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Abstract: The need to understand large database structures is an important issue in biological 

and medical science. This review paper is aimed at quantitative medical researchers looking 

for guidance in modeling large numbers of variables in medical research, how this relates to 

standard linear models and the geometry that underlies their analysis. Issues reviewed include 

LASSO-related approaches, principal-component based analysis, and issues of model stability 

and interpretation. Model misspecification issues related to potential nonlinearities are also 

examined, as is the Bayesian perspective on these issues.
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Introduction
As high-dimensional data structures have begun to be available and studied in many 

areas of medical research, the need for intuitive, geometric, and often linear model-

based understanding of such data has grown. Genetic data, imaging data, health out-

comes and clinical data, spatial positioning data, internet-based data: all are examples 

of settings where the flow of data is massive and the ability to analyze such a flow is 

typically restricted.

A very large number of variables and relatively few subjects (large p and small n) 

are often the mark of such data and the goal of the analysis is typically to detect 

various patterns within the overall dataset. In genomic settings these may be simple 

mean differences in gene expression levels across treatment groups, comprehensive 

correlated network clusters, or more detailed epigenetic patterns. Often there is limited 

theoretical modeling and much of the applied statistical research is empirically driven, 

falling under the hypothesis or model generating label, with the term “data science” 

sometimes used.

Standard methods of statistical analysis often do not hold up well in such settings. 

Multiple comparison issues where a large number of case-control comparisons are 

conducted require careful application and interpretation.1 Indeed, multiple testing of 

one-at-a-time mean differences may be of limited use for understanding of genomic 

and epigenetic data structures or networks of genes relevant to specific cell and pheno-

typic structures. A more complex three-dimensional nonlinear aspect of chromosome 

structure may be relevant to such analyses.2

A geometric perspective is useful in understanding the properties of estimators and 

models developed in a linear model or associated analysis of variance (ANOVA)  setting. 

These are often based on orthogonal projections onto a linear plane and the space 
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orthogonal to it. The squared lengths of these projections 

can be compared, interpreted, and used to develop statistics 

for estimation and testing.3 However, the basic geometric 

intuition of linear models is altered when p . n and stan-

dard projections are restricted by limited dimensions. Here 

standard approaches must be applied carefully if the resulting 

models are to be interpretable.

Correlation and embedded nonlinear relationships also 

cause difficulty for linear models. The application of linear 

models to correlated structures may not be appropriate, 

with nonlinear functional relationships potentially going 

undetected and creating instabilities in the predictive model. 

Many developmentally related growth factors are nonlinear 

in pattern.4 Scaling issues, gene clusters, and small embedded 

networks also affect the applicability of the linear model.

Statisticians have developed techniques for restricted or 

sparse situations, including least-angle regression (LARS) 

extended via application of the least absolute shrinkage and 

selection operator (LASSO),5 and Dantzig6 approaches, 

which extend older techniques such as restricted least squares, 

ridge regression, forward stagewise variable selection tech-

niques, and principal components. Several earlier, more 

detailed reviews can be found in Johnstone and Titterington,7 

and in Bickel et al.8 Note that these approaches do not always 

converge to a fitted model (in which case an all-subsets search 

is required to find a best fitting model, often impractical 

in terms of time)9 or give a useful predictive model. Some 

methods have phase-threshold cutoff patterns that give insight 

into possible convergence.10

An area of application for high-dimensional methods is 

genetic data structures, which began with Southern blot elec-

trogenesis technology and other fairly simple DNA-related 

technology and have developed into much more detailed 

approaches including: single-nucleotide polymorphisms, 

copy-number variation, gene splicing, and RNA-related 

deep sequencing.11 These datasets often reflect specialized 

bioassays and there remains much to be done regarding 

standardizing platforms, alignment techniques, etc.1 Recently, 

the rise of epigenetics, the chemical triggers governing 

gene expression (chromatin, histone, DNA methylation, for 

example), have lead to yet another level of complexity, as 

have the growing number of detected epigenetically triggered 

networks or clusters of genes that govern protein, cell, and 

other developmental and maintenance-related activities in 

the organism.12,13

Outside of genetics, the areas of systems and network-

related biology, imaging, clinical data repositories, internet-

based information, and other “large data” settings are all 

growing very quickly.14 Data science or big data-based 

approaches to identifying patterns in these large sets of col-

lected data are quite varied, often reflecting a mix of methods 

drawn from engineering, computer science, and mathemat-

ics.15 The statistically based approaches reviewed here also 

apply to these areas of investigation.

Here we review and discuss several related statistical 

methods and tools of high-dimensional data analysis from a 

practical and geometric perspective, as they relate and extend 

existing standard methods such as ANOVA and principal 

components analysis (PCA). The stability of linear methods 

is examined and we investigate the effect of misspecifica-

tion, especially where this is related to nonlinearity. We 

review practical interpretations of  p . n methods using the 

geometry of least squares, restricted least squares, correla-

tion, and simulated examples, briefly mentioning Bayesian 

perspectives in this setting.

High-dimensional statistical 
approaches and linear models
A standard tool for understanding data and linking a 

response variable to various explanatory variables is the 

linear model

 y = Xβ + ε

where y is a (n × 1) vector of responses, X = [x
1
, …, x

n
] a 

(n × p) matrix of p measured variables, and ε a (n × 1) vec-

tor of error components. If all variables x
i
 are thought to be 

relevant, the fitted least squares model is given by ŷ = Xb 

where b = (X ′X)−1X ′y.

Typically in the settings reviewed here, many variables 

x
i
 have been collected and only a few are thought to be rel-

evant to predicting the outcome y. In such a setting, placing 

an explicit restriction on the model, for example, expecting 

only a few β
i
 values to differ significantly from zero, may be 

helpful in finding the “best” underlying linear model, which 

is typically carried out using stepwise or stagewise methods. 

Correlations among the explanatory variables and resulting 

rank deficiency in the X matrix may also require the use of 

modified or restricted linear model-based approaches such 

as ridge regression16 that have a long history.

A sparseness restriction is often expressed as

 βi|
m

i

k

t<
=
∑

1

for relatively small chosen values t and k. Sparseness restric-

tions typically assume m =1 or 2. This is most useful in 
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settings where only a few x
i
 are thought to be significantly 

correlated with the response y
i
 but is also necessary when 

p . n and the linear model suffers from less than full rank in 

the design matrix X. In these settings the usual least squares 

estimator b = (X ′X)−1X ′y will not exist.

From the perspective of the parameter space, such restric-

tions limit the set of possible β
i
 combinations that may be 

examined. The shape of the restricted parameter space 

depends typically on the value of m. From the perspective 

of the sample space they limit potential values for the esti-

mators β
∧

i
 affecting the application of standard least squares 

based geometry.

Ridge regression
In the case of highly correlated variables in the X design 

matrix, which affect the stability and existence of (X′X)−1, the 

older and more commonly used ridge-regression approach 

can be applied and uses m = 2. It is worth examining ridge 

regression in the case n . p. Assuming centered data, the 

resulting estimator is given by

 bR = (X ′X + λI)−1X ′y

for scalar λ. Even with high correlation in the X design matrix 

this will exist, with λ chosen graphically or via Bayesian 

posterior calculation. The singular value decomposition 

(SVD) guides the development.

To apply SVD in general we write X = UDV ′, where 

U = (u
1
, …, u

p
) is a n by p orthogonal matrix, the u

j
 form 

an orthonormal basis for the column space of X, and V is a 

similarly constructed orthogonal matrix for the row space of 

X. D is a diagonal matrix (d
1
, …, d

p
).

Geometrically, ridge regression is equivalent to project-

ing y onto the normalized principal components of X (ie, u
j
) 

where the jth principal component of X is given by d
j
 u

j
. 

Specifically,

 bR
j
 = [d2

j
/d2

j
 + λ] u

j
′ y

which can be viewed as weighting the projection of y onto 

the principal component u
j
 by the relative weights of d

j
 and 

λ. The important role played by eigenvalues in the applica-

tion of linear models in restricted settings and dimension 

reduction in general is further discussed below.

PCA LASSO procedures
The sparseness restriction itself can be applied directly 

as a further restriction on the calculation of eigenvalues 

underlying multivariate techniques such as cluster and 

factor analysis,17 and these are referred to as PCA LASSO 

procedures. They are closely related to ridge-regression 

procedures.18

If the matrix A represents the transformation relating the 

original data X to the principal components Y = AX then use 

of a sparseness restriction in this context gives the model

 Y Ax a tij
j

p

= <
=

∑: | |
1

where a
ij
 are the relevant coefficient elements of the Y = Ax 

principal components transformation, subject to the usual 

PCA constraints. As PCA methods are themselves often 

an initial attempt to understand or explore the underlying 

dimensionality or structure of the data, and thus the degree 

of sparseness itself in large data settings, this may overly 

restrict an initially explorative approach. However, it does 

aid in the convergence and interpretability of the resulting 

PCA, especially where p . n. Indeed, the interplay of the 

LASSO restriction with the p . n geometry described below 

is an interesting question, as the large p behavior identified in 

Hall et al19 and Ahn et al20 seems to suggest limited useful-

ness of the PCA approach in settings without the sparseness 

restriction.

LARS
The LARS algorithm underlying the basic LASSO approach 

to fitting models in standard n . p linear models is very 

stable21 and obtains a fitted model of size m in m steps. This is 

based on adding new variables in a forward stagewise search 

approach that uses equiangular bisectors to find the most 

correlated variables in the dataset, adding them sequentially. 

As such the standard linear geometry holds as we are only 

projecting y onto individual or small numbers of x
i
 vectors,

 ŷ = x
i
(x

i
′x

i
)−1x

i
′ y

or related residual vectors, giving the LARS approach 

 stability. In the p . n case the LARS algorithm need only 

be slightly adjusted to accommodate a sparseness restriction. 

As shown in Efron et al,21 the LASSO sparseness restriction 

does not greatly affect this type of forward stagewise search 

and projection, as it avoids much of the multidimensional 

geometric aspects discussed here.

The LARS algorithm is straightforward. Beginning with 

all b
j
 = 0 determine the x

j
 most correlated with y. Increase b

j
 

in the direction of the sign of its correlation with y and obtain 

the residuals (y − ŷ) stopping when another x
k
 is found such 

that the corr((y − ŷ), x
k
) = corr((y − ŷ), x

j
). Increase (b

j
, b

k
) 

in their joint least squares direction until another predictor 
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x
m
 has as much correlation with the new residual vector. 

Continue in this manner until all useful predictors are in the 

model. It can be shown that, if when a coefficient hits zero 

and is removed from the active set of predictors the joint 

direction is recomputed, this procedure gives the entire path 

of LASSO solutions, as t is varied from zero to infinity. The 

LARS algorithm with LASSO restriction is available as a 

package in R.

Extensions of the LASSO approach have been developed 

for logistic regression22 and survival analysis23 and many 

other settings. A Bayesian approach to these models can 

also be developed by assuming a modified Laplace prior 

distribution24 to describe the sparseness restriction directly 

on the parameter space. The Bayesian approach is interest-

ing as it views the data as fixed and probabilities as directly 

attached to the parameter space. This implies that some of 

the complexity of the p . n geometry when viewed from 

this perspective is relevant only in as much as the likelihood 

function and prior elements are affected. That said, the use 

of normality in the likelihood links Bayesian and frequentist 

approaches to least squares geometric considerations. This 

is further discussed below.

Least squares geometry
To move from the standard n . p geometry of least squares 

to the restricted p . n setting it is useful to begin with the 

simple structures of ANOVA. Let n . p and assume that 

the response and explanatory variables have been centered. 

In the standard setting of the linear model the least squares 

estimator is given by b = (X ′X )−1X ′y and the related predictive 

value given by ŷ = Xb = X(X ′X )−1X ′y = Hy where H is the 

p-dimensional orthogonal projection matrix onto the linear 

span of the column vectors of X, L(X). The associated residual 

vector e = [I − H]y is the (n − p) dimensional orthogonal 

projection of y onto the linear span orthogonal to L(X). The 

squared lengths of these vectors form the basis of standard 

ANOVA testing. The orthogonality of these spaces implies 

Cov(y,e) = 0 as the cosine of the angle between them is 0.

If n = p we can show that H = I and ŷ = y. The residual 

space within the standard geometry here has dimension 0.

In the p . n setting, the loss of the usual residual space 

leads to different geometric considerations for analysis of the 

overall linear model. The usual orthogonal decomposition 

underlying the ANOVA breakdown of sums of squares is not 

applicable as the usual error degrees of freedom or dimension 

of the residual space, (n − p) is negative. In this setting, the 

space within which the data vectors lie, seen as column vec-

tors, is Rn, which is often relatively small and lies within Rp. 

Indeed it lies within the portion of these spaces, that agrees 

with the assumed linear structure of the model (assuming 

the model is correct), and typically is further subjected to a 

sparseness restriction, which superimposes a simplex struc-

ture on the data vectors. This is examined below.

Apart from limiting the region of the parameter space to 

be considered when estimating β the sparseness restriction 

in the p . n setting reflects an interesting assumption on the 

data structure related to estimation. Assuming that all vec-

tors in the analysis are continuous and centered, the sparsity 

restriction with small t and k can be interpreted as implying 

that relatively few of the data vectors x
i
 are expected to be 

correlated with the response vector y. Geometrically in the 

sample space this implies that y is approximately orthogo-

nal to most of the x
i
 vectors, with only a few of them hav-

ing relatively small cosine angles of departure from y and 

thus meaningful correlations with y. This restricts most of 

the x
i
 to L⊥(y), the space within Rn in which all vectors are 

orthogonal to y.

Assuming a large number of x
i
 vectors within L⊥(y), most 

are linearly dependent with each other. Thus the sparseness 

restriction, if correct, implies a structure of correlated x
i
 

variables tied together typically through the assumption of 

a linear model. In a sense there are several sets of potential 

correlation structures: those x
i
 that are correlated with each 

other but not with y in L⊥(y), and those that are correlated with 

each other and y, thus potentially relevant to a linear model 

for y. These restrictions on the linear model and data imply 

that as p becomes very large relative to n, there are patterns 

and restrictions among the correlations (angular departures) 

for the variables in the model restricting the relative positions 

of y and the x
i
 vectors.

Hall et al19 examined this situation generally, without 

assuming sparseness or a linear model, simply studying 

geometric structures among a normally distributed set 

of variables as p increased with p . n. Subject to further 

assuming the data follow a simple basic time series struc-

ture, they showed that for large p the data vectors in such 

a restricted linear model setting must cluster at the vertices 

of an n dimensional simplex. Further, these n directions lie 

approximately perpendicular to each other in forming the 

simplex structure.

A simplex can generally be written

 S xj j j j
j

n

j

n

= ≥ =
==

∑∑ β β β: :0 1
11

having n vertices, and formally defines the convex hull of 

these vertices. A 2-simplex defines a triangle and a 3-simplex 
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defines a tetrahedron shape. Here it is the vertices that are of 

interest as the data vectors cluster at these points.

The proof uses the delta method applied to the distances 

between two arbitrary data vectors, letting p increase asymp-

totically with fixed n.19 Assuming we have two standardized 

independent vectors z
1
 and z

2
 drawn from a N

p
(0,I) multivari-

ate distribution, it follows that for z
1
 its squared length can 

be expressed

 || ||z z j p
j

p

1
2

1
2 2

1

=
=

∑ ∼ χ

and has expected value p. Direct application of the delta 

method then implies || || ( )z p O1 1= +  as p → ∞.

It also follows for a pair of vectors that || ||z z1 2− = 

2 1p O+ ( ) as p → ∞. Thus for large p any two vectors will 

be a deterministic distance apart and can be seen as each lying 

near the surface of an expanding sphere centered here at 0. 

The angle at the origin between any two vectors will also be 

given by π/2 + O(p−1/2). This further implies that the vectors 

will be approximately perpendicular to each other. As all 

pairwise angles are approximately the same, a deterministic 

simplex structure will describe the overall shape of the data 

vectors (see Hall et al).19

This can further be interpreted as implying that as p → ∞ 
any randomness in the data set is essentially generated by 

random rotations of the n vertices of this deterministic sim-

plex structure. Note that in such a setting, the application of 

methods such as SVD will seem to work well when looking 

to classify or discriminate the large set of x
i
 variables as they 

already i) cluster at the vertices of the simplex and ii) lie 

perpendicular to each other.19 These limitations also affect 

use of the bootstrap method, which uses random resampling 

of the data as the basis for significance assessments.

If a linear model structure is to be used to relate an out-

come vector y to a set of best fitting x
i
, using for example 

the LASSO approach, it will be among n perpendicular x
i
 

vectors of this core clustering structure, providing a basis for 

Rn ⊂ Rp, that are not in L⊥(y) and that as a group satisfy the 

sparseness restriction, that stable fitted linear models may be 

found. There is of course no guarantee that the achieved fit 

will be useful. If the sparseness restriction is not appropriate 

and many x
i
 are not in L⊥(y) then this restriction will simply 

limit the number of fitted covariates, selecting those where the 

linear combination is closest to y and leaving many possible 

models that give similar goodness of fit values.

To summarize, in the case of p . n with the linear model 

structure imposed with sparseness restriction, and x
i
 vectors 

assumed approximately normally distributed, we can expect 

the relative positioning of the response vector y in regard to 

the n dimensional simplex of the x
i
 to determine the set of 

potentially useful x
i
 values in predicting y. Indeed, the best 

fitting model can be seen as an exercise in choosing those 

vectors x
i
 in the simplex whose linear span lies most closely 

to the y variable for the actual observed rotation of the data 

simplex. Note use of the sparseness restriction expects that 

most of the x
i
 vectors are in L⊥(y) and thus not useful for 

prediction. Methods that detect this simplex in the case of 

large p and related summary set of x
i
 will be useful in guid-

ing model fitting and assessment of significance for linear 

models in the p . n setting.

example one: mouse genetic data
A well-known example drawn from the genomics literature 

is given in Ghazalpour et al.25 To give a sense of the interac-

tion of eigenvalue structure with p . n restrictions we apply 

PCA directly here, without LASSO restriction, looking 

at the results corresponding to selected p and n values for 

chromosome 11 where we begin with 100 genes and their 

expression levels for 255 subjects. We begin with n . p and 

randomly remove subjects as shown in Table 1, carrying out 

Table 1 Mouse data principal component analysis for values of n and p

n n* p e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 Total 
variation

10 7 100 0.380 0.239 0.145 0.127* 0.068 0.040 0.0 0.0 0.0 0.0 0.0 0.0 1.0
20 15 100 0.267 0.202 0.145 0.105 0.081* 0.048 0.040 0.028 0.024 0.022 0.015 0.010 0.984
30 20 100 0.253 0.175 0.128 0.094 0.069 0.063 0.038* 0.036 0.027 0.022 0.019 0.017 0.942
40 28 100 0.251 0.156 0.115 0.085 0.068 0.057 0.037 0.034* 0.030 0.025 0.019 0.018 0.896
50 37 100 0.544 0.088 0.074 0.046 0.038 0.033* 0.024 0.020 0.017 0.014 0.013 0.011 0.921
100 80 100 0.365 0.107 0.079 0.064 0.045 0.043 0.036 0.032 0.030* 0.020 0.017 0.014 0.853
150 121 100 0.353 0.100 0.070 0.067 0.042 0.039 0.037 0.033 0.027 0.022 0.017* 0.016 0.824
200 157 100 0.360 0.098 0.077 0.060 0.040 0.036 0.034 0.030 0.025 0.022 0.017 0.016 0.815
254 200 100 0.338 0.101 0.084 0.056 0.039 0.036 0.033 0.030 0.030 0.025 0.022 0.018 0.800

Notes: Proportion of total variation shown; *denotes 80% of variation explained. The e are the ordered principal components, n is the sample size, and p the number of variables. 
Results for the first four principal components with p . n are highlighted in bold.
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PCA for each set of subjects and variables, moving into the 

p . n context. The 12 largest eigenvalues for each analysis 

are reported. Note that when p . n there are only n possible 

nonzero eigenvalues.

For the initial PCA with n = 255 (n* with missing values) 

12 PCA variables account for 90% of the total variation 

implying potential structure in the set of gene expressions. 

As is common in most PCA analysis, the first eigenvalue 

can be seen as an overall mean value. Of greater inter-

est in relation to the results discussed here is the overall 

structure of the remaining eigenvalues as p/n increases. As 

this increases, there are fewer relative sources of variation 

or degrees of freedom and a higher level of total variation 

explained. As this is real data, and p is large but not in the 

realm of large asymptotic values, the expected similarity 

of eigenvalues can be seen as slowly occurring, especially 

beyond the first or largest PCA, subject to random error. 

Further restricting our view here to the first four eigenval-

ues, we see a steady increase in their values and similarity 

as p/n increases when p . n, while the remaining values 

remain similar or trend to zero.

As noted in the results of Hall et al19 and Ahn et al20 

above, as p . n the information provided by the eigenvalues 

is less useful in regards to identifying clusters in the data. The 

results seem to indicate a growing convergence to a smaller 

subgroup of eigenvalues.

Correlations and eigenvalues
The relationships among a set of variables x

i
 subject to a 

sparsity restriction and p . n can alternatively be examined 

from the perspective of the sample correlation matrix S itself 

and its relation to eigenvalues and principal  components. 

This follows to some extent from the consideration of 

ridge regression discussed above. This is developed in 

Ahn et al,20 where using the SVD of S it is shown that for 

p → ∞ and n fixed, the eigenvalues of S can be viewed 

as being approximately equal, implying that the data are 

behaving as if the underlying distribution was spherical in 

nature. This is in agreement with the results in Hall et al19 

described above. This diffusion of eigenvalues implies that 

PCA may not be very useful in higher p . n dimensions 

as a means of dimension reduction outside of the existing 

simplex structure.20

Model misspecification: nonlinearity
As nonlinear models may underlie many genomic data 

models, especially those related to developmental biology,4 

the immediate use of a linear model may lead to model mis-

specification issues. This may also be due to inappropriate 

scaling of specific variables or types of clustering. The linear 

stagewise orthogonal projection-based approach used to fit 

the LARS algorithm may not capture the relevant patterns 

in such data.

The sparseness limitation itself is based on the idea that 

only a small number of variables are in the end important to 

the response in question. If that small number are actually 

structured as a small set of variables sharing an embedded 

nonlinear model, there may be serious model misspecification. 

This is actually true of all linear models and this topic has been 

examined,26,27 typically in n . p linear model settings. The 

LARS algorithm uses correlation as the basis of a stagewise 

fitting approach. Correlation assumes linearity on some attain-

able scale. If there is a nonlinear pattern or model underlying 

the data, this approach may not be useful and may mislead.

To more formally address the misspecification issue express 

the linear model as a function of two sets of variables:

 y X X X= + = + +β ε β β ε1 1 2 2

where initially n . p. Let us assume that the key significant 

variables are grouped in the X
1
 (n × p

1
) matrix with p

1
 vari-

ables, the X
2
 (n × p

2
) matrix has p

2
 additional variables, where 

p
1
,,p

2
 and p

1
 + p

2
 = p. The error term ε (n × 1) is assumed 

to have the distribution ε∼N(0, σ2I).

Now assume the true aspect of interest is a nonlinear 

model underlying the X
1
 set of variables. In this setting we 

wish to assess to what extent the LASSO or related technique 

may not detect the set of variables embedded in the nonlinear 

model. We re-express our initial model as

 y F X X= + +( )1 1 2 2β β ε

where F(X
1
β

1
) is a nonlinear model for the X

1
 subset of 

 variables. Replacing F(X
1
β

1
) with its Taylor expansion 

about β
10

 to the first order we obtain

 y X F X X= + − + +[ ( )( )]1 10 1 1 1 10 2 2β ′ β β β β ε

If we were to apply a linear model to this setting we would 

in essence be using a local linear approximation rather than 

the true model, giving

 y X X= + +1 10 2 2β β ε*

where ε* = ε + F′(X
1
β

1
)(β

1
 − β

10
) and in fitting this, we will 

both potentially miss the nonlinear aspect of the data and 

apply an approach which has a biased error distribution 

ε* ∼ N(F′(X
1
β

1
)(β

1
 − β

10
), σ2I). If the two sets of variables 

are approximately uncorrelated, we may end up with spurious 
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associations from patterns in the data that are not reflecting 

the true underlying model.27

Note also that if the underlying model is misspecified, the 

sparseness restriction may not make sense, as it applies a lin-

ear scale to the relative importance of the estimated parameter 

coefficients. In the context of the LARS algorithm, modified 

for sparseness, the projections of interest are all defined in 

relation to an underlying restricted but linear relationship 

among the variables. Nonlinear patterns are often not easily 

detected by correlation-based approaches and may be missed, 

even using the forward-fitting strategy of the LASSO. Note 

that incorporating nonlinear models directly into the p . n 

setting further creates serious quadratic programming chal-

lenges, as typically restrictions are rewritten directly into the 

model, see, for example, Meier et al.22

Possible improvements in the forward stagewise fitting 

algorithm include examining relationships for possible 

curvature, graphically and otherwise. If knowledge of the 

type of nonlinearity present exists, implying local nonlinear 

models, local curvature corrections28 at each stage of the 

forward stepwise procedure may be possible. These will be 

further discussed elsewhere.

Example two: simulations
Here we examine several simulations in relation to this issue. 

The goal is to detect a small number of useful explanatory 

variables, if possible. The C
p
 criteria is used in the LARS–

LASSO based fitting procedures. We generate a set of p cor-

related explanatory variables x
i
 according to a multivariate 

normal distribution N
n
(0, ∑) with correlations ρ(x

i
, x

j
) = 0.5|i–j|, 

which gives a set of correlated explanatory variables subject 

to random noise. Responses of various forms can then be 

generated, reflecting both highly and less correlated sets of 

explanatory variables.

An embedded gene correlation cluster was simulated 

for the p . n case: a set of ten variables x
i
 were generated 

according to a multivariate normal distribution N
n
(0, Σ) where 

we set the correlations ρ(x
i
, x

j
) = 0.5|i–j| and n = 7. The related 

response is generated as y = 5x
1
 + 7.2x

2
 + x

3
 + 1.7x

4
 + 1.3x

8
. 

This response was fit to the entire set of explanatory variables 
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Figure 1 LASSO fit for simulated gene correlated cluster (n = 7, P = 10).
Note: Selected variables using Cp criteria suggested on right.
Abbreviation: LASSO, least absolute shrinkage and selection operator.
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using a linear model and the LARS package in R with the 

LASSO option. For a single replication,  Figure 1 shows 

x
1
, x

2
, x

4
, x

7
 as significant, close to the original model. 

To assess variation, 30 replications were carried out showing 

fairly good agreement with the underlying model (Table 2).

An embedded nonlinear function linking the response 

and only a few explanatory variables within a larger set of 

mildly correlated variables was also simulated. A set of ten 

centered, correlated explanatory variables x
i
 was generated 

according to a (centered) multivariate normal distribution 

N
n
(0, Σ) and we set the correlations ρ(x

i
, x

j
) = 0.5|i–j| and used a 

sample size of n = 7. The response here was generated as y = 
−1.4exp(−4.5x

1
 −6x

2
) + 2.2x

3
 + 2.0x

4
 + 1.3x

5
 + 1.2x

6
 + 1.1x

7
 +  

1.0x
8
 + 0.8x

9
 + 0.6x

10
 providing good control over the second-

ary correlation values. Table 3 is based on 30 replications and 

shows the selected variables having a weak relationship to the 

actual underlying model, with the most nonlinear and highly 

correlated of the variables selected only slightly more often 

than those variables with little correlation to y. The estimated 

coefficient values were highly variable throughout and the 

C
p
 criteria was often unstable. Figure 2 gives an example of 

the LARS package output (see also Table 3).

Phase thresholds for convergence
Donoho and Stodden29 consider a toy example taking 

y = Xβ + ε with ε ∼ N(0,16), setting β = 0 except for k values 

drawn from a uniform (0,100) distribution, giving a randomly 

generated set of sparseness values. For a LASSO-based model, 

a phase threshold plot was generated plotting k/n versus n/p. 

This displayed a better chance of convergence if k/n was 

smaller and n/p larger, (ie, as n increases). To get a practical 

sense of scale we display three approximate values for (k/n, 

n/p) supporting convergence in Table 1, and examine them.

In Table 4 the relationship between the sparse number 

of variables to be used (k) and the number of subjects (n) is 

nonlinear, altering from a factor of 1:10 to 1:5 to approxi-

mately 1:2 for the chosen set of values. From the first column, 

for example, we see that if n is one-tenth of p the original 

number of variables, then k must be approximately one 

one-hundredth of p, for convergence to occur. For example, 

with 2,000 variables and a sample size of 200, the sparsity 

restriction might be set near 20 to achieve convergence. This 

ratio varies across the columns in a nonlinear manner. This 

threshold further does not imply a highly predictive model, it 

simply reflects convergence, a consideration in the design of 

high-dimensional studies. The interaction between n, k, and 

p reflects both the restrictions on the model and the available 

degrees of freedom.

Bayesian perspective
The Bayesian approach presents a related but different per-

spective on the model–data combination and is very useful 

in these situations. The actual values of the data variables are 

conditioned upon and the probability, through application of 

Bayes theorem and the assumption of a prior density p(β) for 

β, shifts the probabilities involved to the parameter space. 

Technically, the posterior density can be written

 p(β|data) = c ⋅ p(β) ⋅ L(β|data)

where L(β|data) is the likelihood function and c is a norming 

constant. Probability theory is then applied to determine mar-

ginal and conditional probability elements of interest. The rela-

tively small number of n does not technically limit the obtaining 

of marginal posteriors for each of the overall p variables.

In the Bayesian LASSO setting, the high-dimensional 

p . n geometry discussed above is relevant to the degree 

that i) the likelihood function is affected, ii) the parameters 

involved lack identifiability, and iii) the integration neces-

sary to obtain marginal posteriors is affected. In the case of 

an assumed normal likelihood, least squares considerations 

are relevant as these affect calculation of posterior modes. The 

sparseness restriction is useful from the Bayesian perspective 

as it limits potential values for the parameter β and helps yield 

identifiability. It can be modeled through use of a specific 

prior density incorporating the sparseness  restriction. Park 

and Cassela24 suggest the following hierarchical description 

of the Bayesian LASSO model:

 y X N X In| , , , ~ ( , )µ σ µ σβ β2 2+

 β …| , , , ~ ( , ), ( , , )σ τ τ σ τ τ2
1
2 2 2

1
2 20p p pN D D diag= …

 σ τ τ π σ σ λ τλ τ2
1
2 2 2 2

2
2

1 2

2 2

, , , ~ ( )… p j
j

p

d e dj−

=
∏

Table 2 Results from LARS software in R-simulated linear model with correlation and LASSO restriction

Selected variables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Proportion of time selected 28/30 29/30 20/30 15/30 15/30 8/30 6/30 14/30 6/30 7/30

Notes: Xi are simulated, centered variables with varying levels of correlation. The proportion of times each is selected into the fitted linear model is reported.
Abbreviations: LARS, least-angle regression; LASSO, least absolute shrinkage and selection operator.
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 π σ σ( ) /2 21=

where σ 2
1
2 2 0, , ,τ τ… p > .

Note that the Bayesian approach here reflects an implicit 

backward selection methodology. This is not possible in 

the frequentist setting, but is possible in the Bayesian set-

ting due to the transferring of the probability element from 

sample space to parameter space and the assumption of a 

prior to support the many coefficient parameters β
i
 linked 

to the many collinear x
i
. Thus the dimensional restrictions 

on the frequentist approach do not directly impede the 

Bayesian setting, but the assumption of much additional 

information regarding the β
i
 requires justification. That 

said, Bayesian approaches in many sparse settings have 

led to similar answers to those given by the LASSO and its 

variants. Ridge regression can be viewed similarly. Various 

Bayesian versions of LASSO modifications are given by 

Park and Casella.24

In the case of normal error the likelihood aspect 

 justifies the least squares criteria and the prior provides 

the sparseness restriction, a very similar problem to 

the frequentist setting, though viewed as a function 

of the parameters. Thus the Bayesian approach, when 

comparable as there may be additional prior parameters 

to consider, often yields similar answers to the frequentist 

models, with the additional benefit of more stability in 

calculations due to assumed additional structure in the 

model to be analyzed.
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Figure 2 LASSO fit for simulated nonlinear model with gene correlated cluster (n = 7, P = 10).
Note: Selected variables using Cp criteria suggested on right.
Abbreviation: LASSO, least absolute shrinkage and selection operator.

Table 3 Results from LARS software in R-simulated nonlinear model with correlation and LASSO restriction

Selected variables x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Proportion of time selected 20/30 19/30 11/30 14/30 17/30 14/30 14/30 17/30 15/30 13/30

Abbreviations: LARS, least-angle regression; LASSO, least absolute shrinkage and selection operator.
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This similarity to frequentist approaches also implies 

that the misspecification issues discussed above will directly 

impact the stability of the Bayesian posterior mode as it 

reflects the least squares linear model-based sensitivity of 

the log-likelihood. Nonlinearity and model misspecification 

affect all statistical models.

The phase threshold issue from the Bayesian perspective 

addresses identifiability: an inability to clearly detect the 

mode of the joint posterior as a function of each potential 

coefficient β
i
. The Bayesian approach provides more struc-

ture for assessing the p . n setting with sparseness directly 

incorporated into a posterior density. The key aspects of 

the Bayesian analysis here are maximization of the joint 

posterior (identifiability) and integration of this posterior 

to achieve the required marginal posteriors, typically 

accomplished with Laplace approximation or an empirical 

Markov-chain Monte Carlo (MCMC) approach.30 As with 

all Bayesian constructs, the issue of identifiability should 

be examined from a robustness perspective, altering the 

choice of prior and examining the stability of the threshold. 

If there are changes in the threshold behavior, relating these 

to properties of the prior itself may be useful. Changes from 

a baseline prior can be examined using the Kullback-Leibler 

distance of a posterior density p(Θ|x) from a prior p(Θ). 

This is given by:

 
KL p x p p x

p x

p
d( ( | ), ( )) ( | ) log

( | )

( )
Θ Θ Θ

Θ
Θ

Θ= ∫

This is always non-negative and is zero when p(Θ|x) and 

p(Θ) are equal. It is nonsymmetric but can be adjusted. The 

change in KL due to altering the form of the prior p(Θ) itself 

or altering the sparseness restriction can be associated to 

changes in phase threshold behavior. The use of this strategy 

is considered by Barber.31

Bayesian results in these settings should be interpreted 

carefully. While the prior allows for model structure and 

analysis of all p parameters, there are only n sources of 

information in the problem outside of prior belief.

Discussion
The problems reviewed and discussed here focus on a funda-

mental set of difficulties arising in the fitting of linear models 

in the p . n setting: restricted dimension, correlation, mis-

specification, identifiability, and the extension of the  linear 

model using various sparseness restrictions. These apply 

across a wide variety of research areas where large databases 

are becoming more common. The methods reviewed here are 

surprisingly hopeful given the nature of the p . n problem. 

Assuming there is indeed a true underlying model, the stan-

dard linear model structure can still be made to apply to many 

large datasets, assuming linearity is appropriate. Indeed, the 

underlying simplex-based nature provides hope that a core 

set of informative x
i
 variables can be detected and utilized 

to guide modeling and inference. As experience is gained 

in applying such large p, small n models, finding perspec-

tives allowing researchers to move from an ANOVA-based 

intuition to perhaps a large-sample simplex-based reference 

model and resulting conditional sample space interpretation 

will grow in importance.

The Bayesian setting provides useful flexibility through 

the choice of prior and using the prior to incorporate 

 restrictions. Many of the geometric concepts discussed here 

are not directly relevant to the Bayesian setting as the data 

is conditioned upon, though if the likelihood reflects an 

underlying normal distribution, the least squares aspect and 

correlation issues discussed above apply as they are relevant 

to the obtaining of identifiable posterior modal values. That 

said, Bayesian methods reflect backward fitting methods, 

incorporating the initial entire model, but requiring prior 

assessment on many model parameters. Related Bayesian 

phase threshold levels will reflect sparseness restrictions and 

the type of prior used to accommodate such restrictions.

From the perspective of the sample space, the restric-

tion p . n here can also be interpreted as inducing a type 

of large p versus n conditioning effect where conditional 

inference is seen in its broadest terms, assessing the proper-

ties of estimators for a model within a restricted portion of 

the original sample space, here given by the set of values 

defined by random rotations of the data simplex defining an 

(asymptotic) conditional sample space. This is essentially 

driven by the high degree of collinearity that restricts the 

model space. Sparseness, if correctly assumed, also restricts 

the sample space. These issues affect and motivate use of 

conditional procedures such as the bootstrap in assessing 

significance.

If there are potential nonlinearities in the underlying 

functional y ∼ x relationship implying model misspecification 

Table 4 example ranges of sample size, sparsity, and number of 
variables in relation to convergence

Values (0.1, 0.1) (0.2, 0.5) (0.6, 0.9)

k 0.01p 0.1p 0.54p
n 0.1p 0.5p 0.9p
(k,n) (with p=100) (1, 10) (10, 50) (54, 90)

(k,n) (with p=1,000) (10, 100) (100, 500) (540, 900)

Notes: Typical values at which the model attains convergence are shown. n is 
sample size, p the overall number of variables and k the level of sparseness.
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as defined above, the methods discussed here need careful 

assessment and may not be helpful. Practical challenges also 

lie in the need to develop visual and analytic tools that can 

detect and allow researchers to observe the presence of high-

dimensional correlation, spherical, and asymptotic simplex-

related structures. A motivation for further work is that these 

geometries may become more common as large data science 

in medical research becomes practical and accessible.
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