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Abstract: The extracellular domain of integrin αvβ3 contains a receptor for thyroid hormone 

and hormone analogs. The integrin is amply expressed by tumor cells and dividing blood ves-

sel cells. The proangiogenic properties of thyroid hormone and the capacity of the hormone 

to promote cancer cell proliferation are functions regulated nongenomically by the hormone 

receptor on αvβ3. An L-thyroxine (T
4
) analog, tetraiodothyroacetic acid (tetrac), blocks 

binding of T
4
 and 3,5,3′-triiodo-L-thyronine (T

3
) by αvβ3 and inhibits angiogenic activity of 

thyroid hormone. Covalently bound to a 200 nm nanoparticle that limits its activity to the cell 

exterior, tetrac reformulated as Nanotetrac has additional effects mediated by αvβ3 beyond 

the inhibition of binding of T
4
 and T

3
 to the integrin. These actions of Nanotetrac include 

disruption of transcription of cell survival pathway genes, promotion of apoptosis by multiple 

mechanisms, and interruption of repair of double-strand deoxyribonucleic acid breaks caused 

by irradiation of cells. Among the genes whose expression is suppressed by Nanotetrac are 

EGFR, VEGFA, multiple cyclins, catenins, and multiple cytokines. Nanotetrac has been 

effective as a chemotherapeutic agent in preclinical studies of human cancer xenografts. The 

low concentrations of αvβ3 on the surface of quiescent nonmalignant cells have minimized 

toxicity of the agent in animal studies.
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Introduction
A number of in vitro and in vivo studies have supported a role for thyroid hormone 

in the proliferation of tumor cells.1–7 Thyroid hormone is proangiogenic,8–11 and this 

property may be relevant to tumor biology.12,13 Clinical evidence of thyroid hormone 

dependence of cancers has come from studies of glioblastoma,14 breast cancer,15 and 

tyrosine kinase inhibitor-treated renal cell carcinoma,16 and head and neck cancers.17 

Such studies have been reviewed by Hercbergs et al.18

In 2005, we described a receptor for thyroid hormone on plasma membrane integrin 

αvβ3 that regulated angiogenesis.9 Of the more than 20 plasma membrane integrins, 

only αvβ3 binds thyroid hormone and hormone analogs such as tetraiodothyroacetic 

acid (tetrac).9 The ectodomains of integrins contain a variety of binding sites for extra-

cellular matrix proteins.19 On integrin αvβ3, however, there are also discrete small 

molecule receptors for resveratrol20 and androgen,21 as well as for thyroid hormone. The 

intracellular domain of the integrin activates signaling pathways that relate to specific 

gene transcription22 and interacts with the cytoskeleton.23 The nongenomic regulation 

of the state of the actin cytoskeleton by L-thyroxine (T
4
) described by Leonard and 

Farwell24 and Farwell et al25 may be mediated by αvβ3 (see the Angiogenesis modula-

tion by thyroid hormone and tetrac formulations section).
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The thyroid hormone receptor on the integrin mediates 

the actions of the hormone on tumor cell proliferation5–7,12,26 

and on angiogenesis.8,9,12,13 We discuss in this review the 

significance of the interface of thyroid hormone and cancer 

cells at integrin αvβ3, interpreted in part by the actions of 

the deaminated analog of T
4
, tetrac, and its nanoparticulate 

formulation as antithyroid agents at the integrin. In this 

formulation, tetrac is covalently bound to poly(lactic-co-

glycolic acid) and thus is excluded from the cell interior.11 

Acting exclusively at the integrin, Nanotetrac does block 

the proliferative and proangiogenic effects of T
4
 and 

3,5,3′-triiodo-L-thyronine (T
3
) initiated at the cell surface. 

However, the compound also has effects via the integrin 

on transcription of genes integral to cancer cell survival 

pathways, and these effects appear unrelated to agonist T
4
 

and T
3
. The integrin also mediates antiangiogenic actions 

of Nanotetrac that are independent of T
4
 and T

3
. The nano-

particulate drug does not affect genomic actions of thyroid 

hormone within the cell that depend primarily upon nuclear 

receptor (TR)–T
3
 complex formation27 or interactions of T

3
 

with mitochondria.28

Thyroid hormone–tetrac receptor 
on integrin αvβ3
The thyroid hormone–tetrac binding site on the integrin 

includes contributions from both αv and β3 monomers.29 

The site accommodates T
4
, T

3
, tetrac, and other hormone 

analogs such as diiodothyropropionic acid.30 The affinity of 

the receptor is higher for T
4
 than for T

3
,9 and binding of T

4
 

occurs at physiological levels of free T
4
. The significance of 

this is that circulating T
4
 supports tumor cell proliferation in 

the intact organism.

The receptor is subspecialized. One domain that con-

trols cell proliferation binds both T
4
 and T

3
 and activates the 

mitogen-activated protein kinase (ERK1/2) signal transduc-

tion pathway.31 This area of the receptor is involved in stimu-

lation of cell proliferation. The second domain binds only 

T
3
 and activates the phosphatidylinositol 3-kinase pathway. 

Downstream consequences of such activity include nuclear 

uptake of TRα resident in cytoplasm and expression of the 

hypoxia-inducible factor-1α (HIF-1α) gene.31 Tetrac blocks 

hormone actions initiated at both domains.

Angiogenesis modulation by thyroid 
hormone and tetrac formulations
The proangiogenic activity of thyroid hormone – and the 

antiangiogenic properties of tetrac – which begins at αvβ3, 

appears to involve several mechanisms. For example, the 

integrin is known to interact physically with the vascular 

endothelial growth factor (VEGF) receptor family that is 

adjacent to αvβ3 molecules.32 In the absence of T
4
 and T

3
, 

tetrac and Nanotetrac block activity of VEGF and basic 

fibroblast growth factor (bFGF) in the chick chorioallantoic 

membrane angiogenesis assay,33 presumptively by disrupt-

ing crosstalk between the integrin and VEGF receptor and 

bFGF receptor. However, tetrac can also decrease bFGF gene 

transcription and decrease bFGF protein release by cells.8 

Agonist thyroid hormone enhances platelet-derived growth 

factor activity (Mousa, unpublished observations), and this 

effect is subject to tetrac inhibition. Epidermal growth fac-

tor (EGF) is also proangiogenic, and Nanotetrac, acting via 

αvβ3, downregulates transcription of the EGFR gene.12 Thus, 

a number of molecular mechanisms are involved in actions 

of thyroid hormone analogs at their receptor on the integrin. 

Other tumor cell genes affected by Nanotetrac via αvβ3 are 

discussed here.

Beyond vascular growth factor gene expression and 

vascular growth receptor function, there are additional 

contributions to angiogenesis that originate at the thyroid 

hormone receptor on the integrin. Endothelial cell migration 

is regulated by T
4
 at αvβ3 and blocked by tetrac,34 as is fibro-

blast motility. The integrity of the actin cytoskeleton depends 

upon T
4
 – conversion of soluble actin to fibrous actin by a 

nongenomic mechanism24,25 – and cell motility and integrin 

function depend upon the state of the cytoskeleton. Leonard 

and Farwell24 have also shown that cell attachment to laminin 

is T
4
-requiring and integrin-dependent. We propose that the 

actions of T
4
 on the state of actin and cell–laminin interactions 

may be initiated at αvβ3. Integrin clustering in response to 

binding of Arg-Gly-Asp peptides promotes actin polymer-

ization.35 The laminin effect of the hormone is impaired by 

blockade of recognition sites for such peptides on the integrin. 

Blockade of such sites can inhibit certain of the actions of 

iodothyronines at their receptor on the integrin.31

Small arteriole muscularization is promoted by thyroid 

hormone,36 but it is not yet known whether this effect is αvβ3-

dependent. Tetrac decreases abundance of angiopoietin-2 

(Ang-2) messenger ribonucleic acid (mRNA) in endothelial 

cells33 but does not affect Ang-1. Ang-2 protein destabilizes 

blood vessel structure in anticipation of vascular growth 

factor action and promotion of angiogenesis, whereas Ang-1 

stabilizes such structure and functionally is antiangiogenic.

The distribution of the integrin among various types of 

cells is relevant to therapeutic exploitation of the small mol-

ecule receptors on αvβ3, such as those for thyroid hormone. 

Rapidly dividing cells, notably cancer cells and endothelial 
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Table 1 Representative tumor cell genes whose expression  
is differentially modulated by Nanotetrac (nanopartiuclate tetrac) 

Function/gene Up- or downregulation

Cell cycle
  Cyclins
  CDKN2C

↓
↑ cyclin-dependent kinase inhibitor

Proapoptosis
  CASP2
  CAP8AP2
  DFFA
  BCL2L14

↑
↑
↑ DNA fragmentation factor subunit alpha
↑

Antiapoptosis
  XIAP
wnt–catenin pathway 
  CTNNA1
  CTNNA2
  CBY1

↓ X-linked inhibitor of apoptosis protein  

↓
↓
↑ nuclear inhibitor of catenin

Antiangiogenesis
  TSP1 ↑
vascular growth factors
  VEGFA
  bFGF

↓
↓

Growth factor receptors
  EGFR ↓

cells about tumors, express the integrin generously. 

Nonmalignant, quiescent cells do not. When we examined 

immortalized noncancer human and nonhuman primate cells 

for susceptibility to antiproliferative action of Nanotetrac, we 

found no drug activity (Mousa, unpublished observations).

Tumor cell genes whose 
transcription is regulated by the 
thyroid hormone–tetrac receptor 
on integrin αvβ3
We have identified more than 40 genes in human cancer cells 

that are regulated from αvβ3 by Nanotetrac.12,37,38 Certain 

of these genes are presented in Table 1, with the data drawn 

from studies of MDA-MB-231 breast cancer cells37 and med-

ullary thyroid carcinoma cells.38 What is remarkable is the 

coherence of the up- or downregulation of these genes. For 

example, transcription of proapoptosis genes is increased by 

 Nanotetrac – CASP2, CASP8AP2, BCL2L14, DFFA – and 

antiapoptotic XIAP expression is decreased. Twenty-one of 

23 protooncogenes are downregulated, as are eight of nine 

cyclin genes that are critical to cell cycle regulation and a 

cyclin-dependent kinase. All of these drug effects are consistent 

with a desirable multitarget chemotherapeutic profile. It should 

also be noted that tetrac/Nanotetrac promotes accumulation of 

proapoptotic Bcl-X
S
 mRNA but does not affect Bcl-X

L
.39

The complex actions of Nanotetrac on angiogenesis 

have been mentioned previously, and EGFR was included 

in this context. EGF is mitogenic and its receptor mediates 

other tumor cell support functions beyond angiogenesis. 

These have made the receptor, EGFR, and its ligand, EGF, 

chemotherapeutic targets,40 and cetuximab is the prototypical 

clinical EGFR antibody. The action of Nanotetrac to sup-

press transcription of the EGF receptor gene conceptually 

has advantages over EGFR antibody because Nanotetrac is 

targeted to cancer cells that express αvβ3 and thus does not 

affect this cell surface target in healthy (nonmalignant) cells. 

In addition, Nanotetrac has a spectrum of other anticancer 

actions noted previously.

One of the unique attributes of the tetrac receptor on 

integrin αvβ3 is that it is linked to the thrombospondin 1 

(TSP1; THBS1) gene. Expression of this gene is almost invari-

ably suppressed in tumor cells, since the gene product is an 

endogenous antiangiogenic factor. Nanotetrac causes tran-

scription of TSP1, and this is one of a number of antiangio-

genic mechanisms activated by the drug. Another important 

function of the TSP1 protein is that it is a ligand of CD47.41 

CD47 is a cell surface antigen that, expressed by cancer 

cells, limits antitumor immunity – producing the “Do not 

eat me” state – and immune system-mediated phagocytosis/

destruction.42 Antibodies to CD47 are being tested for utility 

as anticancer agents that promote host immune system attack 

on cancer cells. Bound to CD47, TSP1 released in response to 

Nanotetrac may achieve the same chemotherapeutic outcome 

as anti-CD47.41

Rae et al43 have shown that matrix metalloproteinase-9 

(MMP-9) gene expression is increased by thyroid hormone 

in ovarian cells. Ashur-Fabian has confirmed that T
4
 causes 

transcription of MMP-9 in myeloma cells and has found that 

tetrac blocks this effect (Cohen, Flint, Shalev, and Ashur-

Fabian, unpublished observations). Thus, αvβ3 is involved 

in this effect on MMP-9. The significance of the effect is that 

MMPs act on cell–cell interaction and cell–matrix adhesion 

proteins, destabilizing tissues and promoting tumor cell 

invasiveness and metastasis.44

Finally, agonist thyroid hormone induces internalization 

of αvβ3.45 This was initially interpreted by us to reflect the 

known recycling of the integrin46 but is now recognized to 

be relevant to gene expression. Tetrac blocked internaliza-

tion of αvβ3, and we subsequently found that T
4
 directed 

the αv monomer, but not β3, into the cell nucleus. In the 

nucleus, αv was found to function as a coactivator, sup-

porting transcription of several genes that are important 

to cancer cell biology, including HIF-1α and the estrogen 
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receptor (ERα).45 Thus, the thyroid hormone–tetrac 

receptor on αvβ3 has a variety of functions mediated by 

the intact heterodimer, but the interaction of hormone and 

αvβ3 is capable of changing the structure and function of 

the integrin.

Radiosensitization induced  
by tetrac formulations
Nanotetrac and tetrac induce radiosensitization of cancer cells 

via the αvβ3 receptor for thyroid hormone.47,48 Our studies 

of this action disclosed a remarkable behavior of the integrin 

when tumor cells are subjected to radiation – namely, an 

acute and substantial increase in the number of active (“open 

conformation”) αvβ3 molecules in the plasma membrane.49 

We interpret this as a defensive response. Nanotetrac blocks 

this radiation response. The αvβ3-dependent radiosensitiza-

tion process is also associated with a tetrac-induced loss of 

capacity of tumor cells to repair double-stranded deoxyribo-

nucleic acid breaks caused by radiation.48

Discussion
In the course of describing certain novel cellular actions of 

T
4
 and T

3
, we determined that these actions could be repro-

duced by agarose-T
4
, a nanoparticulate formulation of the 

hormone that cannot enter the cell.8,50,51 Thus, the actions 

were necessarily initiated at the plasma membrane and were 

nongenomic in mechanism. We also found that tetrac, the 

naturally occurring deaminated metabolic product of T
4
, 

inhibited these membrane-initiated actions of iodothyronines 

and agarose-T
4
.50,51 We described the plasma membrane 

receptor for thyroid hormone on integrin αvβ3 a decade 

ago9 and distinguished the downstream consequences and 

mechanisms of nongenomic actions initiated at the integrin 

from genomic actions.12,27 We confirmed the activity of 

tetrac as an inhibitor of nongenomic actions of T
4
 and T

3
 at 

the hormone receptor on αvβ3.9,12 Reformulation of tetrac 

as Nanotetrac38,52 resulted in an agent that is limited to the 

extracellular space and that is a more potent inhibitor of 

agonist thyroid hormone actions.12 In addition, as pointed 

out, Nanotetrac modulates expression of a broader spectrum 

of cancer cell survival pathway genes.

Nanotetrac has an attractive set of properties as an 

anticancer and antiangiogenic agent.12 The αvβ3 integrin 

that contains the specific target of Nanotetrac is expressed 

by, or activated primarily on, cancer cells and supporting 

blood vessels about tumors. This limits the risk of exposure 

of nonmalignant cells to the drug. The drug is limited to the 

extracellular space, and this prevents undesirable effects 

of unmodified tetrac inside normal cells. Nanotetrac does 

not inactivate αvβ3, as antibody to the integrin may, but 

selectively manipulates the functions of the integrin, so 

that apoptosis is fostered and antiapoptosis defenses are 

disordered. Desirable features of Nanotetrac action that 

were unexpected are enhanced transcription of antiangio-

genic TSP1 and decreased expression of EGFR, of matrix 

metalloproteinases43 that support tumor aggressiveness, and 

of cyclins and protooncogenes.12,45 Finally, the agent has a 

complex set of antiangiogenic properties. As noted previ-

ously, these include decreasing transcription of genes coding 

for vascular growth factors and blunting the activity of these 

factors at their specific receptors adjacent to the integrin on 

the cell surface.13,51

The poly(lactic-co-glycolic acid) nanoparticle to which 

tetrac is covalently bound in Nanotetrac is capable of adsorb-

ing traditional nonprotein cancer chemotherapeutic agents. 

The targeting by tetrac of the nanoparticulate to cancer cells 

permits local delivery of such second agents, an approach 

that is more desirable than systemic administration of the 

drugs.
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