham Offspring Study,46,48 values superior 

to what genotype scores alone have yet achieved. Moreover, 

the addition of genotype risk scores to clinical prediction 

models only modestly improves the C-statistic. For example, 

the C-statistic improves from 0.903 to 0.906 with the addition 

of a 40-SNP score to the clinical model in the Framingham 

Offspring Study and from 0.74 to 0.75 in the larger Malmö 

Preventive Project.75

Thus genetic testing will likely not have a role in clini-

cal T2D prediction unless its addition to prediction models 

correctly reclassifies individuals as having lower or higher 

risk than previously thought based on patient phenotype, and 
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unless the prevention strategies targeted for the individuals 

change as a result of the marginal information value afforded 

by the genetic test. Hence, at this time we do not support 

commercial exploration of genetic testing for T2D.

Family history and heritability  
of T2D
If genetic information does not improve T2D prediction 

compared with clinical prediction models, the next reason-

able question is how genetic information compares with 

family history of T2D alone, itself a strong risk predictor 

of T2D. In the pre-genomic era, twin and family studies 

played an important role in separating the putative envi-

ronmental and genetic components of T2D. Twin studies 

have estimated the genetic proportion of variance in T2D 

to be between 25% and 40%,71,72 which suggests that both 

genetic and nongenetic factors contribute substantially to an 

individual’s T2D risk. Having one parent with T2D doubles 

an individual’s risk, and having two affected parents can 

increase an individual’s risk up to sixfold.73 Family history 

does correlate with T2D genetic risk: data from the PPP-

Botnia and Framingham Offspring Studies show that T2D 

genetic risk scores increase slightly with the degree of T2D 

family history.74

However, the known T2D genetic variants do not account 

for the strong relationship between family history and T2D 

risk. In the Malmö Preventive Project, a self-reported first-

degree family history of diabetes carried an odds ratio for 

incident T2D of 1.62 after adjustment for clinical predictors. 

When added to this multivariate model, the genetic risk score 

was an independent predictor of T2D (odds ratio 1.12 per 

1-point increase in score) but the effect of family history 

was unchanged (odds ratio 1.65).74 However, the evidence 

above demonstrates that, compared with currently identified 

genetic variants, family history remains a more powerful 

T2D predictor as it likely captures the genetic and environ-

mental determinants of T2D risk, just like the clinical risk 

scores do.

Conclusion
Unfortunately, the application of GWAS data for predict-

ing T2D in the clinical setting has been disappointing thus 

far.75–77 Genetic risk scores developed based on the strong 

associations from GWAS have not had much clinical utility 

in predicting incident events when genetic information was 

added to models based on classical, nongenetic factors. It has 

to be borne in mind that there are yet unidentified genetic 

markers with greater effect size than the ones known so far, 

which might have a greater impact on the risk of T2D and 

hence possess greater predictive value. The complex gene–

gene interactions that might play a role in common diseases62 

have to be considered when creating prediction models with 

genetic factors. Similarly, the genetic and nongenetic factor 

interaction should also be taken into account. In fact, pre-

liminary evidence points to age78 and BMI79–83 as potential 

modifiers of genetic effect on the risk of T2D. In conclusion, 

at the present time traditional clinical markers outperform 

genetic information and are not costly. It is possible, however, 

with further discoveries and improvements in technology that 

this could change, and the dream of personalized genomics 

may yet become a reality one day.
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