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Abstract: Heart failure is one of the leading causes of mortality in Western countries, and 

β-blockers are a cornerstone of its treatment. However, the response to these drugs is vari-

able among individuals, which might be explained, at least in part, by genetic differences. 

 Pharmacogenomics is the study of genetic contributions to drug response variability in order to 

provide evidence for a tailored therapy in an individual patient. Several studies have investigated 

the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of 

β-blockers in treating heart failure. In this review, we will focus on the most significant polymor-

phisms described in the literature involving adrenergic receptors and adrenergic receptor-related 

proteins, as well as genetic variations influencing β-blocker metabolism.
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Introduction
Heart failure (HF), the leading cause of mortality in Western countries, is a clinical 

syndrome that develops in response to a cardiac injury, resulting in the impairment of 

the contractile function of the heart.1 HF may result from disorders of the pericardium, 

myocardium, endocardium, or heart valves, or due to other causes, but most patients 

with HF have symptoms due to left ventricular dysfunction. Patients present a range 

of conditions ranging from normal ventricular size and preserved ejection fraction to 

severe dilatation and/or markedly reduced ejection fraction.2

HF incidence increases with age, rising from 20 per 1,000 individuals 65–69 years 

of age to 80 per 1,000 individuals among those 85 years of age.2 Ethnic disparities 

in HF prevalence have been identified; the incidence of HF is greatest among African-

Americans, intermediate among whites and Hispanics, and lowest among Chinese 

Americans. These differences are in large part determined by the higher prevalence 

of hypertension and diabetes mellitus among African-Americans.3

In HF due to systolic dysfunction, in response to the reduced peripheral tissue 

perfusion, several compensatory mechanisms are activated, aiming to maintain the 

cardiovascular homeostatic balance. Among these, hyperactivation of the adrenergic 

nervous system (ANS) plays a crucial role.4,5 However, in the long term, excessive 

activation of the ANS is detrimental, inducing systemic vasoconstriction, increased 

sodium/water retention, and ventricular remodeling, all of which contribute to 

disease progression. In the 1980s, the role of neurohormonal activation in HF was 

documented, subsequently leading to an increasing interest in the use of β-blockers 

to counteract ANS hyperactivation.6 Until that time, β-blockers were contraindicated 

in patients with HF due to their negative inotropic effect. In the 1990s, however, large 
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randomized controlled trials with bisoprolol, metoprolol 

succinate, and carvedilol provided evidence of the mortal-

ity and morbidity benefits of β-blockade.7–9 β-blockers, 

in fact, reduced cardiovascular mortality, sudden cardiac 

death, and hospitalizations, and improved New York Heart 

Association functional class10 compared to placebo, when 

added to standard background therapy. Based on these data, 

β-blockers are now recommended in HF as an essential 

therapy, unless contraindications are present.6,11 The most 

recent guidelines recommend the use of β-blockers in all 

patients with HF due to left ventricular systolic dysfunction, 

including among older adults and patients with peripheral 

vascular disease, erectile dysfunction, diabetes mellitus, 

interstitial pulmonary disease, and chronic obstructive pul-

monary disease (COPD) without reversibility. An exception 

is represented by patients who have COPD with reversible 

obstructive pulmonary disease.2

However, not all β-blockers show favorable effects in 

HF patients, and variability in responses to β-blockers exists 

among HF patients. For example, in about 25% of HF patients, 

β-blockers need to be discontinued due to drug intolerance. 

These interindividual variations might be explained, at 

least in part, by genetic differences.11 Pharmacogenomics 

is the study of genetic contributions to differences in drug 

response, and the current challenge in this discipline is to 

investigate the array of genes whose variability contributes 

to variability in drug efficacy or toxicity, in order to tailor 

therapy in each patient, predicting who might or might not 

respond to a specific treatment and avoiding adverse events 

in susceptible individuals.12

In this review, we will focus on the pharmacogenomics 

of the adrenergic receptor (AR) system and its role in the 

context of the use of β-blockers in HF.

The AR system in HF
The ARs belong to the superfamily of G-protein-coupled 

receptors, with seven transmembrane domains, an extracel-

lular N-terminal region, and an intracellular C-terminus.13 

Their agonists are norepinephrine and epinephrine, released 

by ANS nerve terminals and the adrenal gland. The ARs are 

divided into three types: α1AR (α1A, α1B, α1D); α2AR 

(α2A, α2B, α2C); and βAR (β1, β2, β3). The human heart 

contains all βAR subtypes, with β1AR accounting for the 

80% of total βAR density in the normal myocardium and 

β2AR comprising 20% of cardiac βARs.14 However, under 

various conditions, such as during aging15 and in HF,16 the 

proportion of β1 subtypes decreases due to downregulation, 

while levels of β2-AR remain stable, resulting in a 1:1 ratio 

between the two AR subtypes. As for the β3ARs, their role 

in the myocardium has been elucidated only recently and 

remains incompletely explained.

In the heart, the most important role of βARs is the 

regulation of cardiac rate and contractility in response to 

norepinephrine and epinephrine. Stimulation of βARs has 

positive inotropic, chronotropic, and lusitropic effects in the 

myocardium, respectively increasing cardiac contractility, 

frequency, and rate of relaxation. However, the stimulation 

of myocardial β3ARs has opposite effects from the other two 

βAR subtypes, resulting in a reduced inotropic response. 

From a molecular point of view, stimulation of βAR path-

ways catalyzes the exchange of guanosine triphosphate for 

guanosine diphosphate on the Gα subunit of heterotrimeric G 

proteins, resulting in the dissociation into active Gα and free 

Gβγ subunits with consequent stimulation of the adenylate 

cyclase, an increase in intracellular cyclic adenosine mono-

phosphate and protein kinase A-dependent phosphorylation, 

and modulation of the activity of important proteins involved 

in myocardial contractility, such as L-type Ca2+ channels, 

troponin I, and sarcoplasmic reticular Ca2+/adenosine 

triphosphatase inhibitory protein. Moreover, through the βγ 

subunits of the heterotrimeric G-protein, βAR stimulation 

activates members of the G-protein receptor kinase (GRK) 

family.17,18 The GRKs are a family of cytosolic serine/ 

threonine kinases consisting of seven isoforms that share 

structural and functional similarities. GRK2, initially identi-

fied as βAR kinase-1, is the most abundant GRK expressed 

in the heart.19 Upon receptor activation, GRK2 translocates 

to the plasma membrane, as a consequence of its interaction 

with G βγ subunits released by agonist binding of the recep-

tor, and by phosphorylating residues in the C-terminal region 

of the receptor, GRK2 induces the binding of protein such 

as β-arrestin, thus causing receptor uncoupling from the Gs 

protein and its transduction pathways. Moreover, GRK2-

induced receptor phosphorylation results in the increase of 

βAR affinity for the inhibitory Gi protein, thus accelerating 

receptor desensitization.20

In addition to the Gs-mediated signaling, stimulation 

of βARs can also activate Gi proteins as well as different 

intracellular pathways, modulating the activity of mitogen-

activated protein kinases and other proteins involved in cell 

cycle control and apoptosis, thus suggesting a wider role of 

βARs in regulating cardiac pathophysiology. Interestingly, 

the capability to stimulate such “alternative” signaling path-

ways seems to be different among βAR subtypes, arguing 

in favor of a unique role of specific βARs in determining 

cardiomyocyte death or survival.21
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During HF, ANS hyperactivity is evidenced by increased 

plasma norepinephrine and epinephrine levels, sympathetic 

outflow, and norepinephrine spillover from cardiac sym-

pathetic nerve terminals. The elevated sympathetic neuro-

hormone levels in chronic HF lead to chronically elevated 

stimulation of the cardiac βAR system, which is detrimental 

to the failing heart. Data from both preclinical and clinical 

studies have indicated that the cardiac βAR system is severely 

affected during HF. In particular, βAR signaling and function 

are significantly impaired and the adrenergic cardiac reserve 

is reduced.17,22 In human HF, myocardial βAR dysfunction 

is characterized by receptor downregulation, a selective 

reduction of β1AR density at the plasma membrane, and 

by functional desensitization, the uncoupling of βARs from 

their cognate G proteins. On the other hand, it has been 

demonstrated, both in human and animal studies, that β3ARs 

are upregulated during HF. Along with receptor dysfunction, 

also postreceptor components of βAR signaling pathways are 

affected in HF. In particular, myocardial levels and activity 

of myocardial GRKs, namely GRK2 and GRK5, are elevated 

both in humans and in animal models of HF. Evidence sug-

gests that ANS hyperactivity chronically stimulating cardiac 

βARs also triggers GRK2 upregulation in cardiomyocytes, 

which in turn is responsible for cardiac βAR downregula-

tion and desensitization. Accordingly, GRK2 elevation can 

be considered a homeostatic mechanism aimed at protecting 

the heart from excessive catecholamine-induced toxicity, and 

several studies have confirmed the hypothesis that GRK2 has 

a pivotal role in the regulation of βAR-dependent cardiac 

contractility and function.23,24 In addition, GRK2 exerts its 

regulatory effects on myocardial function by modulating 

AR activity also in the adrenal gland.25,26 Indeed, it has 

been demonstrated that the inhibition of adrenal GRK2 by 

a small peptide (βARKct) increases cardiac contractility, 

possibly by reducing the uncoupling and desensitization 

of α2ARs, which inhibit catecholamine release from the 

adrenal gland.27–29 Moreover, βARKct administration normal-

izes neurohormonal axis activity30 and increases survival in 

several animal models of HF.31

Taken together, this evidence strongly suggests that 

changes in the activity of ANS play a pivotal and direct 

role in the pathogenesis of HF and offers further insights to 

understand the efficacy of β-blockers in the treatment of HF. 

Indeed, recent studies have demonstrated that β-blockers can 

ameliorate clinical outcomes in HF also by reducing adre-

nal GRK2 levels, thus normalizing catecholamine release 

by restoring the negative feedback mediated by α2AR 

(bisoprolol)32 or by increasing vascular endothelial growth 

factor signaling, thus stimulating neoangiogenesis (atenolol 

and bisoprolol).33

Pharmacogenetics of the  
AR system and its role in HF
The difference in response to β-blockers is influenced by 

interindividual genetic variations. In particular, genetic poly-

morphisms in the metabolic enzymes can affect the pharma-

cokinetics of β-blockers (ie, cytochrome P450 [CYP]2D6), 

while those in the receptor genes and in the other molecules 

involved in the signaling pathway can affect the pharmaco-

dynamics of β-blockers.

Here, we will review the most significant polymorphisms 

described in the literature involving ARs and AR-related 

proteins, as well as genetic variations influencing β-blocker 

metabolism (Table 1).

β1AR genetic polymorphisms
In the human β1AR, at least 12 single nucleotide polymor-

phisms (SNPs) have been described, but only two of them 

Table 1 Common polymorphisms in adrenergic signaling genes

Gene Nucleotide 
variation

Amino acid 
variation

MAF Functional consequences  
of MA

Reference

ADRB1 145 A → G 49 Ser → Gly Caucasians: 12%–16%; African- 
Americans: 23%–28%; Asians: 14%

increased receptor downregulation  
with agonist treatment

35,36

1,165 C → G 389 Arg → Gly Caucasians: 24%–34%; African- 
Americans: 39%–46%; Asians: 20%–30%

Decreased G-protein coupling and 
reduced β-blocker response

37,39

ADRB2 46 G → A 16 Gly → Arg Caucasians: 40%; African-Americans: 50%; 
Asians: 51%

increased downregulation 44

79 C → G 27 Gln → Glu Caucasians: 25%; African-Americans: 19%; 
Asians: 9%

Decreased downregulation 44

ADRA2C 964–975 Del 322–325 Caucasians: 3.8%; African-Americans: 40% Reduced inhibition of adenylate  
cyclase activity

41

GRK5 122 A → T 41 Gln → Leu Caucasians: 1.3%; African-Americans: 23% endogenous β-blocking effect 46

Abbreviations: Del, deletion; MAF, minor allele frequency; MA, minor allele.
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can actually affect receptor function, being relevant from the 

clinical point of view. The first is Ser49Gly, which occurs in 

the N-terminus region where it can be involved in receptor 

downregulation as well as in intracellular trafficking.34 The 

functional consequences of this SNP have been separately 

studied by two different groups in recombinant cellular 

models. Rathz et al35 showed that both variants have similar 

agonist and antagonist binding affinities. However, long-term 

agonist-induced downregulation was greater for Gly49 com-

pared with Ser49. Moreover, the two variants presented dif-

ferent patterns in N-glycosylation. Levin et al36 demonstrated 

that Gly49 has the features of constitutively active receptors, 

with both basal and agonist-stimulated adenylyl cyclase 

activities that are higher compared to the Ser49 variant. They 

also showed that after sustained catecholamine stimulation, 

the Gly49 variant undergoes increased desensitization and 

a more profound agonist-promoted downregulation than the 

Ser49 variant.

The other relevant SNP in β1AR is Arg389Gly in the intra-

cellular C-terminus, which is an important site for G-protein 

binding. Functional studies have demonstrated that Arg389 

receptors have higher basal and isoproterenol-stimulated 

levels of adenylyl cyclase activity compared to the Gly389 

variant. Moreover, the Arg389 receptor also showed increased 

agonist-induced guanosine triphosphate binding with enhanced 

Gs coupling.37 Initially, this behavior led to the credence that 

an Arg389 variant could provide an enhanced response to 

β-blockers, but further studies indicated that this was not the 

case.38,39 In fact, Arg389 showed a higher degree of agonist-

induced desensitization compared to Gly389, indicating that 

increased G-protein coupling also resulted in enhanced suscep-

tibility to GRK-mediated desensitization.38 Transgenic mice 

expressing Arg389 have enhanced cardiac receptor function 

and contractility compared with those expressing Gly389.39 

However, with aging, Arg389 mice have decreased β-agonist 

signaling to adenylyl cyclase and decreased cardiac contractil-

ity compared with those with Gly389 hearts. Moreover, Arg389 

hearts showed increased fibrosis, but had a greater response 

to β-blocker treatment, thus indicating that the human Arg389 

variant can predispose individuals to HF, leading to reduced 

receptor coupling and ventricular dysfunction, and influencing 

the therapeutic response to β-blockers.

Similar findings were also obtained in clinical studies. 

Arg389 homozygous HF patients treated with bucindolol 

had reduced mortality and hospitalization compared to 

those treated with placebo. In contrast, Gly389 carriers had 

no clinical response to bucindolol compared with placebo, 

suggesting that the β1AR389 variation alters signaling and 

affects the therapeutic response to β-blockers. Thus, this 

variation should be taken into account to individualize treat-

ment of the syndrome.40

Polymorphisms of the α2CARs
As mentioned in the section on the AR system and its 

role in HF, dysregulation of ANS also involves altera-

tions of the signaling pathways mediated by presynaptic 

ARs (in particular, the α2C subtype), which decrease cat-

echolamine release from the sympathetic nerve endings. 

Therefore, polymorphisms of these receptors might influ-

ence adrenergic signaling and, consequently, the clinical 

history of HF as well as the response to the treatment. In 

particular, an in-frame deletion of 12 nucleotides, leading 

to the loss of four amino acids (Gly-Ala-Gly-Pro) within 

the α2CAR protein has been identified and associated 

with reduced stimulation of the Gi pathway.41 In vitro, the  

α2C-Del322–325 mutation causes a reduced inhibition of 

adenylate cyclase activity when compared to the wild-type 

receptor. Moreover, the inositol triphosphate pathway, as 

well as extracellular signal-regulated kinase signaling, is 

severely impaired. Because the changes in α2C-AR activity 

prompted by a Del322–325 mutation increase (the response 

to catecholamine stimulation), blockade of the adrenergic 

system might be particularly effective in HF treatment in 

patients carrying this mutation, thus highlighting Del322–325 

as a possible pharmacogenomic locus to predict response to 

therapy with β-blockers. Indeed, recent studies have sug-

gested that patients carrying α2C-AR Del322–325 muta-

tions together with the β1AR-Arg389 variant have a more 

pronounced increase in left ventricular ejection fraction 

(LVEF) with respect to other genotypes.42

Polymorphisms of the β2ARs
Although β1ARs are the main cardiac ARs, it has been dem-

onstrated that β2AR expression is increased in the failing 

heart, balancing the reduced expression of β1ARs. More-

over, many β-blockers are nonselective and might also affect 

β2AR-mediated signaling. Therefore, β2AR polymorphisms 

might contribute to the modulation of the HF phenotype, as 

well as the response to β-blocker treatment. Three variants 

affecting amino acids in positions 16, 27, and 164 have been 

identified in the β2AR protein: Arg or Gly16; Gln or Glu27; 

and Ile164, respectively.43 Among them, polymorphisms in 

positions 16 and 27 are more common. Although β2ARs 

incorporating an Ile residue show reduced adenylate cyclase 

activity and decreased cardiac contractility after agonist 

stimulation, the Ile164 variant is very rare and its clinical 
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relevance is restricted to a small number of patients. By 

contrast, Arg/Gly16 and Gln/Glu27 polymorphisms affect 

receptor downregulation after agonist stimulation.44 Among 

the possible haplotypes generated by different combinations 

of amino acids in positions 16 and 27, β2ARs incorporating 

a Gly16 residue seem to display a higher agonist-promoted 

downregulation. Also, SNPs have been found in noncod-

ing regions of the β2AR gene, namely the promoter or the 

3′-untranslated region: -20 T-C; -47 T-C; -367 T-C; -468 

C-G; -654 G-A; -1343 A-G; and -1429 T-A.45 Some of these 

variants are in linkage disequilibrium with the Arg16Gly 

and Gln27Glu polymorphisms and seem to be associated 

with different basal expression levels and agonist-induced 

downregulation of the receptors. Therefore, characterization 

of SNPs affecting amino acids in positions 16 and 27, as 

well as noncoding regions, might help to predict response 

to therapy and HF progression.

Polymorphisms of the GRKs
As stated before, the most abundant GRK isoform in the heart 

is GRK2, but GRK5 is also expressed in the heart. Levels of 

both GRK2 and GRK5 are upregulated during HF, possibly 

as a compensatory mechanism to reduce catecholamine 

stimulation. A variant affecting the residue in position 41 

(Leu in place of the more common Glu) has been identified 

in the GRK5 sequence.46 The molecular and pathophysio-

logical effects of Leu41 substitution have been investigated 

in in vitro studies, demonstrating that this polymorphism 

confers a higher capability to uncouple the adrenoreceptor, 

thus acting as a genetic β-blocker. Indeed, transgenic mice 

expressing GRK5-Leu41 in which HF was induced by infu-

sion of isoproterenol showed a better LVEF compared to 

controls (GRK5-Glu41). Moreover, while β-blocker admin-

istration ameliorated cardiac function in animals carrying the 

Glu41 variant, only little increases in LVEF were observed 

in GRK5-Leu41 mice, a result reflecting the endogenous 

β-blocking effect prompted by this polymorphism.

A recent study by Lobmeyer et al47 characterized SNPs 

in the GRK2 gene (ADRBK1), finding that one of them 

(rs1894111 GA) shows a signal for association with the 

systolic and diastolic blood pressure response to hydrochloro-

thiazide in white patients, while a novel SNP in the promoter 

region of ADRBK1 was not associated with differential 

GRK2 expression.

Polymorphisms in metabolic enzymes
The main liver CYP enzyme isoform involved in the 

metabolism of most β-blockers is 2D6. As a consequence, 

polymorphisms affecting CYP2D6 activity might potentially 

influence response to therapy with β-blockers. Based on 

the different allelic variants of CYP2D6, which can reduce 

(CYP2D6*10, CYP2D6*17, and CYP2D6*41) or completely 

abolish (CYP2D6*4 and CYP2D6*5) enzymatic activity, 

patients can be divided in groups ranging from poor metabo-

lizers (PMs) to extensive metabolizers. CYP2D6 alleles show 

interethnic/geographic differences, with PMs mainly localized 

in Europe, and the extensive metabolizer haplotype found 

diffusely in North Africa and Oceania.48 Pharmacogenomic 

characterization of patients might have beneficial effects in 

choosing an adequate dose of β-blockers to be administered, 

thus achieving a “tailored” and patient-based therapy.

Potential clinical implications  
of β-blocker pharmacogenetics
Previous evidence demonstrated that polymorphisms in genes 

involved in catecholamine signaling might modulate HF pro-

gression and response to therapy. To better address this issue, 

several meta-analyses and studies have been conducted, and 

the results obtained are often controversial and do not fully 

clarify the real impact of a given gene variant in modifying 

clinical outcomes. For example, an increased improvement of 

cardiac function (measured by evaluation of LVEF) has been 

found in patients carrying β1AR-Arg389 treated with meto-

prolol succinate or carvedilol.39,49 By contrast, no association 

was found in other studies.40,50 Similar results also arise from 

studies evaluating possible correlations between β-blockers 

and polymorphisms in β2AR and α2CAR.11 However, the 

results could be influenced by differences in many variables 

such as the β-blocker used, the population, and the duration 

of treatment. For this reason, large dedicated, randomized 

clinical trials should be carried out to clarify these issues. 

In addition, it might be possible that a stronger link between 

pharmacogenomic variability and clinical outcomes could be 

found by considering two or more polymorphisms influenc-

ing adrenoreceptor pathophysiology, as well as β-blocker 

metabolism. As an example, it has been demonstrated that 

α2CARdel322–325 causes a more pronounced increase in 

LVEF compared to other genotypes when associated with the 

β1AR-Arg389. Similarly, patients carrying the Gln41 variant 

in GRK5 in a β1AR-Arg389 background show a decreased 

mortality rate after therapy with β-blockers.42

Moreover, one of the most important aspects of tailored 

therapy and pharmacogenetics is ethnic variability in responses 

to certain treatment strategies. As for β-blockers, a general 

hypothesis is that the African-American population is less 

responsive to β-blockers than the Caucasian population because 
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genotypes with poor β-blocker response are more common 

in African-American patients.34 The β-blocker Evaluation of 

Survival Trial (BEST), a study enrolling a higher percentage 

of African-American patients compared to similar studies, has 

shown a trend towards higher mortality for African-American 

patients receiving bucindolol compared to those receiving 

placebo, despite improved cardiac function.51 This effect could 

be partly explained by the fact that bucindolol has an intrinsic 

sympathomimetic activity, which could be detrimental in the 

African-American HF population, which has lower baseline 

neurohumoral  activation. In another study evaluating the effects 

of atenolol administration before and after exercise, the reduc-

tion in heart rate was significantly more evident in Caucasian 

patients than in African-American patients.52

Another possible application of pharmacogenetic char-

acterization might be the possibility of finding the correct 

dose of β-blocker to be administered. For instance, it has been 

demonstrated that, although not influencing the response to 

therapy, patients classified as PMs for CYP2D6 require a 

higher dose of carvedilol to obtain clinical improvement. 

Similar results were obtained in patients homozygous for 

the β1ARArg389 variant.53 Therefore, patients carrying 

both variants (in β1AR and CYP2D6) might require a higher 

dose of carvedilol to reach beneficial effects on HF.54 Finally, 

genetic information could be used to identify patients at high 

risk for developing serious adverse events. This strategy 

might be very useful also in the enrollment of patients in 

clinical trials, thus avoiding the selection of people at high 

risk.11 A possible polymorphism to be screened might be 

the β2ARArg16Gln27 haplotype, because two studies have 

demonstrated that patients carrying this genetic configuration 

show an increased risk of adverse events.55,56
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