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Abstract: The transcription of the erythropoietin (EPO) gene is tightly regulated by the hypoxia 

response pathway to maintain oxygen homeostasis. Elevations in serum EPO level may be 

reflected in an augmentation in the red cell mass, thereby causing erythrocytosis.  Studies on 

erythrocytosis have provided insights into the function of the oxygen-sensing pathway and 

the critical proteins involved in the regulation of EPO transcription. The α subunits of the 

hypoxia-inducible transcription factor are hydroxylated by three prolyl hydroxylase domain 

(PHD) enzymes, which belong to the iron and 2-oxoglutarate-dependent oxygenase superfamily. 

Sequence analysis of the genes encoding the PHDs in patients with erythrocytosis has revealed 

heterozygous germline mutations only occurring in Egl nine homolog 1 (EGLN1, also known 

as PHD2), the gene that encodes PHD2. To date, 24 different EGLN1 mutations comprising 

missense, frameshift, and nonsense mutations have been described. The phenotypes associ-

ated with the patients carrying these mutations are fairly homogeneous and typically limited 

to erythrocytosis with normal to elevated EPO. However, exceptions exist; for example, there 

is one case with development of concurrent paraganglioma (PHD2-H374R). Analysis of the 

erythrocytosis-associated PHD2 missense mutations has shown heterogeneous results.  Structural 

studies reveal that mutations can affect different domains of PHD2. Some are close to the 

hypoxia-inducible transcription factor α/2-oxoglutarate or the iron binding sites for PHD2. 

In silico studies demonstrate that the mutations do not always affect fully conserved residues. 

In vitro and in cellulo studies showed varying effects of the mutations, ranging from mild effects 

to severe loss of function. The exact mechanism of a potential tumor-suppressor role for PHD2 

still needs to be elucidated. A knockin mouse model expressing the first reported PHD2-P317R 

mutation recapitulates the phenotype observed in humans (erythrocytosis with inappropriately 

normal serum EPO levels) and demonstrates that haploinsufficiency and partial deregulation 

of PHD2 is sufficient to cause erythrocytosis.
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Introduction
An erythrocytosis is present when the red cell mass is increased to greater than 125% of 

the predicted value for the age and body mass of the subject1 and may be reflected in an 

increased hemoglobin level, with or without an increased hematocrit.2 It may be neces-

sary to formally access the red cell mass to demonstrate that it is truly increased.

There can be myriad reasons for the development of an erythrocytosis; a complete 

list of known possibilities is listed in Table 1.3–6 Briefly, a primary erythrocytosis 

arises when there is increased production of red cells in the bone marrow because of 

an intrinsic bone marrow defect. In these cases, the individual’s erythropoietin (EPO) 

levels will be below the normal range. Secondary erythrocytosis arises when the red cell 
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production is driven by EPO production. Elevated EPO levels 

can arise for different reasons, as summarized in Table 1. 

In individuals with secondary erythrocytosis, EPO levels 

are elevated or inappropriately normal for the associated 

hemoglobin. There remains a group of individuals in whom 

the reason for the erythrocytosis is not clear, a category that 

is referred to as idiopathic erythrocytosis.

Erythrocytosis can be hereditary (associated with germ-

line mutation) or acquired, depending on whether it is  present 

from birth or develops later in life. In hereditary cases, the 

erythrocytosis may not often be tested for or detected at 

birth, but these individuals usually present at a young age. 

This review focuses on secondary hereditary erythrocytosis 

caused by defects in the oxygen-sensing pathway that lead to 

EPO overexpression and, in particular, germline defects in the 

Egl nine homolog 1 (EGLN1) gene encoding the dioxygenase 

prolyl hydroxylase domain-containing protein 2 (PHD2 or 

EGLN1), a major player in the oxygen-sensing pathway.

Regulation of the oxygen-sensing  
pathway
Accurate oxygen homeostasis regulation is essential for the 

survival of all organisms. The transcription factor hypoxia-

inducible factor (HIF), which is conserved during evolution 

from basal metazoans to primates, plays an essential role 

in oxygen homeostasis during embryonic development and 

postnatal life. Under limiting O
2
 (hypoxic) conditions, HIF 

upregulates the expression of a number of target genes, 

including that encoding the glycoprotein hormone EPO, 

which regulates the proliferation and differentiation of 

erythroid progenitors, thereby linking decreased tissue oxy-

genation with an adequate erythropoietic response.

HIF is an α/β hetero dimer consisting of a tightly regu-

lated oxygen-labile α-subunit and a constitutive β-subunit. 

Three HIF-α isoforms exist: HIF-1α and HIF-2α, which 

are closely related and extensively studied, and HIF-3α, 

a more distantly related isoform that possibly plays an 

 antagonistic role.

The HIF-α subunits contain an oxygen-dependent 

degradation (ODD) domain that confers oxygen-dependent 

instability and two independent transcriptional activation 

domains (HIF-1α N-TAD: amino acids 531–575; C-TAD: 

amino acids 786–826). Hydroxylation is the main post-

translational modification regulating the oxygen-dependent 

stability of HIF-α subunits. In humans, HIF-α hydroxylation 

is catalyzed by three prolyl hydroxylase domain proteins 

(PHD 1–3) and an asparaginyl hydroxylase, factor-inhibiting 

HIF (FIH), collectively called the HIF hydroxylases. The HIF 

hydroxylases are dioxygenases, which use 2-oxoglutarate 

(2-OG) and oxygen as cosubstrates, providing a molecular 

basis for the oxygen-sensing function of these enzymes.7,8 

The PHD proteins control the stability of HIF-α subunits, and 

FIH regulates their transcriptional activity. PHDs hydroxylate 

prolyl residues located within the HIF-α ODD (P402 and 

P564 for HIF-1α and P405 and P531 for HIF-2α), which 

allows binding of HIF-α to the von Hippel–Lindau (VHL) 

protein, a recognition component of an E3 ubiquitin ligase 

multiprotein complex. Binding of VHL to HIF-α isoforms 

induces ubiquitination that targets them for degradation by 

Table 1 Classification of erythrocytoses

Name Cause

Primary erythrocytosis
 Hereditary
  eCYT1 EPO-R mutation
 Acquired
  Polycythemia vera JAK2 mutation
  LNK mutations LNK mutation
Secondary erythrocytosis
 Hereditary
  High oxygen-affinity hemoglobin HBB, HBA1, HBA2 mutation
   Bisphosphoglycerate  

mutase deficiency
BPGM mutation

  Methemoglobinemia CYB5R3 mutation
  Hereditary ATP increase PKLR mutation
  Hereditary oxygen-sensing  

pathway defects
  eCYT2, Chuvash polycythemia VHL mutation
  eCYT3 PHD2/EGLN1 mutation
  eCYT4 HIF2A/EPAS1 mutation
 Acquired
  Central hypoxic process Chronic lung disease 

Right-to-left cardiopulmonary  
vascular shunts 
Carbon monoxide poisoning 
Smoker’s erythrocytosis 
Hypoventilation syndromes 
including sleep apnea 
High-altitude habitat

  Local renal hypoxia Renal artery stenosis 
end-stage renal disease 
Hydronephrosis 
Renal cysts (polycystic kidney 
disease) 
Postrenal transplant erythrocytosis

   Pathologic erythropoietin  
production by tumors

Cerebellar hemangioblastoma 
Meningioma 
Parathyroid carcinoma/adenomas 
Hepatocellular carcinoma 
Renal cell carcinoma 
Pheochromocytoma 
Uterine leiomyomas

   exogenous erythropoietin:  
drug associated

erythropoietin administration 
Androgen administration

idiopathic erythrocytosis Still unknown

Note: The main types of erythrocytosis are presented in the table.
Abbreviations: ATP, adenosine triphosphate; eCYT, erythrocytosis type.
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the proteasome (Figure 1). Of the three PHD isoforms (1–3) 

in mammalian cells, PHD2 appears to be a particularly criti-

cal oxygen sensor controlling HIF-1α stability in vivo.8–10 

FIH hydroxylates the asparagine in the C-TAD (Asn 803/

HIF-1α, Asn 847/HIF-2α), a  modification that inhibits the 

binding of HIF-α to the p300/CBP transcriptional coactiva-

tor proteins.11

Under hypoxic conditions, when the cofactor oxygen 

is limiting, hydroxylation of HIF-α subunits slows down, 

resulting in HIF-α stabilization. HIF-α then translocates to 

the nucleus, associates with the HIF-1β subunit, and forms 

an active heterodimer. On recruiting appropriate coactiva-

tors such as p300/CBP, the HIF-α/β heterodimer binds to 

hypoxia response elements [HREs; pentanucleotide sequence 

5′-(A/G)CGTG-3′] within DNA and activates expression of 

HIF target genes.12,13 More than 200 genes are transcrip-

tionally regulated by HIF, and many genes are involved in 

cell survival, including erythropoiesis (via the synthesis of 

EPO14). The regulation of HIF target genes is very complex 

and not yet fully understood. It depends on the cell type, the 

specific HIF-α subunit, the N- or C-terminal transactivation 

domain involved,15 and the oxygen concentration, as well 

as other context-dependent factors. Moreover, the PHDs 

and FIH have distinct and different affinities for oxygen, as 

reflected by the K
m
 values for oxygen for PHD2 and FIH. 

PHDs have a lower affinity, and hence are inhibited more 

rapidly than FIH when the concentration of oxygen decreases 

(other factors being equal). Therefore, with moderate hypoxic 

conditions, the HIF-α subunits are stabilized (PHDs are 

inhibited), but the C-TAD is still inhibited (FIH is active); 

as a consequence, only genes regulated by the N-terminal 

transactivation domain are induced.16 Furthermore, PHDs 

have been shown to manifest a certain degree of selectivity 

between HIF-1α and HIF-2α.9

Regulation of the EPO  
and red cell production
The major HIF-α isoform involved in the regulation of 

the EPO gene is HIF-2α,17–20 which also regulates genes 

required for cell survival under low oxygen tension, such 

as heme synthesis (ALAS2) and iron regulation (TRF2, 

TF).12,21–24 During development, EPO production switches 

in a species-specific manner from the liver to the kidney, 

the latter of which accounts for ∼90% of total EPO syn-

thesis in the adult.25 Hypoxia-inducible EPO transcription 

is controlled by distinct regulatory sequences in liver and 

kidney. These regulatory regions flank the EPO coding 

sequence on both sides: the enigmatic kidney-inducible 

 element located far upstream in the 5′-regulatory region and 

the well-established liver- inducible element in the proximal 

3′-region. Although the liver-inducible element has been 

extensively characterized26,27 and confirmed to be both 
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Figure 1 Hypoxia and red cell production signalization pathway with associated mutations responsible for erythrocytoses.
Notes: in the presence of oxygen (normoxia), the α subunit of the hypoxia inducible factor (HiF) is hydroxylated and binds the von Hippel–Lindau (vHL) protein that induces 
its ubiquitination and degradation in the proteasome. in the absence of oxygen (hypoxia), HiF-2α is stabilized, translocates into the nucleus, associates with HiF-1β, and 
induces transcription of a number of target genes, including erythropoietin (ePO). ePO is released in the circulation and binds its receptor, ePOR, on the surface of erythroid 
progenitors in the bone marrow. This binding induces a cascade of phosphorylation and signal transduction, leading to proliferation and differentiation of the progenitors 
toward mature red cells. Genetic alteration of genes encoding some of these factors induces overproduction of red cells and erythrocytosis.
Abbreviations: JAK2, Janus kinase 2; SHP1, Src homology 2 domain-containing phosphatase-1 region; STAT5, signal transducer and activator of transcription factor 5; 
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 essential and sufficient for liver-specific EPO expression in 

mice beyond embryonic day 14.5,28 only very recently was the 

first functional analysis of a highly conserved distal 5′-HRE, 

presumably representing the kidney-inducible element, 

reported.29 This distal 5′-HRE is located 9,248 bp upstream 

of the human EPO transcriptional start site, is composed of 

a consensus 5′-ACGTG-3′ HIF binding site and an adjacent 

5′-CACA-3′ sequence very similar to the 3′-HRE, and was 

shown to confer oxygen-dependent EPO transcriptional 

regulation by HIF-2.

Extensive research efforts have been undertaken to identify 

the renal EPO-producing cells. In rodents, EPO production is 

mainly restricted to interstitial peritubular fibroblast-like cells 

localized in deep cortex and outer medulla.19,30–36 In addition, 

genetic deletion of Vhl in  renin-expressing cells converted 

these cells in EPO-producing cells.37 In humans, the precise 

localization of EPO- producing cells remains unclear. In situ 

hybridization studies showed EPO mRNA expression in cells 

of renal tubules;38 a recent study has isolated peritubular 

cells with mesenchymal phenotype as a possible source of 

EPO production.39

After renal production, EPO is secreted into the 

 circulation and enters the bone marrow, where it stimulates 

the proliferation of red blood progenitors (Figure 1). EPO 

binds its receptor EPOR on the surface of erythroid cells 

and induces a cascade of phosphorylation. The protein Janus 

kinase 2 (JAK2) is autophosphorylated and subsequently 

phosphorylates tyrosines located in the cytoplasmic region 

of the EPOR. These tyrosines act as an anchor point to many 

positive regulatory proteins, such as signal transducer and 

activator of transcription factor 5 (STAT5). After its attach-

ment to phosphorylated EPOR, STAT5 homodimerizes and 

translocates into the nucleus, where it activates the tran-

scription of various genes involved in the proliferation of 

erythroid precursors and the production of red blood cells. 

The phosphorylated tyrosines in the C-terminal domain of 

EPOR also serve as an anchor point to inhibitory proteins 

such as Src homology 2 domain-containing phosphatase 1 

region (SHP1). About 30 minutes after EPO binding, SHP1 

protein is recruited by EPOR and dephosphorylates it, as 

well as JAK2. This negative feedback loop results in the 

ubiquitination and degradation of EPOR.

Germline defects in some of the genes encoding pro-

teins in red blood cells, including ones in the EPO signal 

transduction pathway, have been identified in hereditary 

erythrocytosis.40 Mutations in genes encoding hemoglobin 

or bisphosphoglycerate mutase induce increased affinity for 

oxygen by hemoglobin reducing available oxygen to the tis-

sues. This apparent hypoxia then increases EPO  synthesis to 

drive red cell production (Table 1 and Figure 1). Mutations 

in the receptor of EPO (EPOR) (responsible for ECYT1 

[erythrocytosis type1]) induce the loss of the negative feed-

back control by SHP and the constitutive activation of the 

EPO signaling pathway. As discussed in more detail later, 

germline mutations in genes encoding regulators of the 

hypoxia pathway (VHL [ECYT2], EGLN1/PHD2 [ECYT3], 

and EPAS1/HIF2A [ECYT4]) lead to HIF-α stabilization and, 

ultimately, increased (or inappropriately normal) EPO levels, 

which would cause a secondary erythrocytosis.

Erythrocytoses described  
in patients with EGLN1 mutations
The first molecular defect to be associated with erythrocytosis 

was reported in 1993 by de la Chapelle et al.41,42 By study-

ing a large family with erythrocytosis (33 affected patients 

over five generations), they uncovered significant linkage of 

the phenotype with the EPOR. Subsequent analysis of the 

EPOR gene revealed a nonsense mutation that truncated the 

receptor and resulted in dysregulation of the EPO signaling 

pathway and hypersensitivity to EPO. The first EPOR muta-

tion was detected in cases with reduced EPO levels, and 

subsequently, many other EPOR truncation mutations have 

been described in similar erythrocytosis patients.40 However, 

none of the numerous erythrocytosis cases that exhibited 

elevated or inappropriately normal EPO levels were found to 

possess EPOR mutations, and their molecular basis remained 

uncharacterized.

It was not until a decade later that the next major discovery 

in the erythrocytosis field was made by Ang et al.43 Linkage 

studies revealed a region on chromosome 3 that cosegregated 

with the erythrocytosis phenotype in multiple families. This 

region contains the VHL gene, and sequencing uncovered a 

homozygous mutation of arginine to tryptophan at amino 

acid 200 (p.Arg200Trp, VHL-R200W). Defects in VHL were 

already known to cause a hereditary cancer syndrome, von 

Hippel–Lindau disease; very occasionally, erythrocytosis is 

concurrent with this syndrome because of EPO production by 

the tumor.44 This erythrocytosis phenotype could be explained 

by the disruption of VHL-mediated ubiquitination of the α 

subunit of the HIF transcription complex, resulting in upregu-

lation of HIF target genes, which include EPO. The VHL 

mutation was initially detected in individuals from the Chu-

vash region of Russia, where erythrocytosis was endemic,45 

but was later found to have a global distribution.46 This shone 

the spotlight on the oxygen-sensing pathway as a potential 

cause of the erythrocytosis in individuals with elevated or 

inappropriately normal EPO levels. Although many cases of 

VHL-associated erythrocytosis were characterized, once again 
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there was a cohort of individuals with erythrocytosis who had 

a similar phenotype but were negative for VHL mutations.

At this time, the first characterized isoform of the HIF-α 

subunit, HIF-1α, was assumed to be the main HIF-α isoform 

that controlled EPO synthesis. Knowing that hydroxylation 

plays a major role in HIF stabilization and subsequent activ-

ity, Percy et al47 reasoned that diminished hydroxylation of 

HIF-1α could be a potential mechanism to allow the α subunit 

to escape proteasomal degradation and cause elevated EPO 

synthesis. As a consequence, they envisaged that disruption 

of the ODD domain structure could influence the association 

of HIF-1α with VHL and, hence, reduce ubiquitination of 

the α subunit. Screening the ODD domain in erythrocytosis 

patients detected one change, the p.Pro582Ser (P582S) poly-

morphism, at a higher frequency than in non-erythrocytosis 

controls.47 However, although the affected amino acid Pro582 

is located in the ODD domain, functional analysis did not 

reveal an impairment of the binding of HIF-1α to VHL, and 

hence, this mutation could not account for erythrocytosis 

in individuals with the polymorphism. Nonetheless, the 

possibility remained that the HIF pathway was somehow 

implicated in VHL-negative erythrocytosis.

It had been established previously that the VHL-R200W 

mutation allows HIF-α to escape proteasomal regulation by 

inefficient ubiquitin modification. Before VHL can bind to 

HIF-α, there must be prolyl hydroxylation in the ODD, and 

if this was diminished, then the α subunit would be less effi-

ciently ubiquitinated by VHL. Therefore, one may hypothesize 

that disruption of prolyl hydroxylation by an impaired PHD 

enzyme could result in erythrocytosis. As a consequence, a 

screening program of the three PHDs (1–3) was initiated in 

individuals who were previously negative for VHL mutations. 

This approach revealed heterozygous defects in the EGLN1 

gene, but not in the EGLN2 or EGLN3 genes. The first reported 

PHD2 mutation, p.Pro317Arg (PHD2-P317R), was present 

in three members of the same family from two generations 

(Table 2).48 Residue Pro317 is located in a conserved region 

of PHD2 within the catalytic domain. It is close in primary 

structure to two of the three iron-chelating residues at 313 

and 315, and as revealed by crystallographic studies, in the 

three-dimensional PHD2 structure, Pro317 is in the vicinity 

of the active site (also, see the “Structural insights into clinical 

mutations” section). In contrast to the VHL-R200W mutation, 

which is usually associated with substantially elevated serum 

EPO and raised hemoglobin, the PHD2-P317R mutation 

results in an EPO level in the normal range, and subtly raised 

hemoglobin. Functional studies confirmed that this mutation 

diminishes the ability of PHD2 to hydroxylate the HIF-α 

subunit as compared to the normal wild type hydroxylase.

Subsequent studies of patients with erythrocytosis have 

identified a range of germline mutations in the EGLN1 gene, 

leading to PHD2-P200Q, N203K, K204E, D254H, G285R, 

K291I, P304L (Percy and McMullin, unpublished data, 

2004), W334R, two independent cases of R371H, H374R 

(associated with recurrent paraganglioma), and K423E muta-

tions (Table 2).40,49–53 More recently, a new mutation has been 

identified at the Arg371 residue, but with a different amino 

acid change (R371C) (Percy and McMullin, unpublished data, 

2013), which strengthen the proposed importance of this residue 

in the PHD2 function. In  addition, frame-shift (M202IfsX72, 

R227AfsX20 [Bento and Almeida, unpublished data, 2014], 

L279TfsX43, R281TfsX3, p.V338GfsX18) and nonsense 

mutations producing predicted C-terminally truncated proteins 

(Q221X [Lambert, unpublished data, 2013], Q239X [Bento 

and Almeida, unpublished data, 2014], Q377X, R398X) have 

been identified,40,52,54,55 and two polymorphisms described in 

the normal population have been identified in patients with 

erythrocytosis (PHD2-C127S and PHD2-Q157H).50,52,56 These 

studies identify a total of 37 patients with erythrocytosis who 

carry 24 different EGLN1 mutations. The sex ratio is unbal-

anced, with only six women versus 31 men. There is no hot 

spot of mutations (with the exception of 3 cases targeting the 

residue Arg371; otherwise, mutations are dispersed all through 

the protein). The mode of transmission is autosomal dominant 

but only six cases have been reported with a familial history, 

including one (R398X) with a mosaicism. In the majority of 

cases, the genotyping of the patient’s relatives was not possible 

(deceased parents, for example), which reduces the possibil-

ity of an accurate and enlarged phenotypes analysis. With the 

exception of erythrocytosis, which is modest in some cases, 

patients do not present other common clinical signs. Several 

cases have been described with hypertension (in one case with 

an H374R mutation related to catecholamine secretion by a 

paraganglioma), thrombotic events or benign renal cysts, or 

angioma. Two cases of erythrocytosis have been associated with 

hemochromatosis as a result of mutations in the high iron Fe 

(HFE) gene. The EPO level, when measured, is typically normal 

and rarely elevated (only in five cases). Two cases (patients with 

Q157H and N203K mutations) have been described with a poly-

cythemia vera associated with a JAK2 mutation (the only cases 

with erythroid progenitors hypersensitive to EPO). Defining the 

contribution of the germline EGLN1 mutations to the occur-

rence of the acquired JAK2 mutation and the myeloproliferative 

neoplasms requires more extensive studies.49,56

The absence of mutations in both the EGLN2 and EGLN3 

genes (which encode PHD1 and PHD3, respectively) in 

 individuals with erythrocytosis and the detection of an increas-

ing number of heterozygous EGLN1 mutations pointed to the 
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Table 2 Description of PHD2 mutations identified in patients with erythrocytosis

Patient  
identification

Nucleotide  
exchange

Protein effect Denomination Clinical manifestation other  
than polycythemia

Age,  
years

Age at  
diagnosis, 
years

Sex Ht, %, Nm =40–52;  
Nf =37–47

Hb, g/dL, Nm =13–18; 
Nf =12–15

RBC, million/mm3;  
Nm =4.2–5.7,  
Nf =4.2–5.2

EPO, mU/mL,  
N=5–25

EPO  
hypersensitivity

Ref

c.12C.A p.Asp4Glu# D4e No polycythemia but adaptation  
to high altitude

61–63
c.380G.C p.Cys127Ser# C127S 61–63

10 c.380G.C p.Cys127Ser# C127S 36 F 46 16.8 5 6 50
58 c.380G.C p.Cys127Ser# C127S High ferritin level 

Heterozygous HFe-H63D
36 M 54.1 18.3 5.76 11 50

69 c.380G.C p.Cys127Ser# C127S 23 M 53.4 17.7 5.88 8 50
Father c.471G.C p.Gln157His# Q157H Pv: JAK2-v617F, leucocytosis,  

thrombocytosis
65 M 55.2 17.1 29 + 56

Son JAK2 wild type 40 M 50 17 8
8416 c.471G.C p.Gln157His# Q157H Renal cysts 44 43 M 57 20.2 24 52
0424 c.599C.A p.Pro200Gln P200Q Renal transplantation 34 22 M 56 17.9 5.9 90 - 52
Case1: Father c.606delG p.Met202ilefs*72 M202ifsX72 Died at 76 M 54
Brother 1 Inflammatory arthromyalgia, visual 

symptoms, hypertension
54 M 56 19.2 20

Brother 2 M
Patient 1 c.609C.G p.Asn203Lys N203K Pv: JAK2 exon 12  

547insL+154F547dup8
80 61 M 68 23 2 + 49

c.610G.A p.Lys204Glu K204e Cardiac disease 49 46 M 64 22.1 20.1 40
c.661C.T p.Gln221* Q221X Klinefelter syndrome, hypertension, 

type ii diabetes, extensive skin burns
52 51 M 56.3 20.2 6.3 15 Lambert‡

Pt71 c.678dupG p.Arg227Alafs*20 R227AfsX20 Headaches 34 24 M 55 18.3 6.3 8.13 Bento, Almeida‡

Brother Headaches 48 M 50 17.2 5.5
Sister Headaches 43 F 52 17.4 5.26
Pt72 c.715C.T p.Gln239* Q239X Hypertension 58 52 M 54 20 11 Bento, Almeida‡

2412 c.760G.C p.Asp254His D254H 48 25 M 57.2 19.2 6.3 36 - 52
ie-45 c.835del14 p.Leu279Thrfs*43 L279TfsX43 73 M 18.8 1.3 55
Case 2 c.840dupA p.Arg281Thrfs*4 R281TfsX4 Tinnitus 22 M 50.9 17.8 54

c.853G.C p.Gly285Arg G285R 68 65 M 49 16.6 Norm 40
Patient 2 c.872A.T p.Lys291ile K291i 38 29 M 52 17.6 5 49
Brother 1 c.911C.T p.Pro304Leu P304L Leucoclastis vasculitis Died at 70 48 M 63 20.8 5.8 268 Percy, McMullin‡

Brother 2 48 M 55 18.3 4.3 60
Father c.950C.G p.Pro317Arg P317R esophageal carcinoma (smoker) Died at 61 45 M 53 18 6.4 48
Daughter Superficial thrombophlebitis 26 F 18 6.2
Son Paresthesia 30 M 52/54 17.5/19.1 6.1 6.4
26 c.1000T.C p.Trp334Arg w334R 31 F 51 17.4 5.15 53 50

c.1010dup p.val338Glyfs*18 v338GfsX18 TiA 24 21 M 47 17.1 5.5 9.9 40
c.1111C.T p.Arg371Cys R371C 47 M 53 16.8 6.6 9.5 Percy, McMullin‡

c.1112G.A p.Arg371His R371H Sagittal sinus thrombosis 44 31 M 56 18.8 5.8 53
2403 c.1112G.A p.Arg371His R371H 25 17 M 56.7 19.1 6.4 Norm 52
2295 c.1121A.G p.His374Arg H374R Hypertension, 

Paraganglioma 
Homozygous HFe-C282Y

52 30 M 61.6 20.2 6.2 18 51

Case 3 c.1129C.T p.Gln377* Q377X 35 F 54.7 17.8 10.7 - 54
1406 c.1192C.T p.Arg398* R398X – 41 26 M 53.8 19.3 5.9 6.5 - 52
1406’s mother p.Arg398* 

mosaic
Uterine leiomyoma (51 yrs) 
Suspected renal and liver angioma

67 64 F 49.5 16.1 5.2

Patient 3 c.1267A.G p.Lys423Glu K423e 80 60 M 51.8 16.4 23 49

Notes: *STOP codon; #described as polymorphism; -erythroid progenitors not hypersensitive to ePO; empty cases, not determined; +erythroid progenitors hypersensitive 
to ePO; ‡unpublished data.
Abbreviations: Ht, hematocrit; Hb, hemoglobin; Nf, normal values for females; Nm, normal values for males; RBC, red blood cells; ePO, erythropoietin; Ref, references; Pv, 
polycythemia vera; TiA, transient ischemic attack; HFE, gene encoding high iron Fe, responsible for hemochromatosis when mutated; F, female; M, male; JAK2, Janus kinase 
2; PHD2, prolyl hydroxylase domain 2; Norm, value in normal range.

potential involvement of PHD2 in the regulation of the HIF-α 

subunit and the development of  erythrocytosis. Furthermore, 

this indicates there is little redundancy in the oxygen-sensing 

pathway regulating EPO, in that neither PHD1 nor PHD3 

alone was able to, at least completely, compensate for the 

loss of PHD2 function.

PHD2 and other adaptations/ 
pathologies
The HIF pathway plays a crucial role in regulation of 

the normal oxygen homeostasis, and it can be activated 

in pathophysiological processes such as erythrocytosis, 

as described earlier. Moreover, genomewide association 
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Table 2 Description of PHD2 mutations identified in patients with erythrocytosis

Patient  
identification

Nucleotide  
exchange

Protein effect Denomination Clinical manifestation other  
than polycythemia

Age,  
years

Age at  
diagnosis, 
years

Sex Ht, %, Nm =40–52;  
Nf =37–47

Hb, g/dL, Nm =13–18; 
Nf =12–15

RBC, million/mm3;  
Nm =4.2–5.7,  
Nf =4.2–5.2

EPO, mU/mL,  
N=5–25

EPO  
hypersensitivity

Ref

c.12C.A p.Asp4Glu# D4e No polycythemia but adaptation  
to high altitude

61–63
c.380G.C p.Cys127Ser# C127S 61–63

10 c.380G.C p.Cys127Ser# C127S 36 F 46 16.8 5 6 50
58 c.380G.C p.Cys127Ser# C127S High ferritin level 

Heterozygous HFe-H63D
36 M 54.1 18.3 5.76 11 50

69 c.380G.C p.Cys127Ser# C127S 23 M 53.4 17.7 5.88 8 50
Father c.471G.C p.Gln157His# Q157H Pv: JAK2-v617F, leucocytosis,  

thrombocytosis
65 M 55.2 17.1 29 + 56

Son JAK2 wild type 40 M 50 17 8
8416 c.471G.C p.Gln157His# Q157H Renal cysts 44 43 M 57 20.2 24 52
0424 c.599C.A p.Pro200Gln P200Q Renal transplantation 34 22 M 56 17.9 5.9 90 - 52
Case1: Father c.606delG p.Met202ilefs*72 M202ifsX72 Died at 76 M 54
Brother 1 Inflammatory arthromyalgia, visual 

symptoms, hypertension
54 M 56 19.2 20

Brother 2 M
Patient 1 c.609C.G p.Asn203Lys N203K Pv: JAK2 exon 12  

547insL+154F547dup8
80 61 M 68 23 2 + 49

c.610G.A p.Lys204Glu K204e Cardiac disease 49 46 M 64 22.1 20.1 40
c.661C.T p.Gln221* Q221X Klinefelter syndrome, hypertension, 

type ii diabetes, extensive skin burns
52 51 M 56.3 20.2 6.3 15 Lambert‡

Pt71 c.678dupG p.Arg227Alafs*20 R227AfsX20 Headaches 34 24 M 55 18.3 6.3 8.13 Bento, Almeida‡

Brother Headaches 48 M 50 17.2 5.5
Sister Headaches 43 F 52 17.4 5.26
Pt72 c.715C.T p.Gln239* Q239X Hypertension 58 52 M 54 20 11 Bento, Almeida‡

2412 c.760G.C p.Asp254His D254H 48 25 M 57.2 19.2 6.3 36 - 52
ie-45 c.835del14 p.Leu279Thrfs*43 L279TfsX43 73 M 18.8 1.3 55
Case 2 c.840dupA p.Arg281Thrfs*4 R281TfsX4 Tinnitus 22 M 50.9 17.8 54

c.853G.C p.Gly285Arg G285R 68 65 M 49 16.6 Norm 40
Patient 2 c.872A.T p.Lys291ile K291i 38 29 M 52 17.6 5 49
Brother 1 c.911C.T p.Pro304Leu P304L Leucoclastis vasculitis Died at 70 48 M 63 20.8 5.8 268 Percy, McMullin‡

Brother 2 48 M 55 18.3 4.3 60
Father c.950C.G p.Pro317Arg P317R esophageal carcinoma (smoker) Died at 61 45 M 53 18 6.4 48
Daughter Superficial thrombophlebitis 26 F 18 6.2
Son Paresthesia 30 M 52/54 17.5/19.1 6.1 6.4
26 c.1000T.C p.Trp334Arg w334R 31 F 51 17.4 5.15 53 50

c.1010dup p.val338Glyfs*18 v338GfsX18 TiA 24 21 M 47 17.1 5.5 9.9 40
c.1111C.T p.Arg371Cys R371C 47 M 53 16.8 6.6 9.5 Percy, McMullin‡

c.1112G.A p.Arg371His R371H Sagittal sinus thrombosis 44 31 M 56 18.8 5.8 53
2403 c.1112G.A p.Arg371His R371H 25 17 M 56.7 19.1 6.4 Norm 52
2295 c.1121A.G p.His374Arg H374R Hypertension, 

Paraganglioma 
Homozygous HFe-C282Y

52 30 M 61.6 20.2 6.2 18 51

Case 3 c.1129C.T p.Gln377* Q377X 35 F 54.7 17.8 10.7 - 54
1406 c.1192C.T p.Arg398* R398X – 41 26 M 53.8 19.3 5.9 6.5 - 52
1406’s mother p.Arg398* 

mosaic
Uterine leiomyoma (51 yrs) 
Suspected renal and liver angioma

67 64 F 49.5 16.1 5.2

Patient 3 c.1267A.G p.Lys423Glu K423e 80 60 M 51.8 16.4 23 49

Notes: *STOP codon; #described as polymorphism; -erythroid progenitors not hypersensitive to ePO; empty cases, not determined; +erythroid progenitors hypersensitive 
to ePO; ‡unpublished data.
Abbreviations: Ht, hematocrit; Hb, hemoglobin; Nf, normal values for females; Nm, normal values for males; RBC, red blood cells; ePO, erythropoietin; Ref, references; Pv, 
polycythemia vera; TiA, transient ischemic attack; HFE, gene encoding high iron Fe, responsible for hemochromatosis when mutated; F, female; M, male; JAK2, Janus kinase 
2; PHD2, prolyl hydroxylase domain 2; Norm, value in normal range.

studies of populations living at high altitude identified 

single-nucleotide polymorphisms in regions that contain 

HIF pathway genes.57,58 Indeed, adaptation to high altitude 

includes protection from erythrocytosis. Noteworthy, multiple 

single-nucleotide polymorphisms located in the noncoding 

regulatory regions of EGLN1 have been associated with the 

decreased hemoglobin that is observed in the Tibetan popula-

tion adapted to living at high altitude.59 Different studies on 

altitude-specific habitants (highland Tibetans and Andeans, 

moderate-altitude Eurasians) identified EGLN1 as a shared 

locus with genetic signatures in all of these populations, 

emphasizing a major role of EGLN1 in  physiological hypoxia 
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adaptation.58,60 Xiang et al resequenced the complete genomic 

region of EGLN1 in a series of Tibetans and discovered one 

nonsynonymous mutation in the coding sequence (PHD2-

D4E) that is highly prevalent in Tibetans but extremely rare 

in lowlander Han Chinese (Table 2).61 Another polymorphism 

has been identified (PHD2-C127S), but the allelic divergence 

between Tibetans and non-Tibetans at this site was reported 

to be much smaller. Functional study of the PHD2-D4E-

C127S mutant showed a slightly increased activity compared 

with the wild-type protein.62,63 A recent publication reports 

that the Tibetan PHD2 haplotype (D4E/C127S) strikingly 

diminishes the interaction of PHD2 with p23, a HSP90 

cochaperone, resulting in impaired PHD2 downregulation 

of the HIF pathway.64 These results suggest that EGLN1 has 

been under Darwinian positive selection and may contribute 

to high-altitude hypoxic adaptation in Tibetans.65

It has long been recognized that HIF plays a major role 

in tumor development, angiogenesis, and  dissemination.66 

Indeed, many HIF target genes are involved in cell 

 proliferation and survival, such as angiogenesis (vascular 

endothelial growth factor and platelet derivative growth 

factor), cell proliferation (transforming growth factor alpha), 

regulation of glucose uptake and metabolism (glucose 

 transporter), autophagy, and cell cycle regulation. Many 

tumors overexpress HIF, which is associated with aggressive-

ness and adverse prognosis. In hereditary cancer syndromes, 

the HIF pathway is also targeted. Germline mutations in 

the VHL tumor suppressor gene, which plays a major role 

in the direct downregulation of HIF, predispose patients to 

von Hippel–Lindau disease. This rare condition predisposes 

to the development of very vascularized tumors from the 

central nervous system and retina (hemangioblastomas), 

pheochromocytomas, pancreatic endocrine tumors and 

cysts, and clear cell renal cell carcinoma.67 Of note, HIF-2α 

is the isoform that plays a major role in clear cell renal cell 

carcinoma development.68–71

Other, more indirect genetic alterations induce stabili-

zation of the HIF pathway. For example, mutations in the 

Krebs cycle enzymes fumarate hydratase (FH) and suc-

cinate dehydrogenase (SDH) apparently activate HIF.72–76 

In these cases, HIF activation could be a consequence of 

inhibition of the PHD by accumulated fumarate/or suc-

cinate, which are proposed as 2-oxoglutarate analogs and 

competitors.77,78 Mutations to isocitrate dehydrogenase lead 

to substantially increased levels of 2-hydroxyglutarate, 

which is also  proposed to inhibit the PHDs,79 although 

biochemical  studies have revealed it is a weak PHD inhibi-

tor80 and, in some studies, even a PHD activator.81 Germline 

mutations in FH predispose to the development of papillary 

type II renal cancers and leiomyomas; germline mutations 

in SDH  predispose to hereditary pheochromocytoma and 

 paraganglioma (extra-adrenal pheochromocytoma) syndrome 

and rare renal cancers. Therefore, even though the PHD/

VHL/HIF system is expressed ubiquitously in mammalian 

cells, associated cancers are highly tissue-specific, being 

largely confined to renal cancer and pheochromocytoma/

paraganglioma. Indeed, paragangliomas have already been 

described in patients with an erythrocytosis carrying a 

particular germline EGLN1 mutation (PHD2-H374R) and 

a EPAS1 mutation (HIF-2α-F374Y).51,82 Examination of 

the paraganglioma from the patient with the PHD2-H374R 

mutation indicated a loss of the remaining EGLN1 wild-type 

allele in the tumor.51 EGLN1 may therefore be a potential 

tumor suppressor gene, as was previously suggested.83,84 

The exact mechanism of the paraganglioma development in 

this patient is not elucidated, but a quantitative effect may be 

involved, as has been suggested in patients with the Chuvash 

VHL-R200W mutation who develop erythrocytosis but no 

tumor.45,85 Indeed, functional study of the PHD2-H374R 

mutation indicated a severe loss of function of this mutant 

with respect to HIF regulation compared with other mutations 

associated with erythrocytosis.52

To date, none of the EGLN1 or EPAS1 germline muta-

tions that have been described predispose patients to renal 

cancer.86 A high HIF level may be necessary to cancer 

development.87–89 Mutations in EGLN1 or EPAS1 may not 

be sufficiently deleterious to induce high levels of HIF. 

Indeed, mutations in EGLN1 may be compensated for by 

other PHD isoforms (PHD1 or PHD3) not sufficiently active 

to override erythrocytosis but sufficient to avoid tumor 

transformation. Regarding EPAS1 mutations, none of the 

germline mutations identified in patients with erythrocytosis 

target the sites of prolyl hydroxylation (Pro405 and Pro531), 

although Pro531 mutations have been reported in sporadic 

pheochromocytomas.90,91 Conceivably, high-level activation 

of HIF-2α may be necessary for renal tumorigenesis but 

perhaps may not be compatible with life when constitutive 

and global.

Functional studies
Structural insights into clinical mutations
PHD2 is a 46-kDa enzyme that contains of an N-terminal 

MYND zinc finger and a C-terminal catalytic domain, the 

latter with a double-stranded β-helix core-fold, which is 

archetypical of non-heme Fe(II)/2-OG dioxygenases. The 

active site iron is located within the double-stranded β-helix 

core and is octahedrally coordinated, including by a HisXAsp/

Glu...His facial triad. Binding of the His facial triad residues 
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from the double-stranded β-helix92,93 leave two coordination 

sites for the 2-OG oxalyl group and one for H
2
O/O

2
 bind-

ing. During the catalytic cycle, the enzyme forms a reactive 

oxidizing species (Fe[IV]=O) that oxidizes its substrate(s) to 

give the hydroxylated product(s).94 The active site is lined by 

hydrophobic residues that likely prevent any potential oxida-

tive damage by the reactive oxidizing species via Fenton-type 

chemistry.92,93 Biochemical studies have demonstrated that 

because of its high affinity, the enzyme forms a long-lived 

complex with Fe(II) and 2-OG.95 Further studies have 

revealed that PHD2 has a high K
m
 for oxygen slightly above 

the atmospheric concentration, a property that marks a direct 

link between molecular dioxygen and PHD catalysis and 

renders PHD2 as an important oxygen sensor in cells.96

Depending on their location on the PHD2 domains, muta-

tions do not necessarily have, of course, the same impact 

on PHD2 catalysis.97 The possible functional consequences 

of identified mutations to PHD2 are discussed here in the 

light of structural analyses, principally by crystallography, 

on PHD2.92,93 It is perhaps important to state that with the 

HIF system, as with other transcriptional regulatory systems, 

detailed chemical understanding is only at an early stage of 

development. Thus, other than situations in which there is 

a complete loss of active protein, in only a few cases can 

(predicted) protein modifications be directly linked with 

functional outcomes, especially in cells. Nonetheless, for 

reasons including the fact that HIF-α is highly inducible and 

HIF activity is related to clear phenotypes, the HIF system 

would appear to be an excellent model system for developing 

a molecular understanding of how pathophysiological conse-

quences arise from mutations. In the following paragraph, we 

outline early-stage studies showing how mutations to PHD2 

and HIF-2α may have consequences for PHD-catalyzed HIF 

hydroxylation.

Biochemical studies reveal a significant loss of PHD2 

activity in isolated protein form when it is truncated in its 

C-terminal region (residues 395–399).98 The shortest isolated 

PHD2 that retained near full activity when compared with 

wild-type PHD2 was truncated at residue 402, which is 

located immediately after the C-terminal α-helix. Significant 

sequence variation occurs to the C-terminal side of residue 

402 in the three human different PHD isoforms.98 Together 

with insights from a PHD2.CODD
556–574

 complex crystal 

structure,92 these biochemical data demonstrate an important 

role of C-terminal helix α4 in substrate binding. Structurally 

informed sequence comparisons indicate that the frameshift 

and nonsense mutations will produce PHD2 proteins lacking 

a competent catalytic domain (if expressed) and, thereby, 

prevent PHD2-catalyzed HIF degradation.

In contrast, the likely molecular consequences of the 

reported mutations leading to residue substitutions are 

less clear. HIF binding involves multiple residues from 

the PHD catalytic domain in addition to the C-terminal 

domain (Figure S1). On the basis of the available structural 

and biochemical information on the interaction of HIF and 

PHD2, five identified substituted residues, Asp254, Lys291, 

Pro317, Arg371, and His374, are located near the HIF/2-OG 

or  ferrous iron binding sites of PHD2 (Figure 2).

Mutations to Asp254 lead to (near) complete loss of 

hydroxylation activity, likely because this residue is crucial 

for maintaining a substrate recognition loop in the active 

enzyme state (Table 3).52,92 PHD2-P317R (full-length) 

 displays a k
cat

/K
m
 value toward a HIF-2α (467–572) peptide 

that is 18% of that of wild-type PHD2.97 In the PHD2 crystal 

structures, Pro317 is close to the iron coordinating HXD 

motif (His313 and Asp315 are two of the three iron ligating 

residues), whereas Arg371 is close to the other metal coor-

dinating residue, His374 (β9).93 In a PHD2.CODD(HIF-1α) 

complex crystal structure, Pro317 forms part of a hydropho-

bic region that interacts with the 3
10

-helix of the hydroxylated 

LXXLAP motif (Figure 2). Lys291 and Arg371 are relatively 

remote from the substrate-binding region; Arg371 is involved 

in making an internal salt-bridge interaction with Asp369 

(Asp369 Oδ1-Arg371 Nε, 3.2 Å; Asp369 Oδ2-Arg371 NH2, 

3.0 Å) and thus likely has a structural role. The presence of 

two different mutations at Arg371 highlights the importance 

of this residue for the function of PHD2, even though it is not 

at the iron binding site. Because His374 is one of the three 

iron binding residues (‘facial triad’), arginine substitution 

at this position will likely substantially hinder iron binding 

and thereby ablate, or substantially reduce, activity. In vitro 

functional studies described a total loss of function of the 

PHD2-H374R mutant.51

Ten heterozygous mutations have been identified in exon 

12 of the EPAS1 gene, leading to HIF-2α variants.82,99–104 

These variants have been linked with idiopathic erythrocy-

tosis, and in all cases, patients were diagnosed with elevated 

EPO levels. Interestingly, the majority of these missense 

mutations (I533V, P534L, M535T, M535V, M535I, G537W, 

G537R, D539E, and F540L) cluster close/C-terminal to one 

of the two hydroxylated proline residues (Pro531) in HIF-2α. 

The combined biochemical and cellular assays suggest that 

most of these mutations may reduce both hydroxylation of 

HIF-2α by the PHDs (full-length) and subsequent recogni-

tion of (likely hydroxylated) HIF-2α by pVHL, except for 

mutations at Met535, which may only impair interactions 

with PHD2.4,105 Although detailed insights into the  molecular 

mechanism behind the predicted reduced binding of the 
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Figure 2 erythrocytosis-associated mutation sites in human prolyl hydroxylase domain 2 (PHD2) and HiF-2α.
Notes: Domain architectures of PHD2 and HiF-α are shown in the color-coded bars. Ribbon representation of view from a crystal structure of PHD2 (residues 181–426, 
blue) in complex with HiF-1α. CODD (556–574, salmon), Mn (an Fe surrogate, violet), and N-oxalylglycine/NOG (a 2-OG mimic, not shown for clarity) (Protein Data 
Bank iD: 3HQR).92 Three important mutation sites in PHD2 (Pro317, Arg371, and His374) are highlighted in yellow sticks. Adapted from Lee FS, Percy MJ. The HiF pathway 
and erythrocytosis. Annu Rev Pathol. 2011:165–192.4

Abbreviations: MYND, myeloid, Nervy and DeAF1; PAS, Per Arnt Sim; ODD, oxygen-dependent degradation domain; CAD, carboxy-terminal activation domain; 
HIF, hypoxia-inducible factor; ID, identification.

Table 3 Summary of functional studies data

Denomination Exon Role Amino acid  
conservation  
between  
species, %

Conservation  
in PHD1

Conservation  
in PHD3

Effect of the  
mutation observed  
in in vitro functional 
studies

Reference of  
functional  
study

Q157H 1 Not known 38.9 No No weak 52
P200Q 1 Nucleolar/cytoplasm  

shuttling or possible  
redox function

77.8 Yes Yes weak 52

N203K 1 Nucleolar/cytoplasm  
shuttling or possible  
redox function

81.5 No No ND

K204e 1 Nucleolar/cytoplasm  
shuttling or possible  
redox function

74.1 No No ND

D254H 1 Substrate recognition/ 
structural integrity

100 Yes Yes Severe 52

G285R 1 Not known 88.9 Yes No ND
K291i 1 Not known 59.3 No No ND
P304L 2 Not known 100 Yes Yes weak Lee, unpublished 

data
P317R 2 Substrate binding 100 Yes Yes Severe 48, 97
w334R 2 Not known 100 Yes Yes ND
R371C 3 Structural integrity 100 Yes Yes ND
R371H 3 Structural integrity 100 Yes Yes weak 52, 53, 97
H374R 3 iron binding 100 Yes Yes Severe 51, 52
K423e 5 Not known 66.7 No No ND

Abbreviations: PHD, prolyl hydroxylase domain; ND, not determined.
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HIF-2α variants with PHD2 are unclear, close inspection of 

a PHD2.CODD (HIF-1α) crystal structure suggests these 

mutated residues bind in a region with some conformational 

flexibility, suggesting they may reduce, but not completely 

block, HIF-2α substrate binding to PHD2.

in silico studies
Conservation of sequences and residues can provide infor-

mation on functional significance. To assess the conservation 

of all PHD2 mutated residues described in Table 2, a multiple 

sequence alignment was generated covering a broad range 

of taxa from different phyla. Vertebrate homologs across 

100 species including primates, mammals, birds, and fish 

were extracted, using the MULTIZ whole-genome multiple 

alignment algorithm106 implemented in the University of 

California, Santa Cruz, Genome Browser.107 Invertebrate 

homologs were obtained using the FlyBase implemented 

InParanoid algorithm.108 Individual BLASTP (protein-

protein Basic Local Alignment Search Tool) searches were 

performed to find homologous PHD2 sequences in represen-

tative species of various protostome and deuterostome taxa, 

including Urochordata, Cephalochordata, Echinodermata, 

Hemichordata, Gastropoda, Annelida, Crustacea, Hexapoda, 

Nematoda, and Placozoa. Trichoplax adhaerens, part of the 

latter phylum, has been described as the most basal multi-

cellular metazoan organism containing a functional HIF 

system.109 Human PHD1 and PHD3 sequences were added 

to the PHD2 ortholog sequence set. Species with large gaps 

were manually omitted. Subsequently, all sequences were 

realigned using the MAFFT version 7 multiple alignment 

tool with an iterative refinement option incorporating local 

pairwise alignment information (L-INS-i) and default 

parameters.110 Gaps introduced in mammalian PHD2 

homologs by alignment to distantly related invertebrate 

sequences were deleted.

The multiple sequence alignment clearly reflects more 

conservation within the C-terminal catalytic domain 

 (Figure 3). Interestingly, the mutation in the fourth codon of 

PHD2 (D4E), recently identified independently by various 

groups, affects a strongly conserved amino acid in mammals, 

but not in lower vertebrates or in human PHD1 or PHD3. The 

PHD2-C127S mutation, in contrast, occurs in a residue that is 

not conserved at all in any primate species. The Gln157 amino 

acid is only moderately conserved between mammals, and 

not within the PHD protein family (PHD1 and PHD3). The 

residues affected by the PHD2-P200Q and the PHD2-M202I 

mutations are conserved in all vertebrates, but only Pro200 is 

conserved in both PHD1 and PHD3. Both the PHD2-P200Q 

and M202I mutations affect residues that immediately flank 

C201, which has been shown to chelate zinc and cadmium 

ions, providing evidence for the existence of a second metal 

binding site on PHD2.111,112 In contrast, the PHD2-N203K, 

K204E, G285R, and K291I mutations affect residues not 

strictly conserved in all vertebrates. The active site residue 

D254 (the target of the PHD2-D245H mutation) is strictly 

conserved in all eukaryotes. Other strictly conserved residues 

in metazoans and both PHD1 and PHD3 have been targeted 

by mutations PHD2-P304L, P317R, W334R, R371C, R371H, 

and H374R, with the latter mutation in one of the three 

invariant iron coordination sites and being associated with 

paraganglioma.51 Although not part of the catalytic domain, 

PHD2-K423E occurs in a residue that is highly conserved 

down to the coelacanth Latimeria chalumnae.

in vitro functional studies
Different assay methods have been described to test the prolyl 

hydroxylase activity of PHD2.113 PHD2 is a member of the 

Fe(II) and 2-OG-dependent oxygenase superfamily in which 

almost all members appear to follow the same overall reaction 

mechanism: in the presence of cosubstrates (2-OG, dioxygen) 

and cofactors (Fe(II) and, sometimes, ascorbic acid), the sub-

strate (HIF-α) is hydroxylated and the hydroxylation reaction 

is accompanied by oxidative decarboxylation of 2-OG to give 

CO
2
 and succinate. Indirect measurement of PHD2 activity 

can therefore be inferred, for example, by quantification of 

the amount of dioxygen consumed or by the release of 14CO
2
 

from 142-OG,114 although direct measurement of hydroxyla-

tion is more reliable. These assays are generic to the dioxy-

genase family. A direct quantification of PHD2 activity can 

be measured by the amount of hydroxylated HIF-α produced 

after reaction with PHD2. A peptide containing the proline of 

C-terminal ODD domain of HIF-1α (P564) is normally used 

(amino acids 556–574 or 549–575) and is amenable to mass 

spectrometric analyses. It is also noticeable that hydroxylation 

induces a mobility shift of a GAL4 fusion protein containing a 

HIF-1α peptide (amino acids, 531–652) after electrophoresis 

on an sodium dodecyl sulfate- polyacrylamide gel electropho-

resis.115 Another direct quantification of HIF hydroxylation can 

also be performed by using antibodies specific to the hydroxy-

lated proline.52,116 Indirect measurement of HIF hydroxylation 

is frequently performed by using VHL capture assays.48,53 In 

vitro assays to measure PHD2 binding to HIF have also been 

performed.48,53 These reactions used recombinant proteins that 

are either produced in bacteria or are in vitro translated (with 

wheat germ extract to avoid contamination with endogenous 

hydroxylases). In cellulo functional study of PHD2 mutants 
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has used reporter gene assays.48,51,52 The inhibitory effect of 

PHD2 on HIF activity (endogenous52 or transfected48) has been 

performed with luciferase reporter genes under the regulation 

of HRE. PHD2 mutants have also been studied using a one-

hybrid reporter assay on the basis of the capacity of PHD2 to 

induce HIF-α protein instability.52,117

Several missense PHD2 mutations have been tested 

(results are summarized in Table 3). In the case of the P317R 

mutation, functional studies supported a loss of function 

of the mutants instead of a dominant negative inhibitory 

effect.48 The mutations substantially decrease, although do 

not abolish completely, PHD2 activity, with the exception 

Figure 3 Multiple sequence alignment of PHD2 homologs.
Notes: Conservation of prolyl hydroxylase domain enzyme 2 sequences throughout various taxonomic classes. Gray-scale shading indicates conservation of isofunctional 
amino acid residues. erythrocytosis-associated prolyl hydroxylase domain enzyme 2 mutations are labeled alternating in red and green.
Abbreviation: PHD2, prolyl hydroxylase domain 2.
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of two mutations with a severe loss of function (PHD2-

H374R and PHD2-D254H).52 Some of the mutants even 

present with a very subtle loss of activity, close to the wild-

type protein (PHD2-P200Q, PHD2-R371H in one study52 

and P304L [Lee, unpublished data, 2012]). More-sensitive 

assays should be developed to determine subtle effects of 

these PHD2 mutations (and polymorphisms such as PHD2-

Q157H) that are difficult to study with current in vitro and in 

cellulo assays based on overexpressed proteins. The studies, 

in some instances, showed the same effect of the mutants on 

different HIF-α isoforms (HIF-1α and HIF-2α) and under 

various oxygen concentrations.

The hydroxylase activity of PHD2 may not necessarily be 

the only functionally relevant target of the mutations. PHD2 

binds a number of proteins, and the effect of the mutations 

on this binding could conceivably be affected.118–120 Notably, 

PHD2 binds FKPB38, which plays a major role in PHD2 

stability.121 PHD2 also regulates angiogenesis and vasculo-

genesis via the regulation of nuclear factor kappa-B122 in a 

likely HIF-independent pathway that may also be affected by 

the mutations. It has also been shown that PHD2 undergoes 

nuclear-cytoplasmic shuttling and that the deletion of PHD2 

sequences required for nuclear entry is associated with a 

greatly impaired capacity to downregulate HIF.123,124 PHD2 

residues 196–205 have been identified as crucial for nuclear 

import. Some PHD2 mutants (including the PHD2-P200Q 

mutant) have been tested for the capability to shuttle between 

the cytoplasm and the nucleus, but so far, no effect of the 

mutations has been observed (Ladroue et al;52 Gardie and 

Ladroue, unpublished data, 2010).

Mouse models of PHD2 inactivation
Two implications that followed the initial identification of 

the family with a heterozygous PHD2-P317R mutation and 

erythrocytosis48 are that in the EPO pathway, the PHDs are 

not redundant, such that loss of PHD2 function could not be 

compensated for by PHD1 or PHD3, and the EPO pathway 

is sensitive to modest changes in PHD2 activity, such that 

even a heterozygous PHD2 mutation was sufficient to induce 

erythrocytosis. Both implications have been borne out by 

subsequent mouse models examining Phd2 and erythrocyto-

sis, which have provided additional insights into the role of 

PHD2 in the control of red cell mass. In such mouse models, 

one has the capacity to genetically introduce knockout of the 

gene of interest (in this case, Phd2) in a manner that can be 

global, tissue-specific, and/or inducible. Moreover, one also 

has the capacity to introduce single-amino acid substitutions 

to precisely model human disease.

Conventional knockout of Phd2 in the mouse leads 

to embryonic lethality.125 To circumvent this embryonic 

lethality, global tamoxifen-inducible knockouts of Phd2 

in the mouse have been generated and have been found to 

result in massive erythrocytosis with markedly elevated 

Epo levels.126,127 This erythrocytosis is observed not only in 

young mice but also in aging mice.128 In contrast, erythro-

cytosis is not observed with individual knockouts of either 

Phd1 or Phd3.126 In the globally inducible Phd2 knockout, 

the kidney is the primary source of the elevated Epo,126,127 

and other studies have shown that cortical interstitial cells 

are the source of Epo within this organ.34 Consistent with 

the latter, conditional knockout of Phd2 that targets these 

renal interstitial cells, using either a CD68-cre or a Pax3-cre 

transgene, also results in marked erythrocytosis.129,130 Taken 

together, these studies identify a critical nonredundant role 

for Phd2 in the control of Epo in the Epo-producing renal 

cortical interstitial cells. This contrasts with the liver, another 

potential source of Epo, in which there is redundancy among 

the three Phd paralogs. Liver-specific knockout of Phd2 is 

insufficient to induce erythrocytosis, but it is observed with 

concurrent knockout in liver of Phd1 and Phd3.131,132

With regard to the issue of the sensitivity of the EPO 

pathway to PHD2 gene dosage, a knockin mouse model 

that bears a heterozygous amino acid substitution (Phd2-

P294R) homologous to the first reported human EGLN1 

mutation (PHD2-P317R) displays erythrocytosis.130 This 

result not only formally demonstrates that this is the cause 

of the human phenotype but also shows that a heterozy-

gous mutation is sufficient to do so. The degree of eryth-

rocytosis observed in this mouse line, which is modest, is 

comparable to that seen with Phd2+/- mice, consistent with 

haplo-insufficiency being the mechanism for this particular 

mutation (as opposed to a dominant negative mechanism). 

The erythrocytosis is reversed by heterozygous knockout of 

Hif2a, but not Hif1a,130 consistent with a substantial body of 

work that identifies HIF-2α as the key HIF-α isoform regulat-

ing EPO in adult mammals.17,20,129,133 Indeed, as mentioned 

previously, mutations in the EPAS1 gene are another cause 

of erythrocytosis.102

The Epo levels in the Phd2P294R/+ mice, as in the Phd2+/- 

mice, are normal, recapitulating the findings in the human 

patients that bear the homologous mutation.130 The levels 

should be regarded as inappropriately normal, as the elevated 

hematocrit would ordinarily depress Epo production from the 

kidney. At the same time, it should be recognized that Phd2 

control over red cell mass extends beyond the  Hif-2α:Epo 

axis. For example, deletion of Phd2 in hematopoietic 
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 precursors using a Vav-cre transgene induces erythrocytosis, 

and bone marrow cells derived from these as well as those 

from an induced globally deleted Phd2 mouse line display 

hypersensitivity to Epo, as assessed by erythroid burst 

forming unit assays.128,130 This is reminiscent of Chuvash 

polycythemia due to the homozygous hypomorphic muta-

tion in the Vhl gene. Both patients and mice that bear this 

mutation (VHL-R200W in humans, Vhl-R166W in mice) 

display erythroid precursors with hypersensitivity to Epo.45,134 

Moreover, loss of Phd2 in hematopoietic stem cells induced 

by either a CD68-driven or globally inducible cre transgene 

results in increased numbers of Lineage- Sca1+ c-Kit+ cells, 

which are early HSCs, and subsets of these cells, including 

multipotent progenitors MPP1, MPP2, and MPP3.126,135

Discussion
Observations of patients carrying germline mutations in the 

EGLN1 gene showed a relatively homogeneous phenotype 

that can be presumed to be erythrocytosis. However, at the 

present time, the total number of patients is still too small to 

perform genotype/phenotype correlation studies to explain 

exceptional clinical manifestations, such as the tumor occur-

rence described in only one case. The international database 

on erythrocytosis, the European Congenital Erythrocytosis 

Consortium (http://www.erythrocytosis.org) should help 

solve this limitation.

Mapping erythrocytosis-associated mutations onto the 

structure of the PHD2 protein has indicated they are typi-

cally present in conserved regions. Several frameshift and 

nonsense mutations are predicted to result in loss of the 

C-terminal portion of PHD2 and, in some cases, the full 

catalytic domain, thereby resulting in a nonactive enzyme. 

In addition, only a minority of the erythrocytosis-associated 

mutations are located in the active site of PHD2, so as to 

directly affect either the 2-OG or iron-binding amino acids. 

Functional studies have revealed that many mutations have 

a mild effect on PHD2 activity. Whether this reflects limita-

tions of current PHD2 assay methods or whether this subtle 

impairment of HIF-2α regulation is indeed sufficient to 

increase red cell production is not clear at the present time. 

All identified germline EGLN1 mutations are present in the 

heterozygous state, implying that only partial loss of PHD2 

activity is sufficient to induce erythrocytosis. As proof of 

this, a mouse model expressing a mutation homologous to 

the first reported heterozygous mutation, PHD2-P317R, 

exhibits erythrocytosis with inappropriately normal serum 

EPO levels. Similar results were obtained with Phd2+/- mice; 

thus, a heterozygous mutation is sufficient to cause the 

erythrocytosis phenotype. Mouse models also identify a role 

for Phd2 in the hematopoietic compartment in regulating 

red cell development. In addition, the presence of normal 

Phd1 and Phd3 in the knockin mouse indicates there is no 

redundancy in the oxygen-sensing pathway that regulates 

Epo in the kidney, and that the other two isoforms of Phd 

are unable to compensate for loss of Phd2 in connection with 

Epo synthesis.

Intriguingly, PHD2 may also have an important role in 

facilitating adaptation to high altitude. Genome-wide associa-

tion studies have identified two coding sequence variants in 

PHD2, with PHD2-D4E being highly prevalent in the Tibetan 

population but very rare in lowlanders. The second variant, 

PHD2-C127S, exhibits less allelic divergence between these 

populations.

Although HIF plays a major role in tumor development 

and angiogenesis, only one germline EGLN1 mutation 

(PHD2-H374R) has been described as associated with tumor 

development (paraganglioma). The exact mechanism of the 

paraganglioma development in this patient is not elucidated, 

and the functionality of PHD2 is yet not fully understood. 

Other PHD2 partners and pathways may be explored to 

address this question. Given this, one may consider follow-up 

of EGLN1 germline mutation carriers to monitor potential 

tumor occurrence.

In conclusion, study of the inherited red cell disorder of 

erythrocytosis has been exemplary in providing insight into 

the hypoxia response pathway and defining the major role 

of the HIF prolyl hydroxylase PHD2 in the regulation of 

EPO gene transcription. Further investigations need to be 

performed to fully understand the complex and subtle path-

ways regulated by PHD2. Moreover, in many cases of familial 

secondary erythrocytosis, the cause remains unknown. Future 

research implementing next-generation sequencing technol-

ogy will hopefully shed more light on additional causal muta-

tions, not only in the coding sequence of the PHD2 gene, 

but also in its regulatory regions, as well as potentially even 

other genes that affect the HIF pathway.
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Supplementary material

Figure S1 Ligplot 2D figure of the HIF-PHD2 complex showing important interactions between HIF and PHD2.
Abbreviations: PHD, prolyl hydroxylase domain; HiF, hypoxia-inducible factor.
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