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Abstract: Chronic kidney disease (CKD) has shown an increasing prevalence in the last century. 

CKD encompasses a poor prognosis related to a remarkable number of comorbidities, and many 

patients suffer from this disease progression. Once the factors linked with CKD  evolution are 

distinguished, it will be possible to provide and enhance a more intensive treatment to high-risk 

patients. In this review, we focus on the emerging markers that might be predictive or related to 

CKD progression physiopathology as well as those related to a different pattern of response to 

treatment, such as inhibitors of the renin–angiotensin system (including angiotensin-converting 

enzyme inhibitors and angiotensin II receptor blockers; the vitamin D receptor agonist; salt 

sensitivity hypertension; and progressive kidney-disease markers with identified genetic 

 polymorphisms). Candidate-gene association studies and genome-wide association studies have 

analyzed the genetic basis for common renal diseases, including CKD and related factors such as 

diabetes and hypertension. This review will, in brief, consider genotype-based pharmacotherapy, 

risk prediction, drug target recognition, and personalized treatments, and will mainly focus on 

findings in CKD patients. An improved understanding will smooth the progress of switching 

from classical clinical medicine to gene-based medicine.

Keywords: angiotensin-converting enzyme, diabetes, hypertension, renal treatment, gene 

polymorphisms, biomarkers

Natural history and epidemiology  
of chronic kidney disease (CKD)
CKD is defined as a reduced glomerular filtration rate (GFR), increased urinary albumin 

excretion, or both, and is a growing public health issue.1 CKD progression is related to 

the GFR slope or key markers of renal damage (proteinuria or  albuminuria) in diabetic 

patients. The Kidney Disease Outcome Quality Initiative defined CKD as the presence 

of renal impairment with a glomerular  filtration rate (GFR) ,60 mL/min.2

The kidney is a key organ in the urinary system, acting as a filter of the blood, with 

homeostatic functions such as the regulation of electrolytes, control of blood pressure 

(BP), and maintenance of acid–base balance. It also modulates water imbalance, the 

reabsorption of several substances (such as glucose, water, and amino acids), and the 

excretion of urea and ammonium. Important hormones, calcitriol, erythropoietin, and 

the enzyme renin, are also synthesized by the kidney. In summary, kidney damage 

can contribute to disturbances in the equilibrium between exogenous and endogenous 

elements including drugs and metabolites.

CKD includes different types of renal disease. Glomerular disease is the main group, 

consisting of diabetic and hypertensive nephropathies, which are the leading causes of 
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CKD in developed countries.3 Other groups of CKD, such as 

glomerulonephritis and CKD of unknown causes (CKDU), 

are more common in countries in Asia and  sub-Saharan 

Africa, and account for 10% of CKD worldwide and 16% 

in India.4 Differences between countries are related mainly 

to chronic lifestyle-related diseases, decreased birth rates, 

and increased life expectancy in the developed regions. By 

contrast, infectious diseases continue to be prevalent in low-

income countries, secondary to poor sanitation, inadequate 

supply of safe water, and high concentrations of disease-

transmitting vectors.

There are many published studies focused on  traditional 

risk-initiating factors such as ethnicity, sex, age, hyperfiltration, 

diabetes mellitus, familiar history of CKD, metabolic syn-

drome, albumin excretion, cardiovascular disease,  primary 

kidney disease, and urological disorders.  Progression fac-

tors such as BP, smoking, uric acid, nephrotoxins, anemia, 

hypertension, dyslipidemia, obesity,  cardiovascular disease, 

proteinuria, inflammation, and hemostasis have also been 

evaluated.5

Aside from the conventional factors, new markers 

have also been implicated in CKD pathogenesis and pro-

gression; these new markers include: adiponectin, kidney 

injury molecule-1, liver-type fatty acid binding protein, 

N-terminal pro-brain natriuretic peptide, factors involved in 

calcium–phosphate metabolism, A-type natriuretic peptide, 

adrenomedullin, neutrophil gelatinase-associated lipocalin, 

apolipoprotein A-IV, asymmetric dimethylarginine, and some 

recently identified genetic polymorphisms.5

Prevalence of CKD is estimated to be 5%–16% world-

wide.6,7 Complications include increased all-cause and 

cardiovascular mortality, kidney-disease progression, acute 

kidney injury, cognitive decline, anemia, mineral and bone 

disorders, and fractures.8–10 The Epidemiology of Chronic 

Kidney Disease in Spain study estimated that approximately 

10% of the Spanish adult population had some degree of 

CKD, and similar values were also estimated from other 

epidemiological studies.11,12 CKD is reasonably prevalent,13 

symptoms do not appear until they are at an advanced stage, 

and progress occurs over several years, leading to end-stage 

renal disease (esrD).13 In this sense, early screening of CKD 

would be useful to facilitate diagnosis.

The incidence of esrD differs extensively worldwide: 

400 per million population per year in Taiwan; 300 per 

million population per year in USA and Mexico, and 

100–150 per million population per year in Europe.14 Depend-

ing on the country, there are several markers and risk factors 

for the progression of CKD. The increasing  prevalence of 

CKD generates concern about the cost of  treatment for esrD. 

Bochud et al15 describe that, despite the fact that prevalence 

of esrD is only about 0.2%, esrD  programs now account 

for 6.7% of total medicare expenditure, and medicare costs 

associated with esrD increased by 57% between 1999 and 

2004. 

Considering the increasing prevalence and economic 

impact of CKD in previous decades, genetic studies have also 

been used to define the gene phenotypes involved in renal 

impairment, such as those related to high serum creatinine 

levels and GFR, hypertension, diabetic nephropathy, focal 

segmental glomerulosclerosis, albuminuria, and esrD.17

Management issues in the  
treatment of CKD – clinical  
utility of pharmacogenomics
Here we review the link between CKD evolution and 

 treatment, and we also identify the emerging markers and 

their pharmacogenomics.

Management in the treatment of CKD
The incidence of CKD, as a serious public health disease with 

a high morbidity and mortality, is increasing. Proteinuria is 

a predictor of outcome, but genetic factors have also been 

related to the progression of renal disease. CKD management 

remains a clinical challenge.

In fact, the renin–angiotensin–aldosterone system 

(RAAS) is a major pathway involved in the pathogenesis 

and  progression of diabetic nephropathy,18 and the blockade 

of RAAS, which improves urinary protein levels, has been 

proven to reduce the slope of GFR in nondiabetic experi-

mental animals and humans compared with an intensified 

BP control.19,20

Classical treatments
We focused on two CKD preventive and therapeutic drugs 

and a complicating factor in CKD that are of potential interest 

in kidney pharmacogenomic applications: RAAS, Vitamin D 

receptor (VDR) agonists and salt-sensitivity. 

RAAS inhibitors
Angiotensin converting enzyme (ACE) inhibitors and angio-

tensin II receptor blockers (ARBs) under similar conditions 

of blood pressure improve the progression of esrD and 

reduce the proteinuria rate better than non-RAAS antihy-

pertensive drugs.18,21,22 Captopril was the first ACE inhibitor 

that is effective in slowing the progression of diabetic neph-

ropathy.21 Indeed, RAAS inhibitors are considered for use 
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in classical treatment for primary hypertension and involve 

two key approaches for CKD improvement, summarized by 

hemodynamic and antihypertensive changes as well as anti-

inflammatory and antifibrotic properties. The main mecha-

nism for both is the decrease of angiotensin II levels. With 

regard to inflammation, angiotensin II induces lymphocyte 

proliferation by nuclear factor-β (NF-kβ) activation.23 Fibro-

sis is attenuated by induction of extracellular-matrix proteins 

via transforming growth factor-β.24 On the other hand, hemo-

dynamic beneficial effects are based on the maintenance of 

glomerular capillary hypertension by RAAS inhibitors.25

vDR agonists
Several metabolic disturbances of CKD, such as acidosis, 

dyslipidemia, and vitamin D deficiency, could also be thera-

peutic targets for modifying the morbidity and mortality 

of CKD.26

Patients with esrD show a deficiency of 1,25(OH)2D3 

 vitamin D and, consequently, often undergo vitamin D therapy.27 

In fact, this therapy has been beneficial in  hemodialysis 

patients in terms of survival.28 In this sense, the analogue 

of vitamin D has been shown to attenuate kidney interstitial 

fibrosis29 and ameliorate glomerulosclerosis.30 Analogues of 

vitamin D have also been related to a decrease in albuminuria 

or proteinuria in CKD.31,32

The beneficial effects of 1,25(OH)2D3 on BP and CKD 

progression are mediated by the NF-kβ pathway33 and by 

direct inhibition of 1,25(OH)2D3 on the RAAS.34,35 Both 

NF-kβ and RAAS are involved in immune response and 

related inflammation, oxidative stress, and fibrogenesis.33,36 

Also, the prevention of secondary hyperparathyroidism by 

vitamin D treatment can ameliorate BP control.37

Salt sensitivity
Salt sensitivity of BP is still not well defined. It is accepted 

that a person could be considered salt-sensitive when BP 

increases by 5%–10% after a large increase in dietary 

salt intake.38 It has been described that dietary sodium 

intake have an impact on the efficacy of RAAS blockers in 

preventing CKD and cardiovascular disease.39 On the other 

hand, RAAS blockers’ antiproteinuric effect is impaired in 

patients with high sodium intake. An observational trial 

described that increasing sodium intake was associated with 

a linear increase in the risk of progression of esrD.40

Novel therapeutic approaches
Drugs focused on targeting inflammation and damaged 

systems (fibrosis, endothelin, oxidation, and advanced 

 glycation end products) could be beneficial in preventing 

CKD progression.41 

Bardoxolone methyl and palmitoylethanolamide are new 

drugs for the treatment of CKD that target inflammation. 

 Bardoxolone methyl, a first-in-class oral nuclear factor 

erythroid 2-related factor 2 agonist, seemed to have potential 

as a drug for improving renal function in advance diabetic 

nephropathy patients in a Phase II trial. However, in the 

Phase III study, the treatment had to be stopped due to 

emerging toxicity.42,43

On the other hand, palmitoylethanolamide belongs to 

a fatty acid ethanolamine family, and is a new and safe 

nonsteroidal, anti-inflammatory, and antifibrotic agent for 

CKD44,45 with activity at the peroxisome proliferator-activated 

receptor alpha.46–48

Clinical utility of pharmacogenomics
There are numerous reasons to address the pharmacogenomics 

that are related to different kidney functions and  treatments. 

Drug-treatment benefits in the pharmacogenomics of patients 

with kidney disease are based on avoiding nephrotoxic 

drugs, personalizing antihypertensive and cardiovascular 

drugs, and identifying the enzymes and proteins involved 

in the pharmacokinetics of drugs to improve renal function 

and BP.15 Therefore, renal pharmacogenomics encompasses 

three important issues: ACE inhibitors, VDR agonists, and 

dietary salt intake.

Forty-four genes are included in the Pharmacogenomics 

Knowledge Database as very important pharmacogenes 

for their effects on renal function and diseases.15 The most 

important genes involved in CKD disease are: CYP1A2 

and CYP3A5; ABCB1; and methylenetetrahydrofolate 

reductase.

Phase i enzymes (CYP1A2 and CYP3A5)
The large interindividual variability in drug response 

is heritable,49,50 and single-nucleotide polymorphisms 

(SNPs) in genes encoding drug-metabolizing enzymes are 

involved in CKD.

CKDU constitutes 10% of CKD, and no specific causative 

agents have been identified. However, environmental toxins 

and heavy metals may be involved,51,52 such as persistent 

organic compounds that include polychlorinated biphenyls, 

organochlorine pesticides, and dioxins. Organic toxins are 

detoxified by cytochrome P450 enzymes being the CYP1A1, 

the enzyme that is most involved in the metabolism of per-

sistent organic compounds. Several authors have reported 

the association of CYP1A1 polymorphism with various 
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diseases such as diabetes53 and neoplasia.54–56 The prevalence 

of homozygous CYP1A1*2A mutants ranges between 2% 

and 18%, and for the heterozygous TC ranges between 32% 

and 55%. Siddarth et al performed a case-control study to 

evaluate the association of CYP1A1 in patients with CKD, 

and observed that subjects carrying at least one mutant 

allele of CYP1A1*2A (TC, CC) and *2C (AG, GG) had 

a 1.4- to twofold increased risk of CKDU as compared to 

those with the wild-type homozygous genotype, ie, TT (*2A) 

and AA (*2C).57  However, other studies on Indian popula-

tions observed inter- and intra-ethnic variations of these two 

polymorphisms.58–60

CYP1A2
CYP1A2 enzyme is responsible for 13% of the cytochrome 

P450 activity and has a large number of endogenous and 

exogenous substrates. There is a great amount of interin-

dividual and inter-ethnic CYP1A2 variability due to both 

environmental and genetic factors. However, the mechanism 

of association between CYP1A2 and CKD is unknown, but 

probable mechanisms include an action mediated by CYP1A2 

substrates.

Compared to other CYP-family genes, there is little data 

on CYP1A2 pharmacogenomics and antihypertensive drugs. 

The main attention has been focused on antipsychotic drugs, 

theophylline, and melatonin.61 Antihypertensive-drug studies 

have been conducted with CYP2C9, which metabolizes dif-

ferent antihypertensive angiotensin II receptor antagonists, 

such as losartan, irbesartan, candesartan, and valsartan. 

CYP2C9 genotype has been shown to influence losartan 

metabolism, and response to irbesartan differed depending 

on CYP2C9 genotype.62

Nutrigenomic studies have been performed to provide 

a mechanistic hypotheses for the relationship between 

CYP1A2 and BP. An increased risk of myocardial infarc-

tion with increased coffee consumption was reported among 

carriers of the CYP1A2 C variant.63 Regular coffee or caffeine 

intake increases BP,64 but there is a tolerance to the acute 

cardiovascular effects. There is no clear evidence that regular 

caffeine intake in the long-term increases the incidence of 

hypertension in the CYP1A2 carriers.65,66

CYP3A5
There are a large interindividual and inter-ethnic varia-

tions in CYP3A5*1 allele frequency. The CYP3A5 gene is 

associated with BP control, but further studies are needed 

to confirm the relationship with salt sensitivity in humans.67 

One hypothesized mechanism is the conversion of cortisol 

into 6 beta-hydroxycortisol, by CYP3A5, in the kidney. 

However, results are not conclusive. It would be of major 

interest to also clarify the putative role of CYP3A5 activity 

on intestinal drug disposition following various dietary salt 

intake levels.

CYP3A4 and CYP3A5 show similar substrate specificity 

for each of amlodipine, felodipine, nicardipine, nifedipine, 

atorvastatin, pravastatin, cerivastatin, lovastatin, celiprolol, 

digoxin, diltiazem, enalapril, losartan, and verapamil.68,69 

However, the majority of pharmacogenetic studies are 

concentrated on tacrolimus and cyclosporine as CYP3A5 

 genotypes clearly influence the pharmacokinetics of the 

immunosuppressant tacrolimus.70 Only a few studies with 

small sample sizes have analyzed the role of CYP3A5 vari-

ants on the response to drugs used to treat  cardiovascular 

conditions. CYP3A5 variants appear to influence the 

pharmacokinetics of statins,71 and CYP3A5*1 carriers may 

experience a diminished pharmacological effect of vera-

pamil.72 Eap et al studied the combined action of CYP3A5 

and ABCB1 variants on BP, and observed that there was an 

association with altered response to lisinopril.73 A study of 

plasma amlodipine concentrations in 40 healthy Korean men 

observed that carriers of the CYP3A5*3/*3 genotype had 

lower levels of amlodipine than CYP3A5*1 carriers, but the 

BP decrease was similar in both groups.74

Transporters (ABCB1)
The ABCB1 gene encodes the P-glycoprotein (also named 

as Pgp, MDR1, and ABCB1), which belongs to the super-

family of human ABC transporters. It is also known as 

the multidrug resistance gene, and several ABCB1 genetic 

variants have been shown to influence Pgp expression in 

humans, including the 3435 C.T and 2677 G.T variants. 

Pgp is an efflux pump that transports endogenous sub-

strates (eg, steroids, lipids, phospholipids, and cytokines), 

drugs (eg, digoxin, cyclosporine, tacrolimus, diltiazem, 

verapamil, etc), and other exogenous substrates out of the 

cells.75 ABCB1 polymorphisms have been widely studied 

in transplant patients treated with cyclosporine, and it was 

observed that TT carrier patients on C3435T, G2677T, and 

C1236T SNPs (Pgp-low pumpers) showed lower Pgp activ-

ity than noncarriers.76

SNPs related to drug transporters have also been 

described in CKD patients. The C3435T SNP in the gene of 

ABCB1 that codify P-glycoprotein was correlated with renal 

function and BP in two Chinese populations.77 Patients with 

TT genotype showed an increased risk of CKD, and higher 

systolic BP and pulse  pressure. Results were similar in elderly 
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subjects, with CKD with a higher risk of CKD progression 

and hypertension. These authors concluded the importance 

of ABCB1 SNP in CKD specially in elderly population. 

The regulation of Pgp expression seems to be influenced by 

multiple nuclear receptors: namely, constitutive androstane 

receptor-beta78 and VDR.79–81

Although the role of ABCB1 genes are widely known 

in the field of transplant patients, the application in CKD 

progression and BP regulation is still not well defined. 

Nuclear receptors (vDR and PXR)
VDR is widely expressed in the human kidney, namely in the 

epithelial cells of the proximal and distal tubules, collecting 

duct, and glomerulus.82 VDR is a ligand-induced nuclear recep-

tor that regulates the expression of over 900 genes throughout 

the genome,83,84 such as ABCB1,79–81 CYP24A1,84 CYP3A4,85 

CYP3A7, FGF23,86 and SLC34A3. Most studies have attempted 

to correlate VDR polymorphisms with the development of sec-

ondary hyperparathyroidism.87 Grzegorzewska and Ostromecki 

described the distribution of variants of vitamin D-binding 

protein gene, VDR with respect to PTH serum concentrations, 

and response to cinacalcet treatment in patients with second-

ary hyperparathyroidism.88 Other studies have investigated the 

association of polymorphisms in the VDR gene with protection 

against esrD and periodontitis.89

Variants of VDR and variants within the VDR gene may 

influence renal function and BP, but there is a lack of conclu-

sive data on the association with renal function. In a study of 

people of Indian and African descent, vitamin D deficiency 

was significantly associated with increased diastolic BP and 

triglyceride levels, and reduced high-density lipoprotein 

cholesterol.90 There is evidence of associations between VDR 

variants and diabetes, which is a major CKD risk factor. Ran-

domized controlled trials have provided convincing evidence 

that VDR agonists confer renoprotection in humans.91–94

Although PXR is not currently considered to be a gene 

associated with BP or renal function, its role in controlling 

the expression of genes such as ABCB1 and CYP3A5, its 

involvement in steroid hormone metabolism, its action on 

lipid and energy metabolism, its action on inflammation, as 

well as its interaction with VDR all point toward PXR being 

an important player in kidney diseases. The role of PXR 

as a xenobiotic and endobiotic sensor, its ability to bind to 

a large array of ligands, and its numerous transcriptional 

gene targets suggest that PXR may mediate complex gene–

environment, drug–environment and drug–drug interactions 

with important consequences on human health, including 

kidney function.

ACe gene
The ACE gene encodes ACE, an enzyme involved in the 

RAAS and which plays a key role in BP control. There 

is a high interindividual variability in circulating ACE 

levels, with the 287-bp Alu-repeat sequence insertion/dele-

tion polymorphism located in intron 16 (ACE I/D) being 

the most extensively studied ACE genetic variant, with 

more than 4,000 publications during the past 20 years.95 

Other ACE variants have been described, and the genetic 

diversity of ACE is particularly high in people of African 

descent.96–98 The associations of the ACE I/D polymorphism 

with hypertension and cardiovascular disease have been 

inconsistent. Some authors suggest that testing for the 

ACE I/D polymorphism is useful for predicting the reno-

protective effect of ACE inhibitor or angiotensin-receptor 

blocker treatment in patients with kidney disease.99 There 

is currently no evidence to support a role of the ACE I/D 

polymorphism in predicting future risk of cardiovascular 

events or BP response to ACE inhibitors in the absence of 

renal dysfunction.

One of the first pharmacogenetic studies evaluating 

efficacy variability of ACE inhibitors on albumin excretion 

rates in nonhypertensive insulin-dependent patients with 

normoalbuminuria or microalbuminuria was conducted in 

1998.101 The application of ACE polymorphisms has been 

confirmed by different authors.100 Patients carrying the 

II genotype had a higher albuminuria reduction and bet-

ter BP control.101,102 In type I diabetic patients, the I allele 

had the best outcomes in terms of renal phenotypes (with 

decline in albuminuria and decreased BP),103–105 and type 

2 diabetic patients with the II genotype plus ID alleles 

had decreased mortality, esrD, and diabetes progression.106 

However, conflicting data exist as some other authors did 

not find a correlation between BP and ACE variants.107–109 

ARB-treatment outcomes have also been evaluated in 

different studies, and the data shows that DD genotype 

carriers have diminished renoprotection.105,110 A recent 

metaregression analysis evaluated 129 papers to study 

the effect of ACE I/D polymorphisms on CKD risk and 

concluded that the D allele had the highest risk for CKD 

in hypertensive Asian males (odds ratio, 3.75). 

Review of pathogenesis: specific  
genetic polymorphisms in CKD
Pathogenesis
CKD is a complex pathophysiologic process resulting from 

multiple etiologies. It is classified as a multifactorial disease 

secondary to a combination of genetic and environmental 
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factors that influence the onset and development of esrD.111 

Risk factors for development of CKD could be gathered in 

two groups: susceptibility to kidney disease due to sociode-

mographic and genetic factors; and exposure to variables that 

can initiate kidney disease. 

The main risk factors for CKD described in the literature 

include hypertension, obesity, and diabetes. The global preva-

lence of hypertension in adults was estimated to be about 26% 

(972 million cases) in 2000.112 Prevalence of  hypertension 

is higher in urban populations than in rural populations 

in developing countries (global prevalence is 639 million 

[66%]).113 The worldwide prevalence, adjusted for age and 

sex, is projected to increase to 1.56 billion by 2025. There-

fore, treatment of hypertension is one of the most important 

interventions in the pharmacological management of CKD. 

Similar trends are apparent for diabetes and obesity.114,115 

The worldwide prevalence of diabetes in adults is estimated 

to be 6.4%, affecting 285 million people, and is expected to 

rise to 7.7% by 2030 (439 million cases). The increase in 

overweight and obese children is particularly alarming.114 

Obesity raises BP physical compression of the kidneys by 

increasing renal tubular sodium reabsorption, impairing pres-

sure natriuresis, and by activating the sympathetic nervous 

system and RAAS.116

Genetic susceptibility is an important determining factor 

for the onset and/or progression of esrD and its complica-

tions, and different studies have identified new susceptibility 

loci for reduced renal function.117 Although environmental 

risk factors and interactions between genes and environment 

undoubtedly play an additional role, nontraditional risk 

factors such as oxidative stress, inflammation, and immune 

processes may be important contributors to the pathogenesis 

and progression to esrD.

Polymorphisms in CKD pathogenesis
Here we present genetic polymorphisms related to CKD and 

the progression to esrD (Table 1).

Inflammation could be a causal factor in the develop-

ment of CKD and may be established before the onset 

of renal disease. The inflammatory response involved in 

renal damage produces proinflammatory cytokines and 

chemokines, an increase of leukocytes, intensification 

of interstitial nephritis, and a progression of fibrosis. 

Recent studies have suggested roles for toll-like recep-

tor 9 (TLR-9) in the development of renal  diseases such 

as glomerulonephritis,118 lupus nephritis,119 and the 

 progression of immunoglobulin A nephropathy, and have 

also suggested that TLR-9 could be associated with severe 

clinical phenotypes.120,121 A case-control study observed 

significantly different allelic distribution of 1237T/C, 

but not 1486T/C or 1635G/A, between esrD patients and 

controls. Higher GFR values for patients with the TLR-9-

1237TT genotype were obtained, but differences were not 

statistically significant.122

Associations of 48 chemokine gene variants with esrD 

have been tested; however, the small sample size did not 

allow to detect moderate effects. The authors found associa-

tion between esrD and four SNPs.123 Two of them expressed 

protection (interleukin 4 receptor A/G and CCL2) and the 

other two expressed susceptibility (STAT4 binding site 

and nitric oxide synthase 3). However, after adjusting for 

multiple testing, the results were not significant. Singh et al 

found a significant association between a high risk for esrD 

and both CXCL2G801A and CXCR2, whereas CCL2I/D 

showed a reduced risk for esrD.124 In the process of CKD 

progression to the terminal stage, the cytokine-mediating 

angiotensin action (transforming growth factor-β1) could be 

also related as it is involved in the process of tissue sclerosis. 

With regard to that, Nabrdalik et al performed a case-control 

study and identified the mutant C allele as the related allele 

with the higher risk of CKD (twofold elevated risk).125 These 

results were similar to those observed by Buraczynska et al 

and Coll et al.126,127 In contrast, other authors did not find 

an association between transforming growth factor-β1 and 

CKD occurrence.128–130

Hypertension is second to diabetes as the leading 

independent cause of esrD. There is available evidence 

supporting the association of genetic variants of the RAAS 

and pharmacogenetic responses. ACE gene polymorphism 

(ACE-ID) has been associated with higher  circulating plasma 

ACE concentrations,131 and the molecular variant M235T of 

the AGT gene has been associated with higher plasma AGT 

levels in patients homozygous for the T allele.132 Polymor-

phisms related to treatment efficacy with ACE inhibitors and 

angiotensin II receptor blockers (ARBs) are explained in 

Table 1. Several studies have linked variants of AGTR1 with 

hypertension and heart diseases, but conclusive data related 

to esrD is lacking. The reduction of BP by ACE inhibitors 

is mediated by decreased formation of the vasoconstrictor 

angiotensin II, and by increased levels of the vasodilator 

bradykinin and endothelial nitric oxide synthase (eNOS). 

Bradykinin receptor B2 and eNos gene polymorphism could 

affect the response to ACE inhibitors, and was studied by 

Silva et al.133 The results showed that the C allele for eNOS 

and TT genotype for the bradykinin receptor B2 were more 

frequent in good responders.
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The MYH9 gene encodes for the non-muscle  myosin IIA 

heavy chain, a subunit of myosin IIA protein that is 

involved in several functions including cytokinesis, cell 

motility, maintenance of cell shape, and secretion. Recent 

studies have linked MYH9 SNPs/haplotypes to a risk of 

developing focal segmental glomerulosclerosis, hyperten-

sive nephropathy, and nondiabetic esrD among African 

and Hispanic Americans.134–138 Because African Americans 

seem to have greater risk than European Americans, even 

after considering socioeconomic status, a genome-wide 

admixture scan was performed to find genetic risk alleles. 

MYH9 genes were associated with two- to four-times 

greater risk of nondiabetic esrD. Multiple clusters of SNPs 

was performed and remained significant.137 As African 

Americans showed a higher risk for specific forms of 

CKD, the influence of MYH9 SNPs was studied in African 

ancestry populations. In diabetic participants, the G allele 

of rs5756152 was associated with a significant decrease in 

serum creatinine and GFR, but not in nondiabetic patients. 

Interactions by diabetic status were also signif icant, 

but rs12107 analysis showed no association with renal 

function.140

In a Spanish cohort of healthy elderly individuals, 

Tavira et al studied the effect of common MYH9 SNPs on 

renal function. The multivariate analysis showed that age, 

diabetes, sex, and the MYH9 genotype were risk factors 

for GFR ,60 mL/min/1.73 m2. MYH9 rs3752462 T carri-

ers had lower mean GFR compared to CC homozygotes.141 

Aside from MYH9 polymorphisms, variations in the gene 

encoding apolipoprotein L1 (APOL1) have recently been 

shown to be associated with kidney disease in African 

Americans.142–145 Fifteen MYH9 SPNs and two APOL1 

SNPs were studied in association with type 2 diabetes 

mellitus in European Americans. As reported previously, 

MYH9 polymorphisms were associated with type 2 

diabetes mellitus esrD susceptibility, and APOL1 could 

not be tested for as the frequency was not appreciable.139 

APOL1 variants have previously been studied and it was 

concluded that these polymorphisms were not present in 

European Americans or in Europeans.146 Polymorphisms 

in APOL1 related with CKD progression has been evalu-

ated in two populations: black African Americans with 

kidney disease and hypertension (African American 

Study of Kidney Disease and Hypertension); and black 

and white African and European Americans with chronic 

renal insufficiency (Chronic Renal Insufficiency Cohort 

study). Black subjects in the APOL1 high-risk group had a 

more rapid decline in GFR and a higher risk of composite T
ab
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renal outcome, defined as doubling serum creatinine or 

incident of esrD, compared to white patients.

Developments in  
pharmacogenomics – clinical  
implications and personalized  
therapies
In the last few decades, despite the fact that CKD diagnosis 

and progression risks are still based on clinical observations, 

there have been notable advances in genetic studies that have 

led to a more selective set of therapeutic strategies.147 Herein, 

we review some of the potential applications of genotyping 

that have benefits for CKD risk prediction, guided treatment, 

and guided individualized strategies.

Nowadays, diagnosis and determination of risk factors 

based on genotyping is available for many disorders such 

as breast cancer (by testing BRCA 1 and 2).150 However, in 

CKD patients, definitive DNA-based diagnostics and risk 

prediction have not yet been made available.17

However, recent studies in African-American patients 

of nondiabetic CKD have profiled possible risk factors in 

polymorphisms of apolipoprotein L-I genes136,144,145 and of the 

non-muscle myosin heavy chain type II isoform A.136,137

The benefits derived from pharmacogenetics are aimed 

at individualizing treatments, reducing drug side effects, and 

improving drug efficacy. For example, the effects of poly-

morphism of genes in the cytochrome P450 enzyme complex 

are widely known, and genetic tests for this polymorphism 

before receiving treatments are routinely practiced.151,152 

Also, patients with stage 5 esrD undergoing hemodialysis 

may present allelic variants in the cytochrome P450 2D6 

(CYP2D6), which would be determinant in the metabolism 

of codeine into morphine, thus pointing to different sus-

ceptibility to morphine.153 Other therapeutic applications 

focusing on treatment with atenolol and enalapril have been 

identified involving polymorphism of ACE; the suggestion of 

these applications is that homozygous patients with a dele-

tion allele may benefit from other antihypertensive drugs.154 

These novel applications in pharmacogenomics that involve 

personalized treatment of patients with CKD provide clini-

cians with key management tools that are far from classical 

treatments. 

Studying genetic variants may be helpful for personal-

ized therapeutic strategies. Those genetic variants that would 

allow prediction of risks relative to drug exposure could guide 

physicians in evaluating cost-effectiveness of new strategies 

in CKD patients. For example, deletion polymorphism in 

the CC-chemokine receptor 5 (CCR5) gene (CCR5∆32), 

which is known to cause a dysfunctional CCR5 protein, 

has been related to an improvement of inflammatory state 

with better survival.155,156 Therefore, patients with esrD 

undergoing hemodialysis and, thus, suffering from a well-

known persistent inflammatory state (ie, wasting syndrome) 

would potentially benefit from a blockade of CCR5 based 

therapy.18,157 Glutathione S-transferase M1 (GST M1) null 

allele is another polymorphism related to CKD progression 

caused by deletion in the GST M1 gene and related to oxida-

tive damage protection.158,159 In fact, hemodialysis patients are 

exposed to a higher oxidative stress status, and it has been 

shown that hemodialysis patients homozygous for the GST 

M1 null allele had higher risk for death compared with those 

who possess GST M1 activity.160

Interestingly, uremic milieu (which includes oxidative 

stress), wasting syndrome, inflammation, anemia, vascular 

calcification, and concerns associated with dialysis would 

render patients with CKD more susceptible to genetic vari-

ants.155,161–163 Knowing these interactions of the gene envi-

ronment could be helpful in clinical practice in addressing 

patients’ nutritional habits and lifestyle.164 In fact, renal-

function impairment per se has been considered an environ-

ment factor, varying the effect of two polymorphisms of 

RAS (AGTR1 A1166C and ACE insertion/deletion) on left 

ventricular hypertrophy.165–170 Another example of gene–

environment interaction that has been established is in the 

susceptibility of some patients to respond to ACE inhibitors 

depending on dietary sodium intake and the ACE deletion/

deletion genotype, which would encourage the prescription 

of a salt-restricted diet in those patients with this genotype 

variant.171

It has been questioned whether epigenetics is involved 

in esrD progression.172 In fact, inflammation, atherosclerotic 

processes, and aging are related to DNA methylation and 

act as catalyzers in the poor prognosis of the cardiovascular 

disease in dialysis patients.155,161,172,173 These findings highlight 

the importance of targeting the epigenome with epigenetic 

drugs. Therapeutic applications of epigenetics in patients 

with CKD, and even in patients with esrD, could be focused 

on RNA interference, which is crucial in renal homeosta-

sis, mainly linked to podocyte dedifferentiation-related 

proteinuria.174–177 Hyperhomocysteinemia has been described 

in CKD and esrD patients.173,178 These patients showed high 

levels of S- adenosylhomocysteine, causing hypomethylation 

of DNA.

Thus, glomerular and interstitial f ibrosis could be 

related to epigenetic modifications trough transcriptional 
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 regulation.77,179–181 The interest in epigenetics in clarifying 

hypertensive and diabetic CKD is increasing.

In this sense, as CKD incidence has been increasing in 

recent years, utilizing the potential therapeutic benefits of 

interventions to prevent esrD may be helpful in reducing the 

economic and clinical impact of CKD.18

Conclusions
Interesting approaches to in-depth pharmacogenetics are 

increasing for tailored medicine. In fact, nowadays, high-risk 

CKD patients could be detected by genotype information. 

Nevertheless, these techniques assume high cost and must 

be optimized alongside classical clinical tests. Advances in 

technology in gene sequencing with epigenetic investigation, 

as well as well-designed studies on gene–gene interactions, 

gene–environment interactions, and DNA modifications 

(epigenetics), may improve our knowledge of CKD-related 

genes and subsequent patient care. These genetic markers 

could be useful for the prediction of CKD progression, 

but clinical risk factors remain more valuable in terms of 

prediction. However, further technical developments and 

epidemiological experimental data are still needed to dem-

onstrate and establish the most cost-effective approach. 

The bulk of information in pharmacogenomics published 

nowadays is targeted at expanding this field of information, 

although physicians must be critical in their analysis and 

interpretation of the results. 

Given that CKD is a complex disorder, and that it can 

benefit from genetic testing, further challenges include study-

ing proteins, transcripts, and metabolites in order to correlate 

them with genetic data, improve clinical outcome, and lead 

to routine genetic tests in the clinical care of CKD. 
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