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Abstract: Cancer stem cells (CSCs), also known as tumor initiating cells are now considered to 

be the root cause of most if not all cancers, evading treatment and giving rise to disease relapse. 

They have become a central focus in new drug development. Prospective identification, under-

standing the key pathways that maintain CSCs, and being able to target CSCs, particularly if the 

normal stem cell population could be spared, could offer an incredible therapeutic advantage. 

The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic 

maintenance of tissues and organs through their respective somatic stem cells and in the CSC/

tumor initiating cell population. Aberrant Wnt signaling is associated with a wide array of tumor 

types. Therefore, the ability to safely target the Wnt signaling pathway offers enormous promise 

to target CSCs. However, just like the sword of Damocles, significant risks and concerns regard-

ing targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis 

remain ever present. With this in mind, we review recent efforts in modulating the Wnt signaling 

cascade and critically analyze therapeutic approaches at various stages of development.
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Introduction
Drug resistance, disease relapse, and metastasis constitute the central challenges in 

the management of advanced malignancies. Recently, cancer initiation, metastasis, 

and disease progression have been attributed to newly discovered subpopulations of 

self-renewing, highly tumorigenic, drug-resistant tumor cells termed cancer stem cells 

(CSCs), also known as tumor initiating cells (TICs).1 In many ways, CSCs behave very 

similarly to their normal counterparts, the somatic stem cells (SSCs), in that they have 

the ability to both self-renew and also to proceed on to more differentiated cell types. 

SSCs reside in specialized niches within tissues or organs (eg, hematopoietic stem 

cells, neuronal stem cells, and intestinal stem cells) and are critical for both normal 

tissue homeostasis and regeneration after injury.2–4 A major focus in cancer research 

over the past decade has been to both prospectively identify CSCs and, even more criti-

cally, to develop therapeutic strategies to safely eliminate this cell population without 

deleterious effects to the normal SSC populations.

A critical hurdle to safely accomplish this goal is the identification of key 

mechanisms that distinguish the control of self-renewal and proliferation of CSCs 

from their normal endogenous SSC counterparts. Not surprisingly, the same evo-

lutionarily conserved signaling pathways that govern embryonic development are 

also critical to control the behavior of both normal somatic stem cells as well as 

cancer stem cells. The Wnt/β-catenin,5,6 Hedgehog,7 and Notch8 pathways have all 
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been implicated in stem cell and cancer stem cell biology. 

In this review, we will focus on the role of the Wnt sig-

naling cascade in CSCs and the prospects for safely and 

effectively targeting this cascade to eliminate the CSC 

population in cancer.

Cancer stem cells and their role  
in tumorigenesis
Almost 150 years ago, Cohnheim9 proposed the concept that 

cancer might arise from a rare population of cells with stem 

cell–like properties. Today, increasing evidence has con-

firmed the existence of a small subgroup of cells in cancer, 

termed CSCs or, alternatively, TICs. The presence of CSCs 

has forced a paradigm shift from the earlier model of tumor 

homogeneity toward one of tumor hierarchy, where CSCs 

play a critical role.10 The cancer stem cell concept postulates 

that the bulk of a tumor consists of rapidly proliferating and 

differentiated (albeit aberrantly or only partially differenti-

ated) cells, with a small population of CSCs that provide 

for the long-term maintenance of the tumor. These cells 

are able to self-renew,11 actively express telomerase,12 and 

activate antiapoptotic and multidrug resistance pathways. 

CSCs are relatively quiescent but can give rise to rapidly 

dividing progeny (so called transient amplifying cells), 

which form the bulk of tumor cells. Endowed with these 

characteristics, CSCs are thought to be responsible for tumor 

initiation, progression, and relapse, as well as metastasis 

and drug resistance.13,14 Supporting evidence exists that a 

stem-like signature contributes to aggressiveness and is 

related to poor outcome.15 Although CSCs resemble tissue 

stem cells in several characteristics, such as self-renewal 

and differentiation potential, it has been pointed out that the 

term “cancer stem cell” does not necessarily refer to the cell 

of origin, but can also refer to more differentiated cells that 

have acquired stem-like properties.16 Despite a still existing 

although decreasing controversy regarding the CSCs hypoth-

esis,17 it is clear that distinct cancer cell populations have 

enhanced tumorigenic capacity compared with bulk tumor 

cells.  Findings of cancer cells with enhanced tumor initiating 

properties were initially reported in leukemia. Bruce and van 

der Gaag18 demonstrated that only a small subgroup of cells 

showed extensive proliferation in vivo and in vitro. In 1997, 

 Bonnet and Dick19 first isolated CSCs (known as leukemic 

stem cells, or LSCs) from bulk acute myeloid leukemia cells. 

Leukemic stem cells maintained or reacquired the ability to 

proliferate indefinitely, while losing the ability to properly 

differentiate.20 Subsequently, over the past decade, a large 

number of studies have identified CSCs in multiple solid 

tumors, including brain tumors,21 melanoma,22 and breast,23 

liver,24 pancreatic,25 and colon cancer.26

Wnt signaling in embryonic 
development and homeostasis
The Wnt/β-catenin pathway initiates a signaling cascade criti-

cal in both normal embryonic development and throughout 

the life of the organism in virtually every tissue and organ 

system. It is an enormously complex and ancient pathway 

that dates back to the first anaerobic metazoans. In addition to 

classical “canonical” Wnt activation of β-catenin/T-cell factor 

(TCF) transcriptional complexes, Wnt proteins can elicit a 

variety of alternative responses, often grouped together as 

“noncanonical” Wnt signaling.27

Wnts are secreted cysteine-rich glycoproteins that act 

as short-range ligands to locally activate receptor-mediated 

signaling pathways.28 The hallmark of this pathway is that it 

activates the transcriptional role of the multifunctional protein 

β-catenin. The key mediator of Wnt signaling, the armadillo 

protein β-catenin, dynamically localizes to multiple subcel-

lular locations, including adherens junctions where it con-

tributes to cell–cell contacts, the cytoplasm where β-catenin 

levels are tightly controlled, and the nucleus where in the 

canonical Wnt signaling pathway, β-catenin is involved in 

transcriptional regulation and chromatin modifications.29,30 

The cytoplasmic pool of β-catenin is tightly regulated via 

phosphorylation by the “destruction complex” that includes 

glycogen synthase kinase 3β, casein kinase 1α, the scaffold 

protein Axin, and the tumor suppressor adenomatous polypo-

sis coli (APC), among others31 (Figure 1A). In the absence of 

Wnt signaling, phosphorylation marks cytoplasmic β-catenin 

for ubiquitination and proteasomal degradation. A key step in 

the activation of Wnt target genes is the formation of a com-

plex between β-catenin and members of the TCF/lymphoid 

enhancer factor family of transcription factors. To generate 

a transcriptionally active complex, TCF/β-catenin recruits 

the KAT3 transcriptional coactivator CREB-binding protein 

(CBP) (where CREB is an abbreviation for cAMP-response 

element binding protein), or its closely related homolog 

p300, as well as other components of the basal transcription 

machinery, to initiate transcription (Figure 1B).

The canonical, β-catenin-dependent Wnt signaling path-

way plays crucial roles in the regulation of diverse cellular 

behaviors, including cell fate, proliferation, and  survival. 

However, there exists a second noncanonical pathway, whose 

major effects apparently are β-catenin-independent in at 

least as much as that there is no apparent stabilization of 

cytoplasmic β-catenin. The noncanonical pathway is more 
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associated with differentiation, cell polarity, and migration 

(Figure 2) and can be further dissected into the Wnt/planar 

cell polarity and Wnt/calcium pathways, although these two 

noncanonical pathways are likely to intersect.32,33 Pathways 

affected by the noncanonical pathway include calcium-

dependent and small GTPase- dependent signaling networks 

and the planar cell polarity signaling pathway, a pathway 

by which cells receive positional identity. Noncanonical 

signaling can be initiated by Wnt/frizzled receptor interac-

tions without the help of Lrp5/6,34 or alternatively, receptor 

tyrosine kinase (RYK) and receptor tyrosine kinase-like 

orphan receptor (ROR) receptor tyrosine kinases can also 

act as Wnt receptors to activate β-catenin-independent 

 signaling.35 β-catenin-independent signaling also regulates 

small GTPases, such as RHOA (Ras homolog gene family 

member A), RAC (Ras-related C3 botulinum toxin substrate) 

and Cdc42 (cell division control protein 42), in a dishevelled 

(Dsh)-dependent manner.36 Noncanonical Wnt activated 

calcium flux results in the activation of various kinase 

cascades, including protein kinase C, calcium/ calmodulin-

dependent protein kinase II, and JUN N-terminal kinase, 

which can activate NFAT (nuclear factor of activated T-cell) 

and AP-1-dependent  transcription. Although dissection of 

the pathway into canonical and noncanonical may be con-

venient for discussion purposes, the reality is that these are 

interacting/intersecting pathways that can coordinately regu-

late and orchestrate complex processes during embryonic 

development, stem cell maintenance, tissue homeostasis, 

and wound healing. Wnt signaling plays critical roles in 

adults in the continuous processes of tissue homeostasis and 

regeneration of the hair and skin,37 maintenance of intestinal 

homeostasis,38 and hematopoiesis.39,40 Furthermore Wnt/β-

catenin signaling is involved in liver and lung repair after 

injury41–43 and adult neurogenesis.44

The role of Wnt signaling  
in stem cells
The Wnt signaling pathway has emerged as a pivotal 

player in the specification and maintenance of stem cell 

lineages and has been shown to have an important role in 

multiple stem cell compartments in a wide array of tissues 

and organs.45–50 The small intestine is organized into villi 

(apical) and crypts (basal). Intestinal stem cells reside in 

intestinal crypts45 and their maintenance and proliferation 
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Figure 1 Canonical wnt signaling. 
Notes: (A) wnt off. in the absence of wnt (wingless) ligands, a multi-protein destruction complex in the cytoplasm consists of Axin-1 and its interacting partners tumor 
suppressor adenomtous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), and casein kinase 1α (CK1). The destruction complex degrades β-catenin by proteasomal 
degradation via phosphorylation and, thus, maintains low levels of β-catenin. (B) wnt on. in the presence of wnt ligand binding to the frizzled/Lrp5/6 (low density lipoprotein 
receptor-related proteins 5 or 6) receptors a negative regulator of the destruction complex, dishevelled (Dsh) is recruited leading to degradation of Axin and inactivation 
of GSK3β (glycogen synthase kinase 3β) and CK1α (casein kinase 1α), thereby inhibiting their interaction with other components of the destruction complex. As β-catenin 
accumulates in the cytoplasm, it translocates to the nucleus, where it forms a transcriptionally active complex with transcription factors of the T-cell factor (TCF)/lymphoid 
enhancer factor (LeF) family and coactivators, such as CBP (cyclic AMP response element-binding protein) and p300, driving the expression of wnt target genes. Arrows 
indicate activation/induction; blunt ended lines indicate inhibition/blockade.
Abbreviation: APC, adenomtous polyposis coli.
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is Wnt dependent.51 The loss of positive Wnt regulators, 

such as TCF4 or β-catenin, as well as the overexpression 

of negative Wnt regulators, such as Dickkopf1, dramati-

cally decreases the proliferation capacity of this stem cell 

compartment.52,53 Two distinct intestinal stem cell popula-

tions have been described. The first population is made up 

of +4 label retaining cells,54 which are highly quiescent and 

are activated apparently only after injury.54 This population 

is characterized by the stem cell marker Bmi1.55 A second 

population is made up of the crypt basal columnar cells 

(CBCs), which are interspersed between Paneth cells and 

express the surface marker Lrg5.55,56 CBCs continuously 

cycle and are responsible for sustained tissue homeostasis. 

Lgr5 is a Wnt/β-catenin target gene, which can amplify Wnt 

signaling in CBCs via its R-spondin ligand.57 Paneth cells, 

are an important source for Wnt ligands (ie, Wnt3, 6, 9b),58 

which appear crucial for the maintenance of intestinal stem 

cells.59 Supporting this notion is the fact that depletion of 

Paneth cells leads to a decrease in the number of intestinal 

stem cells.59 Wnt signaling is also critical for expression of 

the gene Sox9, which is important for Paneth cell lineage 

commitment.60,61

In the hematopoietic system, Wnt3a has been impli-

cated in self-renewal and proliferation.49,62 Regulation of 

hematopoietic stem/progenitors, as well as lineage com-

mitment of progenitors during hematopoiesis is highly 

Wnt dependent.39,40 Expression of survivin, a member 

of the inhibitor of apoptosis protein family, is important 

during hematopoeisis and is prominently upregulated in 

CD34+ hematopoietic stem/progenitor cells upon growth 

factor treatment.63 Inducible deletion of survivin leads to 

loss of hematopoietic progenitors and bone marrow abla-

tion, whereas heterozygous deletion of survivin leads to 

defects in erythropoiesis.63,64 We previously demonstrated 

that survivin is a Wnt/β-catenin/CBP dependent target gene 

in a variety of cancer cell types.65 More recently, we also 
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Figure 2 Noncanonical wnt signaling. 
Notes: (A) Noncanonical wnt/calcium pathway. wnt ligand binding to frizzled receptors activates Dsh and trimeric G-proteins (Gα,β,γ), leading to the generation of iP3 
(inositol 1,4,5-triphosphate) and DAG2 (diacylglycerol) by PLC (phospholipase C)-mediated conversion of PiP2 (phosphatidylinositol biphosphate) and triggering release of 
calcium ions (Ca2+). Subsequent calcium release activates CAMKii (calcium/calmodulin-dependent kinase ii), TAK-1 (TGF-β activated kinase 1) and NLK (nemo-like kinase). 
Calcium release also activates PKC (protein kinase C) and Cdc42 (cell division control protein 42), and, thereafter, actin cytoskeleton is rearranged. in addition, calcium 
release results in activation of calmodulin, calcineurin, and NFAT (nuclear factor of activated T-cell), which is critical for control of tissue polarity. Arrows indicate activation, 
blunt ended lines indicate inhibition/blockade. (B) Noncanonical wnt/PCP (planar cell polarity) pathway. wnt ligand binding to frizzled receptors leads to activation of 
dishevelled (Dsh), triggering stimulation of GTPases RAC (Ras-related C3 botulinum toxin substrate), Profilin and RHOA (Ras homolog gene family member A) through 
activation of DAAM1 (dishevelled associated activator of morphogenesis 1). Subsequently, actin cytoskeleton is rearranged. In addition, Dsh activates RAC and finally activates 
JNK (c-Jun-N-terminal-kinase) and AP1, which has been implicated in cell migration.
Abbreviations: RYK, receptor tyrosine kinase; ROR, receptor tyrosine kinase-like orphan receptor; ROCK, Rho-associated protein kinase; MAPKKK, mitogen-activated 
protein kinases; MAPKK, mitogen-activated protein kinases and AP1, activator protein 1.
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(Fzd) receptors. OMP-54F28, is an Fc fusion protein with Fzd8, which binds all Wnt ligands. PRI-724 binds specifically to the coactivator CBP blocking its interaction with 
β-catenin. Arrows indicate activation/induction, blunt ended lines indicate inhibition/blockade.
Abbreviations: Dsh, dishevelled; CK1α, casein kinase 1α; GSK3β, glycogen synthase kinase 3β; APC, adenomatous polyposis coli; TCF/LeF, T-cell factor/lymphoid enhancer 
factor; CBP, cyclic AMP response element-binding protein.

demonstrated that survivin is critical in drug resistance in 

leukemia.66 We have demonstrated that inhibition of the 

Wnt pathway by disrupting the CBP/β-catenin interaction 

in pre-B acute lymphoblastic leukemia (ALL) represents a 

powerful mechanism to eradicate drug resistant subclones, 

which was associated with downregulation of survivin.67

Wnt signaling has also been implicated in mammary 

gland development and cell transformation.68–71 Ectopic 

expression of ∆Nβ-catenin72 or Wnt173 leads to ductal hyper-

plasia, while loss of function in β-catenin (using a dominant 

negative variant) has been shown to exert a negative effect 

on breast tissue development during pregnancy, in particular, 

lobuloalveolar proliferation.74 Overexpression of inhibitors 

(such as Axin75) or loss of lymphoid enhancer factor 1 func-

tion inhibits mammary differentiation of precursor cells.76 

The bilayered mammary epithelium consists of luminal cells 

(Ck8+, Muc1+) and basal cells (Ck5+, p63+). Of these two 

cell types, the basal cells have been shown to express both 

Lrp5 and 6,77 obligate canonical Wnt signaling receptors.78 

Ductal mammary stem cells comprise a sub-population of 

basal epithelial cells and are capable of regenerating cleared 

mammary fat pads.79 Knockout studies for Lrp580 and loss 

of function mutations for the Lrp6 receptor50 showed signifi-

cantly reduced activity in this cell compartment and impaired 

gland branching, suggesting impaired stem cell function. Wnt 

signaling has also been implicated in neuronal development 

and neuronal stem cell cells.48

The role of Wnt signaling  
in cancer stem cells
Considering the importance of the Wnt pathway in stem 

cell biology, it is not surprising that aberrant Wnt signaling 

has been implicated in the tumorigenic potential of stem 

cells. A typical approach to prospectively identify putative 

cancer stem cells is via cell surface markers;81 however, 

these are also expressed on normal somatic stem cells. 

Many of these markers are in fact direct Wnt target genes 

(including LGR5/GPR49,56 CD44,82 CD24,83 CD133,84 ABC 
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cassette genes,85,86 and EpCAM.87,88) The first report for the 

existence of CSCs in solid tumors emerged from studies in 

breast cancer by Al Hajj et al,23 who showed that cells that 

are CD44highCD24low possess tumor initiating capacity. It has 

long been known that misexpression of Wnt ligands induces 

mammary  adenocarcinomas.89 A role for the Wnt signaling 

pathway in glioblastoma stem cells has also recently been 

described.90 Another hallmark of aggressive breast cancers 

is an enrichment in an epithelial–mesenchymal transition 

(EMT)-like gene expression signature.91,92 For example, Wnt1 

has been shown to upregulate Twist,93 thereby favoring EMT-

like processes in breast cancer cells.94 Loss of E-Cadherin 

associated β-catenin in breast cancer cells leads to disrup-

tion in cell polarity resulting in an epithelial-mesenchymal 

transition, a CSC-like phenotype with a significant increase 

in the CD44high, CD24low population and increased Wnt 

signaling.95 The process of EMT has also been associated 

with activated β-catenin signaling.92,96 Conacci-Sorrell et al97 

showed that slug, a strong inducer of EMT in tumors, induces 

nuclear accumulation of transcriptionally active β-catenin. 

Overexpression of the EMT inducing factors twist and snail 

(both putative Wnt target genes) increases the expression of 

CSCs markers.98 A connection between enhanced nuclear 

β-catenin signaling and EMT is consistent with the large 

number of β-catenin target genes (eg, S100A4, fibronectin, 

L1CAM, CD44, MMP7, and uPAR) whose expression 

is associated with invasion, migration, and metastasis.99 

The cell surface protein CD133, is expressed by normal 

progenitor cells of the neural, hematopoietic, epithelial, 

and endothelial cell lineages.100–103 Recently, enrichment of 

CD133+ cells in colorectal cancer samples has been shown 

to enrich for a population of CSCs/TICs.26,100,104 These cells 

also express high levels of nuclear β-catenin. Furthermore, 

Lrg5/GPR49 is overexpressed in the majority of colorectal 

tumors compared with normal control tissue.105 Several 

studies have revealed that MDR-1, ABCG2, ABCA3, and 

BRCP1 are expressed in stem/progenitor cells from multiple 

adult tissues and that they contribute to the side population 

phenotype of stem cells.106 The expression of these so called 

multidrug resistance genes has been shown to also be associ-

ated with cancer stem cells and partially responsible for poor 

therapeutic responses.11,107 Wnt/β-catenin signaling appears 

to play an important role in ABCB1/MDR-1 transcription. 

Multiple putative TCF binding elements were identified in 

the ABCB1 promoter (-1813 to -275 bp).85 The side popu-

lation assay has been utilized to identify rare drug resistant 

hematopoietic CSCs/TIC populations.108 Hematopoietic 

CSCs/TIC populations have been shown to be Wnt/β-catenin 

dependent.109,110 Furthermore, many Wnt signaling genes are 

upregulated in hematopoietic malignancies111 and epigenetic 

silencing of negative regulators of the Wnt signaling cascade 

is frequently associated with leukemias, including chronic 

myeloid leukemia.112,113

Wnt signaling pathway  
as a potential oncotarget
Aberrant regulation of Wnt signaling has emerged as a 

recurrent theme in cancer biology.114,115 The discovery in 

1991 that mutations in the tumor suppressor adenomatous 

polyposis coli (APC)116,117 were associated with the vast 

majority of sporadic colorectal cancers via aberrant activa-

tion of Wnt signaling provided significant impetus to attempt 

to therapeutically target this pathway. Germline defects 

in APC are the cause of familial adenomatous polyposis. 

Affected individuals develop hundreds of polyps in the large 

intestine at an early age and ultimately progress to colorectal 

cancer with 100% penetrance.118 Loss of function in both 

alleles of APC is required for tumorigenesis and is con-

nected to the protein’s ability to regulate β-catenin protein 

stability,119 as well as chromosomal stability.120 APC is the 

most frequently mutated gene in human cancers.121,122 Wnt 

pathway mutations are, however, not limited to colon can-

cer. Loss-of-function mutations in Axin have been found in 

hepatocellular  carcinomas. Moreover, oncogenic β-catenin 

mutations, first described in colon cancer and melanoma,123 

have also been found to occur in a wide variety of solid 

tumors,124 including hepatocellular carcinomas,125 thyroid 

tumors,126 and ovarian endometrioid adenocarcinomas.127 

Additionally, epigenetic silencing is frequently observed to 

alter levels of expression of Wnt/β-catenin pathway negative 

regulators. For example, methylation of genes that encode 

extracellular Wnt antagonists, such as secreted frizzled-

related proteins, has been described in colon, breast, prostate, 

lung, and other cancers.128–132 Increased expression of Wnt 

ligands133–135 or effector proteins (eg, Dsh) has also been 

reported.136–138 Clearly, the ability to target the Wnt signaling 

pathway offers enormous promise as an oncological target. 

However, significant risks and concerns regarding targeting 

such a critical pathway in normal stem cell maintenance and 

tissue homeostasis are ever present.

Current Wnt inhibiting molecules: 
small molecules and biologics
Despite a wealth of information and significant investment 

in research and development, only recently have a few thera-

peutic agents that specifically target the Wnt pathway been 
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introduced into clinical trials (Table 1). Several US Food 

and Drug Administration (FDA)-approved drugs affect Wnt 

signaling, albeit nonspecifically. For example, nonsteroidal 

anti-inflammatory drugs, including aspirin and sulindac, as 

well as the selective COX–2 inhibitor celecoxib, inhibit the 

activity of cyclooxygenase, a key enzyme in the arachidonic 

acid cascade. Prostaglandin E2 generated via cyclooxygenase 

suppresses β-catenin degradation and thereby enhances Wnt/

β-catenin signaling.139–143 Nonsteroidal anti-inflammatory 

drugs demonstrated the ability to reduce polyp formation 

in familial adenomatous polyposis, in which autosomal 

dominant mutations in the APC gene lead to activation of 

Wnt/β-catenin signaling.144–146 Vitamins, in particular retin-

oids, which are synthesized from vitamin A in the body, are 

used in some forms of cancer therapy (most notably acute 

promyeloctyic leukemia) and also chemoprevention. The 

active form of vitamin D, 1α,25-dihydroxyvitamin D3, and 

its synthetic derivatives have demonstrated chemopreventive 

effects in animal models of colorectal and breast cancers. 

Although the exact mechanism by which vitamins inhibit the 

Wnt/β-catenin signaling pathway is not fully elaborated, it has 

been suggested that activated nuclear receptors for vitamins 

compete for binding to the transcriptional coactivators CBP/

p300 with β-catenin/TCF.147,148

Polyphenols are a group of chemicals found in plants, 

characterized by the presence of more than one phenol 

unit per molecule. Several polyphenols, including querce-

tin,  epigallocatechin-3-gallate, curcumin, and resveratrol 

have been implicated as nonspecific inhibitors of the 

Wnt/β-catenin signaling pathway, although the mechanisms 

of action of these agents are not clear.149–153 Through screening 

a library of FDA-approved drugs, the antihelminthic agent 

pyrvinium was identified. This agent was shown to potentiate 

the activity of the casein kinase 1 alpha leading to enhanced 

degradation of β-catenin and the coactivator Pygo and thereby 

reduction of Wnt/β-catenin signaling.154

A number of molecularly targeted agents have been 

reported, which can be classified basically into several 

classes, ie, β-catenin/TCF-antagonists, PDZ (postsynaptic 

density protein 95, Drosophila disc large tumor suppressor, 

zonula occludens-1 protein),155 the domain of Dsh binders, 

and other mechanism-based inhibitors, principally enzymes 

(eg, kinases, tankyrases,156 Porcupine,157 and biologics). To 

date, most of these have only been evaluated preclinically 

and for several recent reviews the reader is referred to the 

following.6,114,158,159 Ongoing clinical trials of Wnt inhibi-

tors/modulators are summarized in Table 2 and Figure 3. 

Recently, Novartis International AG, (Basel, Switzerland) 

initiated a Phase I trial of the Porcupine inhibitor LGK974 

(NCT01351103)160 to treat a variety of malignancies (mela-

noma, breast cancer, and pancreatic adenocarcinoma) associ-

ated with aberrant Wnt signaling. Porcupine is a member of 

a family of O-acyltransferases that is apparently dedicated 

to Wnt posttranslational acylation.161 This trial has not been 

completed and to date no public information is available.

Two Wnt-targeting biologics developed by OncoMed 

Pharmaceuticals, Redwood City, CA, USA have recently 

entered clinical trials. OMP-18R5 is a fully humanized 

monoclonal antibody that binds to multiple frizzled recep-

tors.162 An open label Phase Ia study for solid tumors was 

recently completed (NCT01345201). The results of this trial 

were recently reported at the American Society of Clinical 

Oncology conference in June 2013.163 A total of 18 patients 

were treated in 5 dose escalation cohorts (0.5 and 1 mg/kg 

once per week; 0.5 mg/kg every two weeks; 1 and 2.5 mg/kg 

every three weeks). The most common related adverse events 

included grade 1 and 2 fatigue, vomiting, abdominal pain, 

Table 1 Clinically approved nonspecific Wnt antagonist

Clinical  
antogonist

Disease Mechanism Reference

NSAiD 
(aspirin,  
sulindac,  
celecoxib)

PGe2 generated  
via COX suppresses  
β-catenin degradation

139–146

Retinoids APML Unclear 147
vitamin D Colorectal cancer, 

breast cancer
Unclear 148

Abbreviations: NSAID, nonsteroidal anti-inflammatory drug; PGE2, prostaglan-
din e2; COX, cyclooxygenase; APML, acute promyelocytic leukemia.

Table 2 Clinical trials of wnt inhibitors/modulators

Clinical trials Disease Mechanism Reference

OMP18R5, vantictumab Solid tumors Humanized Ab against multiple Fzd receptors 163
OMP-54F28, Fzd8-Fc Pancreatic, ovarian, hepatocellular, colorectal,  

and breast
Fc fusion protein with Fzd8, which binds all  
wnt ligands

164

PRi-724 Solid tumors, colon and pancreatic cancer, CML,  
and AML

Small molecule inihibitor of CBP/catenin binding 167

LGK974, Porcupine inhibitor Melanoma, breast, and pancreatic adenocarcinoma wnt posttranslational acylation 168

Abbreviations: Ab, antibody; Fzd, frizzled; CML, chronic myeloid leukemia; CBP, CReB-binding protein; AML, acute myeloid leukemia.
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constipation, diarrhea, and  nausea. The only related grades 

greater than or equal to 3 were dose limiting toxicities of 

grade 3 diarrhea and vomiting in one patient at 1 mg/kg/per 

week. 1 patient at 0.5 mg/kg per week suffered a therapy-

related bone fracture on day 110. Further clinical trials 

using OMP-18R5 in combination with other agents in solid 

tumors (NCT01957007) and breast cancer (NCT01973309) 

are ongoing. The second agent,  OMP-54F28, is an Fc 

fusion protein with frizzled family receptor 8, which binds 

all Wnt ligands. A trial in solid tumors was initiated last 

year (NCT01608867) with the  primary end point being 

safety.164 Potential deleterious effects of this agent on bone 

formation/turnover have been prospectively designed into 

the trial. Subjects will be  monitored throughout the study 

for effects on bone density and  turnover. Dose escalation 

 studies in combination with other agents are currently ongo-

ing in hepatocellular cancer, liver cancer (NCT02069145), 

ovarian cancer (NCT02092363), and  pancreatic cancer 

(NCT02050178).

Our group used a Topflash reporter gene screen to iden-

tify inhibitors of Wnt signaling in SW480 colon carcinoma 

cells. This led to the identification of ICG-001 from a library 

of secondary structure mimetics.165 In this assay, ICG-001 

had an IC50 value of 3 µM. We subsequently identified and 

validated, using a gain-of-function/loss-of-function strat-

egy, that ICG-001 binds specifically and with high affinity 

(∼1 nM) to the coactivator CBP, but importantly, not to its 

closely related homolog p300, despite the fact that these 

two coactivators are up to 93% identical, with even higher 

homology, at the amino acid level.165,166  PRI-724, a second 

generation specific CBP/catenin antagonist, developed by 

Prism Pharma Co., Ltd. Yokohama, Japan entered an open 

label Phase Ia safety study in subjects with solid tumors, 

where the expression of the biomarker  survivin/BIRC5 

was measured by immuno-magnetic RT-PCR in circulating 

tumor cells. Trial results were reported at the American 

Society of Clinical Oncology conference in June 2013 

(NCT01302405):167 Eighteen patients were treated (dose 

escalation from 40-1,280 mg/m2/day) via continuous infu-

sion for 7 days.  PRI-724 had a low toxicity profile: one 

dose limiting toxicity of grade 3 hyperbilirubinemia was 

reported. Reported grade 2 adverse events were diarrhea 

(2 patients, 11%), bilirubin elevation (2 patients, 11%), 

hypophosphatemia (2 patients, 11%); nausea (1 patient, 

6%), fatigue (1 patient, 6%), anorexia (1 patient, 6%), 

thrombocytopenia (1 patient, 6%), and alkaline phosphatase 

elevation (1 patient, 6%). There was no maximum tolerated 

dose at the doses tested. Three patients with colon cancer 

had stable disease for 8, 10, and 12 weeks. Down regulation 

of survivin/BIRC5 in circulating tumor cells was dose 

dependent.167 Additional trials with PRI-724 in myeloid 

malignancies (NCT01606579) and in combination with 

gemcitabine in pancreatic adenocarcinoma (NCT01764477) 

are ongoing.

Development of novel Wnt 
inhibitors: challenges and prospects
More than 30 years after the groundbreaking discovery 

of Wnt signaling and extensive investigation into this 

fundamental and highly evolutionarily conserved path-

way, there is still no FDA approved agent that specifically 

targets aberrant Wnt signaling in cancer. Very recently, 

a number of small molecules and biologics have entered 

human clinical trials. Despite exciting preclinical data in 

a variety of tumor  models, it is still too early to know if 

any of these therapeutic agents will be efficacious with an 

acceptable safety profile. However, it is already clear that 

successfully targeting Wnt signaling in cancer will require 

a fine balancing act, whereby the “dark side” of Wnt sig-

naling in cancer can be abrogated without interfering with 

the critical role of Wnt signaling in tissue homeostasis 

(eg, intestinal epithelium, blood, and bone) and repair. 

Numerous potential concerns arise in the development of 

therapeutic strategies that antagonize the Wnt pathway. 

Therapeutic agents that target critical developmental signal 

transduction pathways (eg, Wnt) are likely to have devas-

tating effects on embryonic patterning. Further concerns 

about on-target toxicity include effects on intestinal stem 

cells, bone turnover, and hematopoiesis. For example, the 

Porcupine inhibitor LGK974 exhibited 63% tumor growth 

delay when administered at 3 mg/kg/day.168 However, at a 

dose of 20 mg/kg/day, significant loss of intestinal epithe-

lium was observed. Concerns about potential deleterious 

effects on bone formation/turnover have been prospectively 

addressed in the OMP-54F28 trial design (NCT01608867), 

as all subjects receive 30 days of vitamin D3 and calcium 

carbonate after discontinuation of OMP-54F28 and are 

monitored during the study for effects on bone density and 

turnover. It remains to be seen if toxic side effects occur 

with inhibitors of Wnt signaling, and, if there are none, it 

would be critical to understand why.

Despite all of these potential concerns regarding targeting 

Wnt signaling in cancer, there is also tremendous excitement 

as our knowledge of this pathway continues to increase and 

our clinical experience with novel Wnt-targeting therapeutic 

agents expands.
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