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Abstract: The urea cycle disorders are caused by deficiency of one of the six hepatic enzymes 

or two transporters involved in detoxification of ammonia. The resulting hyperammonemia 

causes severe brain injury unless aggressive steps are taken to reduce the accumulation of 

ammonia, which is thought to be the most toxic metabolite. This review describes the current 

state of chronic management of urea cycle disorders, focusing on new and emerging therapies. 

Management strategies include the mainstay of treatment, namely dietary protein restriction 

and supplementation with l-arginine or l-citrulline. Several currently approved medications 

utilize and enhance alternative pathways of waste nitrogen excretion (sodium benzoate, sodium 

phenylacetate, sodium phenylbutyrate in several formulations, and glycerol phenylbutyrate), 

working through conjugation of the drug to either glycine (in the case of benzoate) or glutamine, 

the products of which are excreted in the urine. Carglumic acid activates the first committed 

step of conversion of ammonia to urea, carbamoylphosphate synthetase, and thus effectively 

treats defective synthesis of the endogenous activator, N-acetylglutamate, whether due to genetic 

defects or biochemical inhibition of the N-acetylglutamate synthase enzyme. Approaches to neu-

roprotection during episodes of hyperammonemia are discussed, including the use of controlled 

hypothermia (brain cooling), as well as proposed, but as yet untested, pharmacologic therapies. 

Finally, cell-based therapies, including liver transplantation, infusion of fresh or cryopreserved 

hepatocytes, use of stem cells, and new approaches to gene therapy, are reviewed.

Keywords: urea cycle disorders, inherited hyperammonemias, orphan drugs, phenylbutyrate, 

N-carbamyl-l-glutamate

Introduction
Urea cycle disorders (UCDs) are a group of inherited defects of six enzymes and two 

transporters that constitute the urea cycle in the periportal liver cells. Defects in any 

of the enzymes or transporters lead to the respective disorders including arginase 1 

deficiency, argininosuccinate lyase (ASL) deficiency, argininosuccinate synthetase 

deficiency, citrullinemia type 2 (caused by the defect of the citrin transporter), 

carbamoylphosphate synthetase 1 (CPS1) deficiency, N-acetylglutamate synthase 

(NAGS) deficiency, ornithine transcarbamylase (OTC) deficiency, and hyperorni-

thinemia-hyperammonemia-homocitrullinuria syndrome (caused by the defect of 

mitochondrial ornithine transporter) (Figure 1). The main function of the urea cycle 

is the detoxification of ammonia and the synthesis of arginine. Defects of any of the 

urea cycle enzymes in the liver can result in metabolic decompensation characterized 

by hyperammonemia, which is life threatening if the treatment is started late or if the 

diagnosis is missed.1
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Figure 1 enzymes and transporters of the urea cycle.
Notes: The urea cycle is shown as it is present in mitochondrion and cytosol. The encircled plus sign indicates stimulation of CPS1 by NAG. Adapted from Häberle J, 
Boddaert N, Burlina A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012;7:32. © 2012 Häberle et al.; licensee 
BioMed Central Ltd. Available from http://www.ojrd.com/content/7/1/32#.11

Abbreviations: ARG1, arginase 1; ASL, argininosuccinate lyase; ASS, argininosuccinate synthetase; citrin, mitochondrial aspartate–glutamate antiporter; CPS1, 
carbamoylphosphate synthetase 1; GDH, glutamate dehydrogenase; GLNase, glutaminase; NAG, N-acetylglutamate; NAGS, N-acetylglutamate synthase; OTC, ornithine 
transcarbamylase; ORNT1, mitochondrial ornithine transporter.

UCDs are panethnic with variable prevalence in different 

populations and an overall incidence of about 1 in 35,000.2 

Initial presentation of a UCD can be at any age but about 

half of the patients present shortly after birth, triggered by 

postnatal catabolism.3 Other common triggering factors, 

characterized by endogenous protein catabolism, include 

viral infections and fasting. Patients with onset of symp-

toms outside the newborn period are classified as late-onset 

UCDs.4–6

The most neurotoxic compound metabolites appear to be 

ammonia itself, which is responsible for most of the clini-

cal symptoms and complications. The exact mechanisms of 

ammonia neurotoxicity are not completely understood. Dif-

ferent effects of accumulating ammonia on the brain include 

swelling of astrocytes via glutamine accumulation, energy 

deficit through mitochondrial dysfunction, enhanced oxida-

tive stress due to increased nitric oxide (NO) production, 

increased extracellular glutamate stimulating N-methyl-d-

aspartate (NMDA) receptors, inhibition of the tricarboxylic 

acid cycle, and secondary creatine deficiency.7–9

The main goal of treatment is to avoid hyperam-

monemia in order to prevent neurological sequelae. 

Scrupulous avoidance of acute and chronic hyperammonemia 

may be associated with better prognosis for patients with 

UCDs.10 On the other hand, the prognosis with respect to 

survival is commonly considered as poor in cases where 

the ammonia concentration in blood is .1,000 µmol/L 

(reference ,100 in newborns and ,50 outside the 

neonatal period) or with duration of hyperammonemic 

coma .24 hours.11 Infants who do survive typically have 

severe and permanent brain injury, thus many specialists 

recommend against aggressive intensive care when treatment 

is delayed from the time of initial presentation.

The mainstay of chronic treatment is reduction of 

dietary protein to the minimum required to support normal 

endogenous protein synthesis and normal growth, along 

with supplementation of essential amino acids, vitamins, 

and trace elements. Other common treatment strategies 

include the nitrogen scavenging drugs, such as sodium  

phenylbutyrate (NaPB), licensed in 1996 for oral/enteral 

use by the United States Food and Drug Administration 

(FDA) as Buphenyl® in the US, (Hyperion Therapeutics, 

Brisbane, CA, USA), and Ammonaps® in Europe (Swedish 

Orphan  Biovitrum Ltd, Stockholm, Sweden), the new drug 
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formulation  glycerol  phenylbutyrate (GPB; FDA-approved 

as RAVICTI®  [Hyperion Therapeutics, Brisbane, CA, USA]), 

sodium phenylacetic acid (NaPA), and sodium benzoate 

(SBZ; the combination of phenylacetic acid (PAA) and SBZ 

is available as an FDA-approved drug for intravenous appli-

cation, AMMONUL® [Ucyclyd Pharma, Inc., Scottsdale, 

AZ, USA]), and the urea cycle intermediates l-citrulline 

(for oral/enteral use only) and l-arginine (for oral/enteral 

or iv use), the latter being available as free base or hydro-

chloride solution.11–13 Use of either or both of the latter two 

compounds, available as chemical compounds only, depends 

on the specific disorder and aims for excretion of citrulline 

(containing one waste nitrogen atom) or argininosuccinic acid 

(containing two waste nitrogen atoms) in the urine.

In spite of these dietary and pharmacological treatment 

measures, considerable risk of hyperammonemic decom-

pensation remains, especially in the severe UCDs. Thus, 

liver transplantation, which is currently considered the only 

curative treatment, is often recommended early in the course 

of the disease in case of neonatal-onset UCDs or an unstable 

course in any patient with UCDs.11,14,15 Liver transplanta-

tion replaces the complete urea cycle, which is only fully 

expressed in liver, but other cell types that express individual 

component enzymes, particularly argininosuccinic acid lyase, 

are not corrected.

There is certainly a need for novel therapies, both for the 

treatment of acute hyperammonemia and for the long-term 

management of UCDs, since the present therapeutic situation 

is far from ideal. A better understanding of the pathology in 

ammonia (neuro) toxicity has opened the path for a variety 

of novel therapeutic approaches, although most have not yet 

added to the armamentarium of UCD drugs. First, we will 

describe the few recent products approved for the treatment 

of UCDs. Second, we will discuss novel therapeutic strategies 

that provide hope for an improved prognosis for individuals 

with UCDs in the future.

Novel drugs already brought  
to the market
Glycerol phenylbutyrate (RAviCTi®)
The basis to alternative pathway therapy was recognized 

100 years ago with the demonstration that SBZ could divert 

urea nitrogen to hippurate.16 Shortly thereafter, a similar 

observation noted that PAA, when given orally, resulted in 

urinary excretion of phenylacetylglutamine.17 PB, which is 

converted to PAA in the liver, is now used more frequently 

for enteral therapy, because it has low odor and is better tol-

erated by patients. Since its introduction to the treatment of 

UCDs,18 the use of endogenous pathways for waste nitrogen 

excretion has become a mainstay of management of patients 

with UCD.19

Recently, a new formulation of PB was brought to the 

market. The new drug, GPB, FDA-approved as RAVICTI®, 

is a pre-prodrug containing three molecules of PB 

joined to glycerol in ester linkage to form a triglyceride. 

The pre-prodrug, GPB, is hydrolyzed in the small intestine 

by pancreatic lipases and releases PB and glycerol. The prod-

rug, PB, is metabolized in the liver to the active compound 

PAA. Given the required GPB hydrolysis, gastrointestinal 

 absorption of PB is slower than with NaPB.

When compared with NaPB in a Phase II study in eleven 

pediatric patients above age 6 years (mean, 10.2 years), GPB 

was shown to be at least equivalent to NaPB with respect 

to ammonia control.20 In that crossover study, performed 

when the blood ammonia was clinically well controlled at 

baseline, switchover from NaPB to a PB-equimolar GPB dose 

was well tolerated and resulted in about 25% lower average 

ammonia exposure (assessed as ammonia 24-hour area under 

the curve [AUC]). Mean blood ammonia  concentrations 

were mainly ,60 µmol/L in the GPB as well as in the 

NaPB-treated patients, and glutamine levels did not change 

significantly after switching to GPB.

In a Phase III double-blinded, randomized crossover 

study in 44 adult patients performed consecutively, treatment 

with GPB was non-inferior to NaPB if ammonia control was 

likewise assessed as 24-hour AUC.21 When the results of the 

latter study were pooled together with data from two similarly 

designed short-term comparisons of GPB versus NaPB (one 

in pediatric patients),20 ammonia 24-hour AUC and plasma 

glutamine were significantly lower with GPB,21 findings that 

are recently confirmed by other studies in pediatric patients 

with UCD.22,23 As a preliminary finding from one study,21 

executive function in the study population seemed to have 

improved, although this observation, made after only one year 

of treatment, must be confirmed in future studies.

In addition to different pharmacokinetics, the main 

advantage of GPB from the patients’ point of view may be 

the much improved palatability of GPB. The drug comes as 

an essentially tasteless liquid. Despite its oily consistency, 

patients have little difficulty swallowing the drug. In pediatric 

patients, this may result in better compliance and lessening of 

the burden of disease. Other potential benefits include mark-

edly reduced volumes of drug to be consumed; one teaspoon 

of GPB liquid provides an equimolar dose to approximately 

13 large tablets of NaPB. The sodium salt of PB also appears 

to cause significant gastric discomfort, which is absent in the 
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triglyceride (GPB), where the acidic PB is released in the 

small intestine and more slowly. Finally, the sodium load in 

therapeutic doses of NaPB is measured in gram quantities, 

which may contribute to multiple unpleasant effects on fluid 

balance and blood pressure.

Phenylbutyrate (Pheburane®)
Another formulation of NaPB was introduced to the European 

market in 2013 (licensed by the European Medicines Agency 

[EMA] as Pheburane®; Lucane Pharma, Paris, France). The 

drug consists of small spherical sugar cores, contributing to 

a sugar content of ∼50% of the weight of the drug, which are 

coated sequentially in two separate layers with sodium PBA 

and ethylcellulose, the latter being a taste-masking agent for 

active substances.24 Pheburane®, formulated as tasteless and 

odor-free granules, is recommended for oral use only and 

should not be administered by a nasogastric or gastrostomy 

tube because of its slow dissolution. Importantly, the sodium 

content of this formulation, 5.4 mmol sodium for each gram 

of NaPB, is identical to the other NaPB formulations avail-

able in the market.

Pharmacodynamic and pharmacokinetic properties are 

the same as in the active compound, PB, resulting likewise 

in conversion to PAA and subsequent conjugation with glu-

tamine to form phenylacetylglutamine, which is then excreted 

in the urine.24 Accordingly, the new formulation reduces the 

unpleasant taste, which should lead to improved compli-

ance and eventually result in better efficacy of long-term 

treatment and better outcomes, especially in the pediatric 

patient population.25

N-Carbamyl-l-glutamate (Carbaglu®)
N-Carbamyl-l-glutamate (carglumic acid; Carbaglu; Orphan 

Europe Recordati Group, Paris, France) is a licensed drug 

(both by the FDA and by the EMA) for the treatment of the 

rare NAGS deficiency.26–28 This defect leads to deficiency 

of N-acetylglutamate (NAG), the allosteric activator of the 

first urea cycle enzyme, CPS1. Carglumic acid is a chemical 

analogue of NAG and has been demonstrated to efficiently 

enter the mitochondrion. Thus, treatment with carglumic 

acid effectively substitutes for the NAG deficiency, although 

the pharmaceutical agent is not regulated by consumption of 

a protein containing meal in the same way as endogenous 

NAG. Nevertheless, NAGS deficiency is the only UCD for 

which an easy and highly efficacious remedy is available, 

which allows the patients to lead a normal life, with no need 

for low-protein diet or other drugs except during the periods 

of illness.11,29,30

In addition, carglumic acid has been licensed in Europe 

for the treatment of acute hyperammonemia in three of 

the organic acidurias (methylmalonic aciduria; propionic 

acidemia; and isovaleric acidemia), which are inherited 

disorders of branched-chain amino acid degradation.28,31 In 

these conditions, hyperammonemia results from inhibition of 

NAGS during states of metabolic decompensation, presum-

ably due to accumulation of specific inhibitory compounds 

such as methylcitrate or propionyl-CoA.

A further application of carglumic acid, the use in 

patients with CPS1 deficiency and potentially also in 

patients with OTC deficiency, has recently been suggested 

and is currently the subject of a multicenter Phase II study 

in the US. The rationale for this use is based on the assump-

tion that additional activation of a mutant CPS1, thereby 

maximizing the flux through the urea cycle, may improve 

the overall ammonia detoxification capacity. This may be the 

case, in particular, if mutations affect the allosteric domain 

of the CPS1 protein, which comprises the C-terminal part 

of the protein. This theoretical concept has been supported 

by a number of (mainly single) patient studies in which a 

beneficial effect was shown.32 More recently, isotope studies 

performed in a small number of CPS1-deficient patients pro-

vide evidence for the efficacy of carglumic acid treatment, 

demonstrating increased flux through the urea cycle.33 This 

is further supported by studies in insect cell-derived purified 

recombinant CPS1, in which carglumic acid exhibited an 

activity increasing effect in some of the mutants.34 Notably, 

this effect was not only limited to mutations within the 

C-terminal part of CPS1 but also found in single missense 

changes far distant in the secondary structure of CPS1.

Likewise, for males with partial OTC deficiency, ie, with 

residual enzyme activity, or in female carriers of OTC muta-

tions with hepatic mosaicism due to random X-inactivation, 

pharmacological upregulation of CPS1 enzyme activity may 

lead to increased flux through the OTC-deficient enzyme, or 

in cells expressing the normal enzyme in female carriers.

Drugs with a potential  
for development
NO supplementation
The recent elucidation of a cytosolic multienzyme com-

plex including argininosuccinate synthetase, ASL, and NO 

synthase,35,36 and evidence of NO deficiency suggested by 

reduced nitrosylation of marker compounds in patients with 

ASL deficiency, suggest an explanation for some of the 

hitherto poorly understood clinical findings in ASL-deficient 

patients, namely, arterial hypertension, chronic liver 
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disease, and ammonia-independent neurodevelopmental 

deterioration.37 Importantly, impaired NO-mediated 

relaxation of the vasculature has been restored both in 

ASL-deficient mice and in a single ASL-deficient human 

with treatment refractory arterial hypertension by NO 

 supplementation.38 Thus, the role of NO supplementation 

for the subgroup of patients affected by ASL deficiency will 

need to be determined in clinical trials.

NMDA receptor blockade and other 
neuroprotective agents
Since ammonia neurotoxicity is in part mediated 

through activation of the NMDA receptors by glutamate, 

targeting this receptor by pharmacological blockade is 

an obvious therapeutic strategy; however, there are no 

research activities reported that specif ically address 

UCDs. Thus, the reader is referred to literature on other 

disorders.39

A number of other therapeutic targets have been inferred 

from research into ammonia neurotoxicity, as reviewed by 

Braissant et al,8 unfortunately, none of them have yet been 

evaluated in clinical trials. Nevertheless, they are listed in 

Table 1 to illustrate the large variety of potential therapeu-

tic targets that may, at least in part, come into clinics in 

the future. Other nitrogen scavenger substances, such as 

l-ornithine-phenylacetate or l-ornithine-l-aspartate, have 

also been proposed, although possible advantages over 

currently existing treatments are not clear.

Other therapeutic strategies
UCDs cannot be cured by drugs alone. It is clear that addi-

tional or alternative strategies are needed. Currently, liver 

transplantation by restoring the defective enzyme in the 

liver is the only correction for the ineffective urea cycle; 

thus, it can be reasonably recommended for all severe 

UCDs, unless there are already neurological sequelae from 

previous episodes of hyperammonemic decompensation 

rendering the extent of preservation of cognitive functions 

small or irrelevant.11,15,40 Even then, liver transplant may be 

considered to ease the burden of care and enhance the quality 

of life for affected individuals, mainly by normalizing the 

diet and removing the need for expensive scavenger medica-

tions and nutritional supplements, and for their families by 

reducing the anxiety of the constant risk of rapid metabolic 

decompensation. It is also possible that liver transplantation 

may be less expensive over the course of a lifetime than the 

current standard medical care. It should be remembered that 

liver transplant does not replace those component enzymes 

of the urea cycle that are expressed in non-hepatic tissues, 

especially argininosuccinic acid lyase, which is involved in 

NO synthesis. In addition, the life-long need for immunosup-

pression must be considered.

Because cadaveric liver transplantation is not immediately 

available for most patients and is technically challenging in 

newborns and small infants, several bridging therapies are cur-

rently being considered or already evaluated in clinical trials.

Hepatocyte transplantation
As a less-invasive but potentially effective approach, trans-

plantation of (fresh or cryopreserved) human hepatocytes 

was suggested in the 1990s.41 Most researchers regard this 

as a potential bridging therapy for newborns with severe 

initial hyperammonemic decompensation at significant risk 

of further ammonia neurotoxicity if recurrent crises were 

to occur.42–44 This is a particularly attractive alternative for 

newborns in whom full organ transplantation carries high 

risks. Another advantage is increased availability of cells, as 

the cryopreserved cells can be stored until needed. It should 

be noted that, as in liver transplantation, there is a need for 

immunosuppression.

Concerns have been raised about the viability of cryo-

preserved hepatocytes, not only because these cells may 

be derived from organ donors not suitable for full organ 

transplantation because of long ischemia times, but also 

because of concerns toward mitochondrial damage due to 

cryopreservation.45 The latter concern could be overcome by 

the use of freshly isolated cells that may have better viability.46 

Table 1 Potential neuroprotective agents

Agent Proposed mechanism of action

NOS inhibitors To mitigate the ammonia-induced upregulation 
of NO54

Creatine To treat cerebral creatine deficiency caused 
by low arginine levels as found in all enzymatic 
defects of the urea cycle (except AR1 
deficiency), to treat ammonia-induced cerebral 
energy deficits, and to protect axonal growth55–57

Acetyl-l-carnitine To treat ammonia-induced cerebral energy 
deficits58

inhibition of  
CDK5/p25

To protect neurons from ammonia-induced 
death59

CNTF To protect oligodendrocytes from ammonia 
neurotoxicity60

MAPK inhibitors To inhibit the ammonia-induced activation of the 
MAPK pathway60,61

GS inhibitors inhibition of brain GS will reduce glutamine 
accumulation in astrocytes, hereby limiting 
osmotic cerebral edema62,63

Abbreviations: CDK, cyclin-dependent kinase; CNTF, ciliary neurotrophic factor; 
GS, glutamine synthetase; MAPK, mitogen-activated protein kinase; NOS, nitric 
oxide synthase.
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At least two clinical trials are currently underway to address 

this approach to therapy. An ongoing multicenter, open-

label clinical trial using historical controls in the US and 

Europe evaluating safety and efficacy of cryopreserved 

hepatocyte transplantation is in progress (Clinicaltrials.

gov identifier NCT01195753). An additional, single-center 

study using freshly isolated hepatocytes transplanted into an 

irradiated liver to enhance engraftment and expansion of the 

grafted cells is also in progress (Clinicaltrials.gov identifier 

NCT01345578).

Stem cell transplantation
Another alternative approach, in principle with the same 

rationale as the aforementioned hepatocyte transplantation 

approach, is the proposed transfusion of stem cells.47–49 These 

cells may exhibit advantages over mature hepatocytes in 

terms of efficacy and may have the additional benefit of being 

able to be produced in large quantities in vitro.49

Gene therapy
Gene therapy is a research focus for several inherited meta-

bolic diseases including UCDs. In fact, in the most com-

mon UCD, OTC deficiency, a dose-escalating study was 

performed as early as in 1999. Unfortunately, this trial was 

stopped due to overwhelming, and ultimately fatal, viral 

sepsis from the vector in one of the subjects,50 which put the 

entire field at hold for many years. Recent advances in vector 

biology and development have brought gene therapy back 

to the list of possible future therapies for UCDs,51 although 

the suitability of adenoviral-associated vectors for treatment 

of newborns remains the subject of debate. A recent review 

article on this topic describes the current status of, and pros-

pects for, gene therapy for UCD treatment.52

Therapeutic hypothermia
Since damage to the brain during hyperammonemia is the 

most relevant complication in UCDs, neuroprotective mea-

sures are warranted. Among these, therapeutic hypothermia 

has been proposed as potentially beneficial as it has been 

observed in other conditions, including traumatic brain injury 

or hypoxic–ischemic encephalopathy.

A recent pilot study in six newborns with UCDs, and 

one case with isovaleric acidemia, a classical organic 

acidemia, all affected by severe hyperammonemia, has 

proven the feasibility of adjunct therapeutic hypothermia.53 

Currently, a randomized multicenter study is being planned 

in US and European centers. This study is designed to 

ascertain whether treatment with hypothermia during the 

initial  hyperammonemic decompensation can improve the 

long-term neurological outcome of patients presenting with 

hyperammonemic crisis.

Summary
Treatment of UCDs is still very challenging and there were 

only few new developments in pharmacological therapy in 

recent years. An improvement not only of palatability but 

probably also of pharmacological properties is the new for-

mulation of glycerol phenylbutyrate that acts as an alternative 

pathway of waste nitrogen excretion. Carglumic acid, able to 

activate CPS1 as the first committed step of ammonia conver-

sion to urea, can be useful for genetic defects or biochemical 

inhibition of the NAGS enzyme. Other therapeutic strate-

gies that are not yet available but subject of studies include 

approaches to neuroprotection (eg, the use of controlled hypo-

thermia aiming for brain cooling), cell-based therapies (eg, 

infusion of fresh or cryopreserved hepatocytes, use of stem 

cells), and new approaches to gene therapy. Overall, novel 

pharmacological developments for treating patients with 

UCDs are much desired as the currently available treatment 

options are still far from being optimal. As all UCDs have 

low incidences, such novel therapies will require the joint 

interest and enthusiasm of scientists and industry dedicated 

to the field of rare diseases.
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