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Abstract: HDAC6 is an enzyme that regulates a variety of biological pathways in dividing 

cells, but also in post-mitotic neurons. In these cells, different cellular functions and survival 

are dependent on HDAC6-mediated processes such as intracellular trafficking, antioxidation, 

chaperone-mediated stress responses, and protein degradation. As a consequence, the interest 

in HDAC6 as a potential target to treat several neurodegenerative disorders has grown signifi-

cantly over the last decade. This review summarizes the current knowledge on the interaction 

partners and functions of HDAC6 as well as the most important arguments for its involvement 

in several neurodegenerative diseases. As many of these disorders are hallmarked by alterations 

in HDAC6-mediated pathways, it is hypothesized that HDAC6 could play a pivotal role in the 

pathophysiology of neurodegeneration. HDAC6-dependent deacetylation of its substrates could 

result in neurotoxicity, while the ubiquitin-dependent functions of HDAC6 could be essential 

for neuroprotection. Therefore, targeting the deacetylating activity of HDAC6, while leaving 

its other functions unhampered, might be an interesting strategy to treat neurodegenerative 

disorders.
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Introduction
Histone deacetylases (HDACs) are enzymes that play an important role in transcrip-

tional regulation by epigenetic modification of histones.1 Furthermore, some members 

of the HDAC family influence a variety of cellular processes through the modulation of 

non-histone substrates such as α-tubulin, ubiquitin, HSP90, cortactin, peroxiredoxins, 

and several transcription factors.2–7

The HDAC family consists of 18 members, subdivided into four groups. According 

to their sequence homology to the yeast Rpd3 protein, HDAC1, 2, 3, and 8 are catego-

rized as class I HDACs. These enzymes are ubiquitously expressed and localized in the 

nucleus, where they can influence transcription of genes.8 Class II HDACs, homologs 

of the yeast Hda1, show tissue-specific expression and are able to shuttle between the 

cytoplasm and the nucleus. They are further subdivided into class IIa (HDAC4, 5, 7, 

and 9) and IIb (HDAC6 and 10). Finally, HDAC11 is the only member of the class IV 

HDACs with similarities to the catalytic domains of both class I and II deacetylases.9 

Class I, II, and IV HDACs are also referred to as the conventional HDACs and 

require Zn2+ as a cofactor for their deacetylating activity.10 The nicotinamide adenine 

dinucleotide-dependent sirtuins 1–7 are another class of HDAC enzymes (class III) 

and are homologs of Sir2 in yeast.11
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Over the last decade, HDACs have been extensively 

studied for their role in cancer. Through histone deacetyla-

tion, the transcriptional regulation of tumor suppressor genes 

or oncogenes can be altered to influence the progression of 

cancer.12 As a consequence, HDAC inhibitors are a relatively 

new class of anticancer agents that induce cell cycle arrest 

and apoptosis in cancer cells and can reduce tumor growth.13 

Although there are multiple clinical trials ongoing with 

broad spectrum HDAC inhibitors, only a handful of class- 

or isoform-specific inhibitors are currently being tested in 

cancer-related studies. In general, HDAC inhibitors are well 

tolerated but some patients encountered adverse side effects 

such as nausea, thrombocytopenia, and fatigue.14 It is antici-

pated that isoform-specific inhibitors could have an improved 

efficacy and will be better tolerated during chronic treatment. 

From that perspective, the functions of specific subtypes of 

HDACs have been intensively studied and selective HDAC 

inhibitors are being developed.15

In particular, the interest in HDAC6 has grown over the 

past few years. It possesses some unique structural charac-

teristics compared to the other HDAC isoforms. HDAC6 has 

two functional N-terminal catalytic deacetylating domains, a 

C-terminal zinc finger ubiquitin-binding domain (ZnF-UBP) 

and a specific tetradecapeptide repeat domain (SE14) that, 

together with two leucine-rich nuclear export sequences, 

promotes its cytosolic retention.16 These unique features allow 

HDAC6 to interact with non-histone substrates of which 

α-tubulin, poly-ubiquitinated proteins, and HSP90 are the 

most studied ones.2,3,6 As such, HDAC6 can influence a wide 

range of cellular processes including cell growth, migration, 

and survival, but also protein degradation and intracellular 

trafficking. These latter processes are of pivotal importance 

for post-mitotic cells including neurons, which rely on effi-

cient protein degradation and axonal transport for normal 

functioning. As a consequence, HDAC6 has emerged as a 

potential target for the treatment of different types of cancer 

as well as several neurodegenerative disorders, including 

Alzheimer’s disease (AD), Parkinson’s disease (PD), Hun-

tington’s disease (HD), and amyotrophic lateral sclerosis 

(ALS). This review will focus on the cellular functions of 

HDAC6 and its implications as a therapeutic target in differ-

ent neurodegenerative diseases.

The molecular functions of HDAC6
Regulation of microtubule dynamics  
by deacetylation of α-tubulin
Microtubules are cellular structures composed of α- and 

β-tubulin heterodimers that polymerize and depolymerize 

in a dynamic manner. Post-translational modifications of 

α-tubulin control these dynamics17,18 and influence cell 

division, cell–cell interactions, cell migration, and intracel-

lular trafficking.19 The discovery of α-tubulin as a substrate 

for HDAC6 improved the insights in microtubule dynamics 

and its biological significance. HDAC6 tightly regulates 

deacetylation of α-tubulin, which correlates to microtubule 

dynamics and proper functioning.20–22 Overexpression of 

HDAC6 completely deacetylates microtubules, while sup-

pression of HDAC6 function, either by pharmacological 

inhibition or by small interfering RNA, elevates the levels of 

acetylated α-tubulin, both in vitro and in vivo.20,22

Dynamic microtubules do not only orchestrate cell divi-

sion, cell differentiation, and motility in dividing cells,23 but 

they are also of vital importance in post-mitotic neurons.24 

These highly polarized cells require axonal transport of car-

gos from the cell body to the synapse and vice versa for nor-

mal cell function, neuronal plasticity, and survival. For this, 

neurons rely on the microtubule network, which functions as 

a track for molecular motors such as the kinesin and dynein 

superfamilies.25,26 Acetylation of α-tubulin improves the 

interaction between the motor protein kinesin-1 and micro-

tubules and promotes axonal trafficking.27 HDAC6 inhibition 

also improves the binding of kinesin-1 to α-tubulin28 and 

HDAC6 can directly bind to p150glued – a component of the 

dynein/dynactin motor complex.29 Indeed, knockdown of 

HDAC6 increases α-tubulin acetylation, the recruitment of 

kinesin-1 and dynein to microtubules, and enhances mito-

chondrial transport along the axon in cultured neurons.27,28,30 

In addition, other cellular pathways influence mitochondrial 

transport by regulating HDAC6 activity. For example, inhi-

bition of the GSK-3β signaling pathway decreases HDAC6 

activity, which in turn improves intracellular trafficking 

in hippocampal neurons.31 Taken together, HDAC6 can 

influence axonal transport, either directly by deacetylating 

α-tubulin or indirectly by binding to motor proteins. For these 

reasons, HDAC6-mediated deacetylation is thought to be an 

important regulator of axonal transport in neurons.

Regulation of the actin cytoskeleton  
by deacetylating cortactin
In addition to its role in microtubule-dependent processes, 

HDAC6 can also influence remodeling of the actin cytoskel-

eton through deacetylation of cortactin.4 After stimulation 

with growth factors, cortactin translocates to the membrane 

ruffles where it can bind F-actin to promote cell migration.4 

HDAC6 is also enriched in these membrane ruffles where it 

deacetylates cortactin. Overexpression of HDAC6 improves 
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the binding capacity of cortactin to F-actin and increases 

actin polymerization in vivo, whereas HDAC6 knockdown 

reduces cell motility.4

Regulation of the antioxidant  
reactivity through peroxiredoxins
Peroxiredoxins are antioxidants whose main function is to 

reduce H
2
O

2
 concentrations in cells.32 PRXI and PRXII have 

recently been added to the list of HDAC6 substrates. Under 

conditions of extreme oxidative stress, intracellular H
2
O

2
 

concentrations reach a critical threshold after which PRXI 

and PRXII oligomerize to high-molecular-weight complexes. 

After this transformation, peroxiredoxins lose their peroxi-

dase activity and function as molecular chaperones instead 

of antioxidants.33 Interestingly, high levels of acetylation 

improved the reducing activity as well as the resistance 

to oligomerization and overoxidation of PRXI and PRXII 

in vitro.7 Inhibition of the deacetylating function of HDAC6 

restores the peroxidase activity of PRXI and PRXII during 

periods of high oxidative stress.7 In conclusion, these results 

indicate that inhibition of HDAC6 can result in a beneficial 

increase of antioxidant reactivity of peroxiredoxins.

Regulation of the anti- 
inflammatory response
In health, the immune system is in perfect homeostasis. 

Upon infection or disease, the proinflammatory response 

is enhanced to eliminate toxic insults. Once the pathogen 

is cleared, anti-inflammatory signals temper that response 

in order to preserve the surrounding tissue. However, aber-

rant activation of the immune system can result in chronic 

inflammation, which is often observed in neurodegenerative 

disorders such as AD, PD, and ALS.34,35 Key regulators of 

inflammation are Foxp3-expressing regulatory T-cells. These 

cells reduce the expression of proinflammatory cytokines and 

suppress the activation of effector T-lymphocytes, thus tem-

pering immune reactions that are detrimental for the host and 

restoring immunological homeostasis.36 Recently, HDACs 

have been implicated as modulators of the immune response 

by promoting the expression of proinflammatory genes and 

HDAC inhibitors are emerging as anti-inflammatory agents.37 

Although it was suggested that the immunosuppressive effects 

were due to histone modification, HDAC6 has been shown to  

regulate the Foxp3+ regulatory T-cells through HSP90 

modulation.38 Genetic deletion or pharmacological inhibition 

of HDAC6 increased the suppressive activity of regulatory 

T-cells in models for autoimmunity and prevented allograft 

rejection.38 Since improving the regulatory T-cell function 

limits neuroinflammation,39,40 HDAC6 inhibitors could 

reduce chronic inflammation in autoimmune disorders and 

neurodegeneration.

Regulation of the chaperoning  
activity of HSP90
In 2005, HSP90 was identified as a substrate of HDAC6.3 

This molecular chaperone fulfills a pivotal role in diverse 

signaling pathways. It facilitates the maturation and assembly 

of transcription factors and other client proteins by improv-

ing their stability as well as their activity.41 It was shown 

that HDAC6 regulates the chaperone activity of HSP90 by 

reversible deacetylation.3 Furthermore, HSP90 binds to and 

regulates the activity of HSF1, a key enzyme in the response 

to cellular stress.42 As discussed in the section on autophagy, 

HDAC6 was identified as a component of a repressive com-

plex where it senses the presence of ubiquitinated aggregates 

and triggers the dissociation of this complex, activating 

a protective response to cytotoxic insults.43 As HDAC6 

regulates HSP90 activity, it most likely is a modifier of pro-

oncogenic pathways mediated by HSP90. Indeed, both HSP90 

inhibitors44 and HDAC6 inhibitors45 are useful as anticancer 

therapies by destabilizing the HDAC6–HSP90 interactions. 

Furthermore, a recent study reported that both HDAC6 

silencing and HSP90 knockdown in preclinical models of 

prostate cancer result in a downregulation of the androgen 

receptor and Akt expression, counteracting the resistance of 

tumor cells to hormone therapy.46 These results indicate that 

HDAC6 potentially modulates the function of other proteins 

by regulating HSP90 activity. In contrast to this, a recent 

study suggests that the positive effects of HDAC6 inhibition 

in prostate cancer cells correlates with cortactin-dependent 

cell motility rather than HSP90 regulation.47

Regulation of cellular pathways for 
protein-induced stress responses
Cells are able to cope with stress induced by abnormal 

proteins through a variety of pathways such as the ubiquitin-

proteasome system and autophagy (Figure 1).

The ubiquitin–proteasome system
The ubiquitin–proteasome system is the main cellular mecha-

nism for protein degradation. Misfolded or damaged proteins 

receive a poly-ubiquitin tag, after which they are directed to 

the proteasome for subsequent degradation.48 However, when 

the protein load is too high, the proteasome can become satu-

rated and cytotoxic aggregates will accumulate. In such cases, 

often observed in neurodegenerative disorders,49 cells must 
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rely on alternative pathways to deal with protein-induced 

stress. The cytotoxic aggregates can then be cleared by 

chaperone-mediated autophagy or by macro-autophagy.

Autophagy
Degradation of proteins and organelles inside cellular inclu-

sions was first described by Christian de Duve in 1963.50 

This catabolic process is used for the recycling of cellular 

components to generate macromolecular building blocks and 

includes three different types: unselective micro-autophagy, 

macro-autophagy, and chaperone-mediated autophagy 

(Figure 1). In micro-autophagy, cytosolic components are 

directly engulfed by invagination of the lysosomal membrane 

for degradation. During macro-autophagy, also referred to 

as the endoplasmic reticulum-associated degradation path-

way, the cytosolic substrates are surrounded by a double 

membrane, which initiates primarily from the endoplasmic 

reticulum, forming the autophagosome. In later stages, 

this structure fuses with lysosomes and subsequently the 

substrates are degraded.51 Unlike conventional micro- and 

macro-autophagy, chaperone-mediated autophagy does 

not require the formation of autophagosomes. Instead, the 

substrates contain a consensus sequence that is recognized 

by Hsc70, after which Hsc70 and its co-chaperones form 

a complex and interact with LAMP-2A. This interaction 

is followed by direct translocation of the substrates across 

the membrane to the lysosomal lumen for subsequent 

degradation.52 Interestingly, HDAC6 has been reported to 

play a role at different levels in these processes that cope 

with cytotoxic aggregates.43

First of all and due to the high-affinity binding of HDAC6 

to ubiquitin, it was suggested that chaperones are involved 

in the regulation of the ubiquitin-dependent functions of 

HDAC6.53 A beacon molecule in the degradation pathway is 

the chaperone-like 97 kDa VCP/p97. This adenosine triphos-

phatase associated with diverse cellular activities plays a 

26S proteasome

Retrograde transpost

HDAC6HDAC6

HDAC6

HDAC6

HSP90 HSF-1

+ Hsc70/
cochaperones

Hsc70 recognition
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Autophagosome

LAMP-2A

Lysosome
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E3

E2

E1

ub
ATP

AMP

ub
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ub

ub ub
VCP

VCP

Motor protein complex

IV. Micro-autophagy

II. Micro-autophagyI. UPS III. CMA

Aggresome formation
Proteasomal
degradation

Figure 1 The role of HDAC6 in multiple degradation pathways of the cell.
Notes: (i) UPS: under physiological conditions, abnormal and misfolded proteins are degraded through the UPS. First, these proteins receive a poly-ubiquitin tag via a multistep 
pathway involving several ligases and conjugation enzymes (e1–e3). Next, vCP/p97, currently dominating in the vCP/p97–HDAC6 complex, dissociates ubiquitinated proteins 
from HDAC6 and activates the UPS. Substrates will then be transported to the proteasome for degradation. (ii) Macro-autophagy: under pathological conditions, the UPS 
system can be saturated or dysfunctional. in such cases, cells rely on the aggresome and/or macro-autophagy for the degradation of cytosolic components to provide cells 
with necessary building blocks and reduce cellular stress. when ubiquitinated proteins accumulate, the vCP/p97–HDAC6 balance will shift in favor of HDAC6. Next, 
HDAC6 couples the aggregates to the motor protein complex for retrograde transport. in the perinuclear region, these accumulating proteins form the aggresome, which 
will be engulfed by a double membrane together with other cytosolic components (eg, mitochondria), to form an autophagosome. HDAC6 further mediates the maturation 
of the autophagosome and promotes their fusion with the lysosome, where the content will be degraded. (iii) CMA: under stress, cells will activate a pathway called the 
heat shock response. HDAC6 forms a complex with the chaperone HSP90 and the transcription factor HSF1. After detecting ubiquitinated proteins, HDAC6 mediated the 
dissociation of the complex, resulting in the release and activation of HSF1. This will promote the transcription of different heat shock proteins and co-chaperones. These 
factors will form a complex that can recognize proteins and delivers them to the lysosome via LAMP-2A. (iv) Micro-autophagy: the last form of autophagy is micro-autophagy. 
HDAC6 promotes the maturation of lysosomes, which can then engulf cytosolic components directly by invagination. in contrast to macro-autophagy, the formation of 
autophagosomes is not required.
Abbreviations: CMA, chaperone-mediated autophagy; UPS, ubiquitin–proteasome system.
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pivotal role in the targeting of poly-ubiquitinated proteins to 

the proteasome, a process that can be subdivided into three 

steps. First, substrates that require degradation have to be 

recognized, which is mediated by the ubiquitin conjugation 

system. Second, poly-ubiquitinated proteins are translocated. 

Finally, these proteins are degraded by the 26S proteasome.54 

VCP/p97 governs critical steps in this process such as retro-

translocation and transportation of ubiquitinated proteins 

to the proteasome.55 The interaction between VCP/p97 and 

HDAC6 is important in the decision whether ubiquitinated 

proteins are cleared by proteasome-mediated degradation or 

by macro-autophagy. Indeed, it was shown that VCP/p97 

interacts with HDAC6 and can exert its segregase activity 

to release HDAC6 from ubiquitinated proteins, favoring 

proteasomal clearance (Figure 1).56 However, when excess 

proteins accumulate and aggregate, the VCP/p97–HDAC6 

balance will shift. This can be due to a decrease in VCP/p97 

levels, an increase in HDAC6 expression, or both. It allows 

HDAC6 to mediate protein delivery to the dynein/dynactin 

motor complex for retrograde transport and induce the for-

mation of an inclusion body, also known as the aggresome.57 

These data indicate that HDAC6 does not only link protein 

ubiquitination to the proteasome, but also to the cytoskeleton-

dependent degradation and autophagy.6

Second, HDAC6 interacts with HSP90 and regulates its 

chaperone activity as mentioned above.3 Together with HSF1 

and HSP90, HDAC6 forms a complex in which HSF1 is 

maintained in an inactive form by HSP90. HDAC6-mediated 

detachment of the HSP90/HSF1 complex is required for 

activation of the heat shock response. It was suggested that 

HDAC6 forms a bridge between protein-induced stress and 

activation of this pathway in neurons that are continuously 

exposed to toxic insults during the course of disease.43 After 

detecting the presence of ubiquitinated proteins, HDAC6 will 

deacetylate HSP90, promoting dissociation of the HDAC6/

HSP90/HSF1 complex and stimulating a heat shock response. 

Heat shock proteins are known to associate with ubiquitinated 

proteins, to induce chaperone-mediated autophagy, and to 

prevent the formation of cytotoxic aggregates.58 In addition to 

its well-known role in malignancies, HSP90 is also important 

for maintaining the stability of neuronal proteins associated 

with neurodegenerative disorders, which could promote the 

accumulation of toxic aggregates.59 As a consequence, modu-

lation of HDAC6 activity could be a therapeutic strategy in 

neurodegeneration.

Third, a study from Pandey et al suggested that autophagy 

compensates for proteasome deficiency in an HDAC6-

dependent manner.60 Although HDAC6 is not essential for 

autophagy activation per se, it seems to be implicated in 

the maturation of lysosomes and their subsequent fusion 

with autophagosomes.61 The molecular determinants for the 

formation of autophagic vacuoles and maturation of these 

autophagosomes are called Atg proteins.62 Lysosomes and 

Atg proteins are recruited to the perinuclear aggresome by 

a process that requires HDAC6.61 In fact, loss of HDAC6 

impairs the recruitment of lysosomes and LC3, a well  

established indicator for autophagic processing, to the 

aggresome.63 Furthermore, the F-actin cytoskeleton is also 

essential in autophagosome–lysosomal fusion.64 F-actin 

remodeling is regulated through reversible deacetylation of 

cortactin and is thus controlled by HDAC6.4

In conclusion, HDAC6 is required for 1) retrograde 

transport of ubiquitinated aggregates – functioning as a 

bridge between ubiquitin and the dynein/dynactin motor 

complex, 2) formation of the aggresome, and 3) fusion of 

autophagosomes with lysosomes through modulation of the 

F-actin cytoskeleton.43,63–65

Stress granules
HDAC6 has been associated with stress granules –  cytoplasmic 

structures in which a reversible block of messenger RNA 

(mRNA) translation occurs after cellular stress.66 Dysfunction 

of the proteasome does not only induce autophagy but also 

an increased formation of stress granules.67 Intriguingly, 

HDAC6 co-localizes with stress granules and interacts with 

G3BP – another stress granule protein.68 Phosphorylation of 

G3BP reduces the interaction with HDAC6 and decreases 

the formation of stress granules. Furthermore, disruption of 

the microtubules or the dynein/dynactin motor complex, as 

well as pharmacological or genetic inhibition of HDAC6, 

abolishes the formation of stress granules.68 These results 

indicate a modulatory role for HDAC6 in both autophagy and 

the formation of stress granules after cellular stress.

Conclusions on HDAC6 mechanisms
In summary, HDAC6 functions as an important regulator in 

a variety of biological pathways in dividing cells, but also in 

post-mitotic neurons. In these cells, survival is more depen-

dent on HDAC6-mediated processes such as intracellular traf-

ficking, antioxidation, chaperone-mediated stress responses, 

and protein degradation.7,28,43,65 Over the last decade, interest 

in the role of HDAC6 in disease has grown significantly, 

especially its role in cancer (reviewed in Aldana-Masangkay 

and Sakamoto69) and in neurodegeneration (discussed in the 

next part of this review in which we highlight the key role of 

HDAC6 in neurodegeneration). In neurons, it was suggested 
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that HDAC6 plays a dual role as it balances between 

neuroprotection and neurodegeneration.9 HDAC6-dependent 

deacetylation of its substrates can shift the balance towards 

neurotoxic insults, whereas the ubiquitin-dependent activities 

of HDAC6 promote neuroprotection. As a consequence, the 

use of compounds that specifically inhibit the deacetylat-

ing activity of HDAC6, while leaving its functions in stress 

response and protein degradation unaltered, might be the 

treatment of choice for several diseases, including neurode-

generative disorders. Several HDAC6-specific inhibitors with 

improved brain permeability are being developed, enhancing 

their therapeutic potential in neurodegeneration.70 To date, 

only one HDAC6 inhibitor (ACY-1215) is being tested in a 

clinical trial for multiple myeloma.71 The bioavailability in 

the central nervous system has not been studied in humans 

so far, but it would be interesting to evaluate its potential for 

clinical use in neurological disorders.

HDAC6 as a key player  
in neurodegeneration
AD, PD, HD, ALS, spinal muscular atrophy (SMA), and 

Charcot–Marie–Tooth disease (CMT) are well known 

examples of neurodegenerative disorders. These diseases 

have some pathophysiological hallmarks in common. 

These include amongst others: dysfunctional mitochondria, 

reduced axonal transport, abnormal aggregation of misfolded 

proteins, and increased oxidative stress.72–75 Intriguingly, 

HDAC6 fulfills a regulatory role in many of these processes 

as discussed in the first part of this review on the molecular 

functions of HDAC6. This part of the review summarizes the 

available information on HDAC6 involvement in different 

neurodegenerative disorders (Table 1).

AD
AD is the most common form of dementia characterized by 

the deposition of amyloid-β
42

 plaques and neurofibrillary 

tau tangles. This leads to neuronal loss in specific areas of 

the brain. Abnormal tau phosphorylation and subsequent 

accumulation of neurofibrillary tau tangles was proposed to 

compromise microtubule dynamics and neuronal function.76 

As HDAC6 directly binds to tau, both in vitro and in vivo, 

and influences the phosphorylation and incorporation of tau 

into neurofibrillary tau tangles, it is a potential modifier of 

AD pathology.77,78 A positive correlation between HDAC6 

and tau burden was reported as a loss of HDAC6 function 

or expression attenuates the phosphorylation of tau and 

promotes its clearance.77,79 This was confirmed in a mouse 

model for AD treated with two different HDAC6 inhibitors.80 

More recently, it was confirmed that HDAC6 inhibition 

or deficiency modulates tau acetylation, phosphorylation, 

and isoform expression in oligodendrocytes,81 emphasizing 

the link between HDAC6 and AD. Furthermore, HDAC6 

expression is upregulated in hippocampal neurons exposed 

to amyloid-β plaques in vitro,82 in the brain of a mouse 

model for AD,82 and in the hippocampus of AD patients.77,83 

A recent study found similar HDAC6 levels in the temporal 

neocortex of AD patients and controls,84 indicating that the 

increase in HDAC6 expression is limited to hippocampal 

neurons, especially those with a high tau burden. These 

studies suggest an HDAC6-mediated compensatory response 

to stress. Unexpectedly, another study found an increase in 

the acetylation level of α-tubulin in the same brain region of 

AD patients in combination with an upregulation of HDAC6 

expression.83,85 This discrepancy might be explained by the 

fact that tau directly inhibits HDAC6 function.83 It could be 

that neurons activate a compensatory increase in HDAC6 

expression to deal with the protein stress following the accu-

mulation of amyloid-β and tau. However, the excess tau can 

directly inhibit the function of the HDAC6 protein resulting 

in increased α-tubulin acetylation.77,83

Despite these conflicting results, the potential use of HDAC6 

inhibitors as a treatment for AD was emphasized by two inde-

pendent studies in which it was shown that specific HDAC6 

inhibition can rescue the deficits in mitochondrial transport 

induced by amyloid-β toxicity in hippocampal neurons.28,82 

Similarly, inhibition of the deacetylase activity of HDAC6 

restores tau-induced microtubule defects in  Drosophila86 and 

cognitive defects in AD mice.87 The finding that reducing endog-

enous HDAC6 ameliorates cognitive deficits in a mouse model 

for AD by restoring α-tubulin acetylation and mitochondrial 

trafficking88 further strengthens the potential of HDAC6 as a 

suitable therapeutic target in AD.

Taken together, these studies imply both a protective 

and a detrimental role of HDAC6 in the pathophysiology of 

AD. Although this may seem counterintuitive, the apparent 

paradox could be explained by the dual function of HDAC6 

in AD. On one hand, HDAC6 is recruited to accumulating 

aggregates. Next, HDAC6 binds these ubiquitinated aggre-

gates and couples them to the dynein/dynactin motor complex 

to promote their transport and inclusion in the aggresome, 

followed by the degradation of these cytotoxic aggregates. 

This ubiquitin-dependent function of HDAC6 could be ben-

eficial and promote neuronal survival. On the other hand, 

HDAC6 can increase neuronal stress by deacetylating tau. 
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Acetylation and phosphorylation of tau occurs on the same 

motif and HDAC6-mediated deacetylation of tau renders 

this motif available for phosphorylation.78 Whereas acetyla-

tion would prevent the aggregation and increase the clear-

ance of tau, phosphorylation promotes the formation of 

neurofibrillary tau tangles. In accordance with this, it was 

reported that these motifs are hypoacetylated in AD patients, 

leading to increased neuronal stress.78 As a consequence, 

inhibiting the deacetylase activity of HDAC6, while leav-

ing its role in protein degradation unhampered, could be an 

interesting strategy to treat AD.

PD
PD is the second most common neurodegenerative disease, 

caused by a selective loss of dopaminergic neurons in 

the substantia nigra. Although neuronal death is mainly 

idiopathic, aberrant protein aggregation is most likely the 

key factor in the development of PD as neuronal lesions 

are accompanied by aggresome-like inclusion bodies, 

called Lewy bodies.89 Furthermore, Lewy bodies sequester 

ubiquitin-activating enzyme E1 and Hsp70, two enzymes 

that are recruited to the aggresome in the HDAC6-mediated 

response to protein stress.6 The importance of HDAC6 in PD 

Table 1 The role of HDAC6 in different neurodegenerative diseases

Disease HDAC6 in patients Role of HDAC6 References

Alzheimer’s disease increased in  
hippocampus77,83

Positive
-  Reduces protein stress induced by amyloid-β and NFTs via the aggresome
Negative

77–79,81,86

-  Promotes phosphorylation of tau and formation of NFTs
-  Disturbs axonal transport of mitochondria in mice and Drosophila
-  inhibition of HDAC6 restores cognitive defects in Alzheimer disease mice

77–80  
28,82,86,88 
80,87,88

Parkinson’s disease Unknown Positive
-  Reduces protein stress induced by α-synuclein via Lewy bodies and aggresome 

formation
-  Protects dopaminergic neurons in Drosophila
-  Promotes clearance of dysfunctional mitochondria

90–92 
 
91 
93

Huntington’s disease Unknown Positive
Note: reduced  
α-tubulin acetylation  
in striatum30

-  Reduces protein stress by aggregated Htt
Negative
-  Disturbs axonal transport of BDNF

63 
 
30

Amyotrophic lateral 
sclerosis

Unknown 
Note: increased GFAP  
acetylation in spinal  
cord astrocytes108

Positive
-  Reduces protein stress by mutant SOD1
-  Promotes stress granule formation and neurite outgrowth
Negative
-  Genetic deletion delays disease progression in mutant SOD1 mice
-  HDAC inhibition protects against motor neuron death and axonal degeneration

 
104 
68,98
 
102 
103

Spinal muscular  
atrophy

Unknown Positive
-  Promotes expression of full-length SMN2 by sequestering aberrantly spliced  

SMN in the aggresome
-  Ameliorates neurodegenerative phenotype in Drosophila
Negative
-  Reduces axonal transport in sciatic nerve of SMNΔ7 mice

 
112 
 
60 
 
114

Charcot–Marie– 
Tooth disease

Unknown Positive
-  Reduces protein stress by induction of aggresome–autophagy pathway
Negative

 
119,121,122

-  Blocks axonal transport of mitochondria via deacetylating α-tubulin
-  Pharmacological inhibition rescues phenotype in mutant HSPB1  mice

123 
123

Common hallmarks Positive – ubiquitin-dependent functions
-  Promotes protein degradation via the aggresome-autophagy pathways
-  Promotes chaperone-mediated stress response
-  Promotes formation of stress granules
Negative – deacetylase-dependent functions
-  Disturbs axonal transport by deacetylating α-tubulin
-  Disturbs actin cytoskeleton by deacetylating cortactin
-  Reduces antioxidant capacity by deacetylating  peroxiredoxins

Abbreviations: BDNF, brain-derived neurotrophic factor; NFT, neurofibrillary tangle; SOD1, superoxide dismutase 1.
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is emphasized by a study demonstrating the co-localization 

of HDAC6 with α-synuclein – a genetic cause of familial PD 

– inside the Lewy bodies in brain sections of PD patients.44 

Recently, it was suggested that HDAC6-mediated protein 

degradation is protective in PD and dementia with Lewy 

bodies.90 In this study, overexpression of mutant α-synuclein 

or 1-methyl-4-phenylpyridinium-induced neuronal stress 

significantly increases HDAC6 expression in PC-12 cells.90 

Likewise, HDAC6 inhibition reduces the autophagic 

response and the formation of Lewy bodies, followed by an 

impaired clearance of mutant α-synuclein.90 The protective 

nature of HDAC6 was confirmed by a study in Drosophila 

in which the endogenous Hdac6 protects dopaminergic neu-

rons against cytotoxic α-synuclein aggregates by stimulat-

ing aggresome-like inclusion formation.91 Moreover, the E3 

ligase parkin, mutated in autosomal recessive PD, mediates 

the polyubiquitination of DJ-1, which serves as a signal 

for HDAC6 to promote the sequestration of ubiquitinated 

aggregates into the aggresome.92 Parkin also mediates 

HDAC6-dependent mitophagy. After ubiquitination of dys-

functional mitochondria by parkin, the autophagic mediators 

HDAC6 and p62 are recruited and mitochondrial clearance 

is enhanced.93 Taken together, these results are in favor of 

a neuroprotective role of HDAC6 and for the potential use 

of HDAC6 agonists as a therapeutic strategy in PD. So far, 

no HDAC6 agonists have been studied.

HD
HD is a neurodegenerative disease elicited by an abnormal 

polyglutamine expansion in the huntingtin protein. HD 

patients display defects in motor coordination (chorea) and 

cognitive function. It was suggested that polyglutamine 

proteins cause neuronal dysfunction in Drosophila by 

two mechanisms: accumulation of aggregated huntingtin 

and disturbances in axonal transport.94 Although it was 

originally thought that these mechanisms were independent, 

HDAC6 is now associated with both processes.6,27 Indeed, 

HDAC6-dependent retrograde transport mediates clearance 

of aggregated huntingtin in neuronal cells,63 while HDAC6 

inhibition increases α-tubulin acetylation and restores 

axonal transport of vesicles containing BDNF.30 Moreover, 

brains of HD patients show a significant reduction in acety-

lated α-tubulin.30 These data suggest that HDAC6 could 

be a good therapeutic target. However, the use of HDAC6 

inhibitors to treat HD is still under  discussion. Bobrowska 

et al showed that HDAC6 knockout is not able to modify 

disease progression in a mouse model of HD, although 

α-tubulin acetylation increases.95 Another study observed 

improvements of the neurodegenerative phenotype in the 

same mouse model after inhibition of SIRT2, another tubulin 

deacetylating enzyme belonging to the class III HDACs.96 

As a consequence, the potential of HDAC6 as a therapeutic 

target to treat HD needs to be further investigated.

ALS
ALS is a fatal neurodegenerative motor neuron disease char-

acterized by the selective loss of motor neurons in the spinal 

cord, brainstem, and motor cortex. This results in progressive 

muscle atrophy and paralysis. Most patients decease within 

5 years after diagnosis due to respiratory failure. Familial 

cases of ALS have been associated with mutations in Tar 

DNA binding protein 43 (TDP-43) and fused in sarcoma/

translocated in sacroma (FUS/TLS), two RNA-binding pro-

teins that co-localize with HDAC6 in stress granules.68 In 

fact, TDP-43 and FUS/TLS are both essential components 

of a complex that regulates HDAC6 mRNA.97 TDP-43 

knockdown negatively influences HDAC6 expression, which 

results in decreased neurite outgrowth of human neuroblas-

toma cells.98 The finding that ALS-causing mutations in 

TDP-43 impair the microtubule-dependent axonal transport 

of mRNAs99 further supports the assumption that HDAC6 

could be involved in ALS. In addition, mutations in VCP/p97 

are also associated with ALS100 and the link between VCP/

p97 and HDAC6, both orchestrating the fate of ubiquitinated 

proteins, is well established.53 As ubiquitin-positive aggre-

gates are present in several mouse models as well as in ALS 

patients,101 HDAC6 could be implicated in ALS pathogenesis. 

Some evidence was found supporting this notion as genetic 

deletion of Hdac6 delays disease progression and increases 

survival in the mutant SOD1G93A mouse model for ALS.102 

In addition, treatment of symptomatic SOD1G93A mice with 

a general HDAC inhibitor, trichostatin A, protects against 

motor neuron death and axonal degeneration.103 Moreover, 

it was suggested that HDAC6 is directly involved in aggre-

gation and turnover of mutant SOD1 in the same mouse 

model.104 Furthermore, mutations in ubiquilin-2 (UBQLN-2) 

cause familial ALS and are observed in spinal cord neuronal 

inclusions of ALS patients.105 UBQLN-2 functionally links 

the ubiquitination pathway with the ubiquitin–proteasome 

system to promote in vivo protein degradation,105 highlight-

ing the importance of the autophagy pathway in ALS with a 

possible role for HDAC6. De Zoeten et al found that inhibi-

tion of HDAC6 improves the function of Foxp3+ regulatory 

T-cells,38 which could in theory reduce neuroinflammation 

and disease progression in ALS mice.106,107 Additionally, a 

proteomic analysis found differences in protein acetylation 
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in the post-mortem spinal cords between ALS and non-ALS 

subjects, suggesting that HDAC6 activity is altered during 

disease.108 Altogether, these observations indicate a potential 

role for HDAC6 in ALS.

SMA
SMA is the most common fatal neuromuscular disease in 

infants and is in most cases caused by mutations in the gene 

encoding SMN. A nearly identical gene copy (SMN2) is 

still present in these patients, but is unable to protect from 

disease due to aberrant splicing of exon 7. Insufficient levels 

of the SMN protein cause α-motor neuron death and eventu-

ally patients will suffer from fatal respiratory deficiencies. 

To date, no effective cure is available although activat-

ing SMN2 expression is a popular strategy in preclinical 

studies.109,110 It was shown that inhibition of HDACs could 

increase SMN protein levels in vitro and in vivo109 and could 

improve the survival of a mouse model for SMA.110 Valproic 

acid, an antiepileptic drug with HDAC inhibitory effects, 

is currently tested in a clinical trial in children with SMA 

(NCT01671384). Although the positive effects most likely 

result from histone modification, a potential role for HDAC6 

in SMA has also been proposed.111 Sequestering aberrantly 

spliced SMN2 in inclusion bodies would promote expression 

of full-length SMN2, thus increasing functional SMN protein 

levels.112 As a consequence, HDAC6 might be important in 

the pathophysiology of SMA due to its role in the formation 

of the aggresome and stress granules. Furthermore, Pandey 

et al found that HDAC6 overexpression ameliorated the neu-

rodegenerative phenotype in a Drosophila model for SMA.60 

Although there is still some controversy on the presence of 

axonal transport deficits in SMA, the influence of HDAC6 on 

microtubule dynamics could also play a role in SMA. While 

one study failed to detect defects of intracellular trafficking in 

cultured embryonic motor neurons from a mouse model for 

SMA,113 another group discovered a reduction in fast axonal 

transport in the sciatic nerve of symptomatic SMA∆7 mice.114 

Nevertheless, it would be interesting to evaluate whether 

inhibition of the α-tubulin deacetylating activity of HDAC6 

could restore axonal transport, prevent motor neuron death, 

and improve the SMA phenotype.

CMT
CMT is the most common non-lethal hereditary disease of 

the peripheral nervous system with more than 70 associ-

ated genes identified so far.115 Clinical symptoms include 

progressive muscle wasting that starts distally (“stocking–

glove” pattern), foot and hand deformities, sensory deficits, 

and steppage gait. A variety of animal models were created 

based on the identification of CMT-causing genes. Remark-

ably, several of these models show a similar pathophysiology 

with deficits in axonal transport,116–118 aggregation of mutated 

proteins,119,120 and altered protein degradation by the protea-

some and aggresome–autophagy pathway.119,121,122 Evidence 

was found for a role of HDAC6 in the pathophysiology 

of CMT.123 A mutant HSPB1-induced CMT mouse model 

was created, recapitulating the clinical features observed 

in patients and with a reduction in acetylated α-tubulin. 

Moreover, cultured dorsal root ganglion neurons show severe 

defects in axonal transport.123 Pharmacological inhibition of 

the deacetylating activity of HDAC6 rescues the phenotype 

of mutant HSPB1-expressing mice, both at the cellular and 

the behavioral level.123 As a consequence, HDAC6 is a good 

therapeutic target in CMT.

Conclusions
These different studies provide strong evidence that 

HDACs, and in particular HDAC6, are important in a 

wide range of neurodegenerative disorders. Moreover, 

HDAC6 might be the common link through its regulatory 

function in the stress response, protein degradation, and 

axonal transport –  different processes that are all altered 

in the above mentioned diseases. Altogether, it appears that  

HDAC6 has both neuroprotective and neurodegenerative 

properties. In neurodegenerative disorders, ubiquitinated 

aggregates accumulate during the course of the disease 

and increase the cellular burden. Subsequently, stress-

induced cellular responses will target these aggregates 

to the proteasome for degradation. The increased protein 

load will eventually saturate this first line of defense and 

HDAC6 could be recruited to the accumulating ubiquit-

inated  proteins. Through its interaction with VCP/p97 and 

ubiquitin, HDAC6 favors protein degradation by alternative 

pathways such as aggresome formation and autophagy. 

HDAC6 facilitates the delivery of ubiquitinated proteins to 

the aggresome by recruiting the motor protein dynein, which 

transports the aggregates to the perinuclear region, thus pro-

moting their clearance. Simultaneously, HDAC6 will recruit 

components of the autophagic machinery and stimulate the 

autophagosome–lysosomal fusion. Finally, HDAC6 will 

contribute to the formation of stress granules to ensure the 

conservation of untranslated mRNAs during cellular stress. 

All together, these cellular effects emphasize the neuropro-

tective nature of HDAC6. However, as HDAC6 is recruited 

to ubiquitinated aggregates, it may also cause excessive 

deacetylation of its substrates, generating an accumulation 
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of neurotoxic insults. For example, increased deacetylation 

of α-tubulin or  cortactin can disturb the microtubule and 

actin dynamics, which affect the cytoskeletal structure in 

neurons. Furthermore, the recruitment and anchoring of 

motor  proteins to the microtubules is reduced following 

deacetylation of α-tubulin. Moreover, HDAC6-mediated 

deacetylation of peroxiredoxins will increase oxidative 

stress, eventually contributing to neurodegeneration.

In conclusion, specific inhibition of the deacetylating 

function with specific inhibitors could be a good strategy to 

eliminate the negative aspects of HDAC6, while leaving its 

protective role in the stress response and protein degradation 

unhampered. As a consequence, the authors believe that this 

could be a good therapeutic approach in different forms of 

neurodegeneration.
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