
© 2014 Kaplan et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Nature and Science of Sleep 2014:6 113–122

Nature and Science of Sleep Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
113

O R I G I N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/NSS.S71159

Performance evaluation of an automated single-
channel sleep–wake detection algorithm

Richard F Kaplan1

Ying Wang1

Kenneth A Loparo1,2

Monica R Kelly3

Richard R Bootzin3

1General Sleep Corporation, Euclid, 
OH, USA; 2Department of Electrical 
Engineering and Computer Science, 
Case Western Reserve University, 
Cleveland, OH, USA; 3Department 
of Psychology, University of Arizona, 
Tucson, AZ, USA

Correspondence: Richard F Kaplan 
General Sleep Corporation,  
26250 Euclid Avenue, Suite 709,  
Euclid, OH 44132, USA 
Tel +1 216 289 2331 
Fax +1 216 393 0079 
Email kaplan@generalsleep.com

Background: A need exists, from both a clinical and a research standpoint, for objective 

sleep measurement systems that are both easy to use and can accurately assess sleep and wake. 

This study evaluates the output of an automated sleep–wake detection algorithm (Z-ALG) 

used in the Zmachine (a portable, single-channel, electroencephalographic [EEG] acquisition 

and analysis system) against laboratory polysomnography (PSG) using a consensus of expert 

visual scorers.

Methods: Overnight laboratory PSG studies from 99 subjects (52 females/47 males, 

18–60 years, median age 32.7 years), including both normal sleepers and those with a variety of 

sleep disorders, were assessed. PSG data obtained from the differential mastoids (A
1
–A

2
) were 

assessed by Z-ALG, which determines sleep versus wake every 30 seconds using low-frequency, 

intermediate-frequency, and high-frequency and time domain EEG features. PSG data were 

independently scored by two to four certified PSG technologists, using standard Rechtschaffen 

and Kales guidelines, and these score files were combined on an epoch-by-epoch basis, using a 

majority voting rule, to generate a single score file per subject to compare against the Z-ALG 

output. Both epoch-by-epoch and standard sleep indices (eg, total sleep time, sleep efficiency, 

latency to persistent sleep, and wake after sleep onset) were compared between the Z-ALG 

output and the technologist consensus score files.

Results: Overall, the sensitivity and specificity for detecting sleep using the Z-ALG as com-

pared to the technologist consensus are 95.5% and 92.5%, respectively, across all subjects, and 

the positive predictive value and the negative predictive value for detecting sleep are 98.0% 

and 84.2%, respectively. Overall k agreement is 0.85 (approaching the level of agreement 

observed among sleep technologists). These results persist when the sleep disorder subgroups 

are analyzed separately.

Conclusion: This study demonstrates that the Z-ALG automated sleep–wake detection algo-

rithm, using the single A
1
–A

2
 EEG channel, has a level of accuracy that is similar to PSG tech-

nologists in the scoring of sleep and wake, thereby making it suitable for a variety of in-home 

monitoring applications, such as in conjunction with the Zmachine system.

Keywords: EEG, sleep–wake detection, algorithm, Zmachine, automatic sleep scoring, single 

channel

Introduction
The objective measurement of sleep–wake cycles is relevant and useful to vari-

ous research protocols, such as the assessment of differences in sleep patterns 

between populations or confirmation of wake in sleep deprivation studies, as well as 

clinical applications including sleep disorder diagnosis or as a behavioral treatment 

 adjunctive tool.1 Minimally invasive and cost-effective automated methods of objective 
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sleep monitoring are highly desirable, although, aside from 

 actigraphy-based systems, there are few commercially 

available options. In this paper, we present the performance 

of an automated sleep–wake detection algorithm (Z-ALG) 

that may have the potential to address this need.

Historically, the gold standard of sleep measurement 

has been laboratory polysomnography (PSG), which uti-

lizes a combination of electroencephalography (EEG), 

electrooculography, and electromyography (EMG) to 

determine sleep stages and sleep-related phenomena such 

as arousals. Laboratory PSG recordings require a physi-

cal space to conduct the sleep assessment and an on-site 

overnight staff to both apply and remove the physiological 

sensors and to ensure the integrity of acquired data. Data 

are often scored visually, in 30-second epochs, by registered 

PSG technicians. PSG boasts the advantage of excellence 

in terms of individualized sleep staging accuracy; however, 

the financial costs and time associated with conducting 

the data acquisition and subsequent scoring of the sleep 

records, as well as the burden to participants or patients, 

can outweigh this benefit.

In those research studies and clinical screening applica-

tions in which in-home sleep monitoring over many days 

or weeks is required, the use of portable multichannel PSG 

is often financially and logistically impractical; therefore, 

indirect inference of sleep and wake from actigraphy-based 

systems are often used in its place. Actigraphy systems are 

accelerometer-based devices that infer sleep and wake from 

the presence or absence of movement. Acquired accelero-

meter data are archived and postprocessed to compute 

conventional sleep–wake statistics such as total sleep 

time (TST), percent of time spent asleep, total wake time, 

percent of time spent awake, and number of awakenings.2 

Actigraphy is well suited to certain applications because 

it does not restrict patient movement (making it more 

acceptable for participants), is more cost effective, and is 

less time consuming with regard to both data collection  

and scoring than PSG.3 However, actigraphy is limited in 

terms of accuracy with regard to sleep–wake detection due 

to the potentially inconsistent relation between sleep and 

patient motion. In a recent 77-patient study, it was observed 

that the sensitivity of actigraphy (ie, agreement between 

actigraphy and PSG in detecting sleep) was 96.5%, but the 

specificity (ie, agreement between actigraphy and PSG in 

detecting wake) was only 32.9%.3 Thus, while actigraphy 

may be able to identify most instances of sleep, it is poor 

in terms of detecting periods of wakefulness. As with every 

classifier, there is a natural tension between specificity and 

sensitivity, and this difficulty is evident in sleep–wake 

classification using actigraphy. For those applications 

that require both high sensitivity and high specificity, 

a more precise method of sleep–wake determination may 

be needed.

To reduce the burden associated with the manual scor-

ing of PSG records, automatic sleep scoring systems have 

been developed. Automated scoring systems use digitally 

acquired PSG data, which are then postprocessed using 

various computational methods ranging from time and fre-

quency domain analysis, artificial neural networks, support 

vector machines, to other data-driven and learning-based 

classification techniques including rule-based systems 

such as expert and fuzzy systems.4–7 Automated scoring 

is a promising method to both improve reliability as well 

as to reduce cost and facilitate exploration of better disease 

detection and outcomes.8 Despite these benefits, automated 

scoring software typically requires the full complement 

of PSG data channels (requiring trained sleep technolo-

gists to apply and remove the sensors), thereby making it 

impractical for those in-home applications where a minimal 

number of data channels are used to make patient self-

application of sensors possible and for improved comfort 

during sleep.

More recently, automated scoring software has been devel-

oped for use with a single channel of EEG data. Berthomier 

et al9 conducted a validation study in which their automated 

sleep scoring software was compared against technologist 

visual scoring of data from the C
Z
–P

Z
 EEG channel, col-

lected by a commercially available PSG system, in 15 healthy 

adults. Postprocessing of the EEG data involved frequency 

band analysis, autoregressive modeling, Fourier transform, 

instantaneous frequency measurement, and a fuzzy logic–

based, dynamic iterative staging process. Their results indi-

cated sensitivity and specificity for detecting sleep of 98.1% 

and 82.5%, respectively, and an overall Cohen’s k agreement 

of 0.82.

In Koley and Dey,10 automatic identification of sleep 

stages 1, 2, 3, 4, rapid eye movement (REM), and wake-

fulness were classified from a single channel (C
4
–A

1
) 

of EEG data using a pattern recognition technique that 

involves extracting 39 time and frequency domain features 

and application of support vector machines for recursive 

feature elimination and classification. This algorithm, 

which used 16 subject recordings for training, and another 

12 subject recordings for testing, produced an average 

Cohen’s k of 0.86 for the test subjects and 0.88 for the 

training subjects. Subjects with and without symptoms of 
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sleep apnea were included in both the training and testing 

data sets.

These results are promising in that they demonstrate 

the ability of automated scoring software to potentially 

substitute for the visual scoring of sleep–wake from as little 

as one channel of EEG data in both healthy individuals and 

those with sleep disorders.

The objective of this paper is to evaluate the performance 

of the automated sleep–wake detection algorithm, Z-ALG, 

in terms of accuracy and reliability as compared to visual 

scoring by certified PSG technologists and as compared to 

other sleep–wake scoring systems that have been reported 

in the literature.

Z-ALG computes individualized scale parameters unique 

to each patient, rather than relying on the broad assumptions 

inherent in population-based training approaches to algo-

rithm development. Furthermore, Z-ALG can process data 

derived from the differential mastoid (A
1
–A

2
) EEG location. 

Although the mastoids are traditionally used as references 

for various standard EEG derivations (such as O
1
–A

2
, C

4
–A

1
, 

etc), like all positions on the scalp, it does contain a mixture 

of EEG and EMG activities. Although the mastoids may 

contain a different proportion of EMG activity as compared 

to some other locations on the scalp, the A
1
–A

2
 channel can 

be effectively used for sleep–wake detection as shown in 

this paper.

The performances of two sleep detection algorithms 

using signals from frontally derived EEG locations have 

been evaluated,11,12 but to the best of our knowledge, Z-ALG 

is the first to use signals from A
1
–A

2
 for this purpose. The 

A
1
–A

2
 location has the advantage of being located com-

pletely outside the hairline, making it suitable for patient 

self- application and removal of pre-gelled, self-stick EEG 

 sensors. Furthermore, this location orients the lead wires 

down and away from the user’s face, making it comfortable 

to wear when sleeping. Z-ALG, used in conjunction with a 

portable EEG acquisition system, has many of the combined 

benefits of actigraphy (convenience) and laboratory PSG 

(accuracy). In addition, this combination has the potential to 

be useful in clinical settings, such as an augment to cogni-

tive behavioral therapy for insomnia.13 The remainder of this 

paper describes the approach to evaluating Z-ALG.

Methods
Participants
One hundred and six paid volunteers participated in an over-

night laboratory PSG study in the Consolidated Research, 

Inc. Research Sleep Laboratory in Cleveland, OH, USA 

as approved by the Mercy Medical Center Institutional 

Review Board in Canton, OH. Data were collected and 

scored in 2003, prior to the publication of the American 

Academy of Sleep Medicine Manual for the Scoring of Sleep 

and Associated Events.14 In keeping with the convention of 

most automatic sleep staging systems and the historical gold 

standard used by sleep technologists for over 40 years, PSG 

data were scored visually according to rules published in 

1968 by Rechtschaffen and Kales.15 Of the 106 participants, 

data from the first four were excluded from the study due to 

technical issues with the PSG recording system (incorrect 

patient head-box connections). Two additional participants 

were excluded because the sleep technicians failed to fol-

low the prescribed protocol, and one participant voluntarily 

withdrew from the study. Therefore, physiological data and 

manually scored sleep records for 99 volunteer participants 

were used for this analysis.

The study group was composed of 52 females and 

47 males, aged 18–60 years, with a median age of 32.7 years. 

The study employed liberal inclusion criteria in order to 

capture a variety of subjects, including both those reporting 

normal sleep and those reporting various sleep complaints. 

All participants were considered either “a normal healthy 

patient” or “a patient with mild systemic disease” in accor-

dance with the American Society of Anesthesiologists 

physical status classification system (ASA Physical Status 1 

and 2, respectively).16 This protocol allowed for inclusion of 

“a patient with severe systemic disease,” American  Society of 

Anesthesiologists Physical Status 3, but none were included 

in this study. Although atypical in sleep research, the clas-

sification system of the American Society of Anesthesiolo-

gists was used to screen patients for this study due to the 

research team’s established familiarity and experience with 

this classification system from developing clinical studies 

for monitoring patients undergoing surgical anesthesia. The 

exclusion criteria for this study included pregnancy, less 

than 18 years of age, and psychotropic medication use due 

to the potential influence on the EEG signal morphology 

(users of selective serotonin reuptake inhibitors [SSRIs] and 

serotonin–norepinephrine reuptake inhibitors [SNRIs] were 

not excluded in order to evaluate their potential impact on 

algorithm performance), and those self-reporting excessive 

skin sensitivity due to possible discomfort from skin prepara-

tion and sensor application.

Z-ALG was developed for the Zmachine® DT-100, a com-

mercially available, US Food and Drug  Administration-cleared, 

single-channel, EEG-based system intended for in-home 

use. The Z-ALG and Zmachine combination is ultimately 
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intended for use with insomnia treatment, so preference was 

given to those participants reporting normal sleep and those 

expressing one or more symptoms of chronic insomnia. 

Initially, participants who self-reported symptoms indicative 

of sleep apnea or restless leg syndrome were not selected for 

the study; however, this restriction was relaxed as recruit-

ment progressed in order to gain additional knowledge as 

to the strengths and limitations of Z-ALG with a diverse 

population.

Participant diagnoses were based on prestudy structured 

telephone interviews conducted by a staff member at the 

 General Sleep Corporation (a division of Consolidated 

Research, Inc.) and questionnaires. Of the 99 study partici-

pants, 50 participants (50.5%) reported symptoms consistent 

with at least one of the following sleep disorders:

•	 Thirty-five participants (35.4%) reported symptoms con-

sistent with at least one variety of chronic insomnia (sleep 

onset, sleep maintenance, waking too early) defined as 

greater than 30-minute sleep-onset latency (n=25, 25.3%), 

greater than 30-minute wake after sleep onset (WASO; 

n=13, 13.1%), or waking earlier than desired (n=12, 

12.1%) with an inability to return to sleep occurring at 

least three times per week and persisting for at least four 

weeks. Of those 35 participants, 15 reported symptoms 

consistent with multiple types of chronic insomnia 

(ie, onset and maintenance, onset and early waking, or 

maintenance and early waking).

•	 Twenty-two participants (22.2%) reported strange leg 

sensations keeping them from falling asleep or staying 

asleep, indicative of possible restless leg syndrome or 

periodic limb movements.

•	 Five participants (5.1%) responded positively to both 

snoring and nocturnal cessation of breathing/choking, 

indicative of possible sleep apnea.

Laboratory PSG system and recordings
Participant data were acquired using a PSG system developed 

by Consolidated Research, Inc., to acquire high- resolution 

and high-bandwidth physiological signals for both tradi-

tional visual sleep scoring and processing by Z-ALG. To 

support the data requirements of Z-ALG, specialized signal 

acquisition hardware (2.5 kHz/channel sampling frequency 

and 16-bit analog-to-digital conversion) with a very low 

input-referenced noise floor (∼4 µVpp, full bandwidth time 

domain signal) was designed, built, and used for labora-

tory data acquisition. The nondistorted input range of the 

physiologic amplifiers is ±500 µV. A sixth-order, low-pass 

Bessel filter with 380 Hz cutoff frequency was used for 

antialiasing, and a first-order RC high-pass filter with 0.5 Hz 

cutoff frequency was used to block DC. In addition to the 

eight physiologic channels, the PSG system also recorded 

pulse-oximetry data for each subject. The data acquisition 

characteristics of the PSG machines (ie, amplifier frequency 

response, noise floor, linearity, levels of harmonic distor-

tion, sample frequency, etc) and the sleep–wake detection 

algorithm (Z-ALG) used in this paper are identical to those 

implemented in the Zmachine.

The following data were acquired during each night in 

the sleep laboratory: EMG, left outer canthus (LOC), right 

outer canthus (ROC), C
3
–A

2
, C

4
–A

1
, O

1
–A

2
, Fp

1
–Fp

2
, A

1
–A

2
, 

finger-probe pulse-oximetry, and time-stamped video/audio 

recording. EEG channels A
1
–A

2
 and Fp

1
–Fp

2
 were acquired 

and archived, but were not used for visual scoring. The EEG 

channel A
1
–A

2
 was the only data source used for Z-ALG in 

this study.

Visual sleep scoring and  
epoch-by-epoch consensus
Independent scoring was performed visually using stan-

dard 30-second epochs. In addition to assigning traditional 

Rechtschaffen and Kales sleep stages (Wake; 1, 2, 3, 4; and 

REM) and arousals to each epoch, the scorers were also given 

the opportunity to score any epoch as “unknown” when the 

subject was either disconnected from the system (bathroom 

break, etc) or when the waveforms were unclear or ambigu-

ous to the scorer.

To account for interscorer variability, each PSG record 

was scored independently by at least two certified PSG 

technologists as follows: 3 records were scored by two 

technologists, 16 records were scored by three technolo-

gists, and 80 records were scored by four technologists. The 

number of records scored by each technologist (T1–T5) 

is as follows: T1 scored 97 records, T2 scored 38 records, 

T3 scored 98 records, T4 scored 42 records, and T5 scored 

99 records.

The final consensus for stage-by-stage analysis was 

determined using an epoch-by-epoch majority agreement 

rule. If more than half of the scorers agreed on a particular 

stage of sleep (ie, Wake; 1, 2, 3, 4; or REM), then that stage 

was assigned as the final score for that epoch.  Otherwise, that 

epoch was not considered for further analysis. The consensus 

epochs, based on the universally accepted methodology of 

laboratory PSG sleep analysis, are used as the objective stan-

dard by which the performance of Z-ALG is evaluated.

The example shown in Figure 1 was taken from a study 

participant with sleep scores from four PSG technologists 
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Wake

Stage-1

Stage-2

Stage-3

Stage-4
REM

Unknown

1000 200 300 400 500

Epoch
600 700 800 900

Figure 1 Sample study participant showing epoch-by-epoch scoring by four polysomnographic technologists.
Note: When a majority agreement exists for an epoch, the symbol is shown in dark blue. Otherwise, the symbol is shown in light blue.

0

Wake

Sleep

100 200 300 400 500

Epoch
600 700 800 900

Figure 2 Sample study participant scored by four polysomnographic technologists and converted from sleep stages to sleep–wake using a majority agreement rule.

shown superimposed. For sleep stages, dark blue denotes 

epochs that have majority agreement among the four PSG 

technologists and light blue represents epochs that do not 

have majority agreement.

Epochs scored as stages 1–4 and REM were converted to 

a single designation of SLEEP, and wake epochs were main-

tained as WAKE. The example shown in Figure 2 depicts 

the study participant shown in Figure 1, but converted from 

individual sleep stages to sleep–wake only.

Sleep–wake algorithm
A schematic representation of Z-ALG is depicted in Figure 3. 

Z-ALG operates on a single epoch at a time, so the input to 

the algorithm consists of 30-second blocks of EEG data. The 

first step of signal processing for sleep–wake determination 

occurs during the signal acquisition phase in which six time 

and frequency domain features are computed on the incoming 

EEG data stream and written to nonvolatile storage.

The incoming EEG data for time domain features TF1, 

TF2, and TF3 were preprocessed with a 3 Hz, second-order, 

high-pass filter and a 60 Hz (plus odd harmonics) multinotch 

filter to remove any coupled power line noise. TF1–3 are 

amplitude-dependent features related to the time domain 

morphology of the EEG signal and are used for differentiating 

noncortical artifacts (ECG contamination, muscle and motion 

artifact, etc) from those of cortical origin (large-amplitude 

slow waves, spindles, K complexes, etc).

The frequency domain features FF1, FF2, and FF3 

were processed using the (Hanning) windowed fast Fourier 

transform in which high-frequency, intermediate-frequency, 

and low-frequency band energy features are computed. 

The high-frequency feature (FF1) uses signal information 

within the 40–500 Hz range, and the interested reader is 

referred to the literature17 for more details about this fre-

quency range. The intermediate-frequency (FF2) feature 

falls within the conventionally defined beta (β) band, and the 

low-frequency feature (FF3) falls within the conventionally 

defined delta (δ) band.

Frequency features (FF1 to FF3) will occupy separable 

zones of a multidimensional hyperspace related to sleep and 

wake. The exact positioning of these wake and sleep zones 

is determined by the magnitude of the frequency features, 

which differ from patient to patient, based on such factors as 

skull thickness, age, etc. To distinguish between sleep and 

wake, Z-ALG computes a series of scale values that are used 

to define a separating hyperplane in the multidimensional 

feature space. This separating hyperplane is computed for 

each individual, based on their data alone, and therefore 

accounts for EEG signal differences among individuals. 

This unsupervised algorithmic approach avoids the need for 

training data required by other supervised approaches found 

in the literature.10

A single-level parallel detection scheme (detectors 

D1 and D2) is used to determine sleep and wake. If either 

D1 or D2 detects sleep, then the epoch is scored as SLEEP. 

If neither detector indicates sleep, then the epoch is scored 

as WAKE. Detector D1 uses only frequency features, and 

detector D2 uses both frequency and time domain features.
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After this sleep–wake detection scheme, a postprocessing 

filter is used to further “clean up” the sleep–wake  determination 

by adjusting the stage assignment of single- or double-isolated 

sleep epochs surrounded by wake from SLEEP to WAKE. The 

only operating assumption made by Z-ALG is that the record-

ing contains both sleep and wake epochs in the data set.

Statistical analysis
Cohen’s Kappa (k) was used to estimate interrater reliabil-

ity of the visual scoring by pairs of technologists for each 

participant and Z-ALG versus the technologist consensus. 

Cohen’s k  statistic quantifies the agreement between two 

raters beyond what would be expected from chance alone for 

categorical data. Although there is no formally agreed upon 

standard, k values are often segmented into ranges of values 

indicative of a low association (k ,0.4), medium association 

(0.4# k ,0.75), and high association (k $0.75).

Sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV) were calculated on the Z-ALG 

sleep–wake determination versus the consensus sleep–wake 

assignments. Sensitivity describes the probability of Z-ALG 

categorizing an epoch as sleep when the technologist consensus 

scored that epoch as sleep. Specificity describes the probability 

of Z-ALG categorizing an epoch as wake when the technologist 

consensus scored that epoch as wake. PPV and NPV describe 

the probability that an epoch is actually sleep (PPV) or wake 

(NPV) when it is identified as such by Z-ALG.

To further demonstrate the agreement between Z-ALG 

and the consensus of sleep technologists, Bland–Altman plots 

were used to compare four standard sleep statistics; they are: 

TST, sleep efficiency (SE), latency to persistent sleep (LPS), 

and WASO. Bland–Altman plots are useful for revealing 

any systematic biases and highlighting any outliers present 

between two data sets. Pearson correlation coefficients (r) 

were calculated to evaluate the agreement between Z-ALG 

and technologist consensus for each plot.

Results
Technologist-to-technologist comparison
Interrater agreement among the sleep technologists (Table 1) 

was determined based on the common records that they 

scored. Cohen’s k ranged from 0.82 to 0.92 for each pair of 

EEG A1–A2 (every 30 second data)

High pass filter
fc =0.3 Hz

+
Multi-notch filter
fc =60 Hz and

harmonics

Time domain
feature 1 (TF1)

Time domain
feature 2 (TF2)

Time domain
feature 3 (TF3)

Secondary sleep
detector (D2)

Primary sleep
detector (D1)

SLEEP
WAKE

Feature computation

Sleep-wake detection

SLEEP
WAKE

Yes

D1 =SLEEP
OR

D2 =SLEEP

No

Epoch classification:
WAKE

Epoch classification:
SLEEP

Hyper-plane
partitioning

(individualization)

Frequency domain
feature 1 (FF1)

Frequency domain
feature 2 (FF2)

Frequency domain
feature 3 (FF3)

Figure 3 Block diagram of sleep–wake detection algorithm.
Abbreviation: EEG, electroencephalography.
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Table 1 k agreement among technologists (number of com mon 
subjects scored)

T1 T2 T3 T4 T5

T1 1.000 (97) 0.892 (38) 0.868 (96) 0.895 (42) 0.896 (97)
T2 1.000 (38) 0.883 (38) N/A (0) 0.924 (38)
T3 1.000 (98) 0.823 (42) 0.846 (98)
T4 1.000 (42) 0.915 (42)
T5 1.000 (99)

Table 2 Contingency table showing the number of sleep–wake epochs from Z-ALG against the consensus of sleep technologists for 
each sleep stage (Wake; 1, 2, 3, 4; and REM)

Z-ALG Technologist consensus scores

Wake Stage 1 Stage 2 Stage 3 Stage 4 REM Total
Detected as wake 15,632 (92.5%) 1,254 (31.1%) 1,523 (3.6%) 26 (1.4%) 10 (0.4%) 127 (0.8%) 18,572 (22.4%)
Detected as sleep 1,276 (7.5%) 2,779 (68.9%) 40,867 (96.4%) 1,775 (98.6%) 2,500 (99.6%) 15,012 (99.2%) 64,209 (77.6%)
Total 16,908 (20.4%) 4,033 (4.9%) 42,390 (51.2%) 1,801 (2.2%) 2,510 (3.0%) 15,139 (18.3%) 82,781 (100%)

Abbreviation: REM, rapid eye movement.

technologists, except between T2 and T4, who did not score 

any common records.

Technologist-to-Z-ALG comparison
Of 91,824 epochs (.765 hours) of recorded data for the 

99 subjects, 82,781 (.90%) have consensus among the 

technologists and were compared with Z-ALG (9,043 epochs 

lacked consensus, so were not included for analysis). For 

those 82,781 epochs, epoch-by-epoch agreement between 

Z-ALG and the technologists is shown in Table 2. For exam-

ple, in the REM column of Table 2, among 15,139 epochs 

that the consensus of PSG technologists classified as REM, 

Z-ALG correctly classified 15,012 (99.2%) as sleep and 

incorrectly classified 127 epochs (0.8%) as wake.

The two-state (wake and sleep) epoch-by-epoch agreement 

is summarized in the contingency table shown in Table 3. The 

consensus of PSG technologists classified 65,873 (62,933 +	
2,940) epochs as sleep. Of those, Z-ALG correctly classified 

62,933 epochs as sleep and incorrectly classified 2,940 epochs 

as wake. Similarly, the technologists indicated 16,908 (1,276 +	
15,632) epochs as wake, with Z-ALG correctly classifying 

15,632 of those epochs as wake, and misclassifying 1,276 as 

sleep. Based on these data, the overall sensitivity of Z-ALG on 

the entire 99-subject sample is 95.5% for detecting sleep, with 

a specificity of 92.5%, and PPV and NPV of 98.0% and 84.2%, 

respectively (Table 4, Row 1). Cohen’s k agreement of 0.85 

falls within the range of high association (.0.75).

Although consensus agreement among technologists 

was the chosen performance metric, it may be interesting to 

note that the performance of Z-ALG improved when com-

pared only to those epochs in which there was unanimous 

agreement among technologists. When only considering 

unanimous agreement, 69.2% of epochs remained in the 

pool for analysis (as compared to 90.2% for consensus agree-

ment) and resulted in a sensitivity of 97.1%, specificity of 

94.1%, and PPV and NPV of 98.1% and 90.9%, respectively. 

Cohen’s k increased to 0.90.

Participant subgroup analyses
Specificity, sensitivity, and Cohen’s k were also calculated in 

Table 4 for subjects reporting symptoms of sleep disorders 

(insomnia, apnea, RLS/PLM subgroups) and for those taking 

antidepressant medications (SSRI/SNRI subgroup). From 

this table, we observe that Z-ALG maintains a high level of 

accuracy across various subgroups, including subjects report-

ing any of the symptoms of chronic insomnia, with the worst 

performance attributed to the SSRI/SNRI subgroup.

Comparison of sleep statistics
Figures 4–7 demonstrate the sleep statistics of TST, SE, 

LPS, and WASO using scores from both Z-ALG and the 

consensus of sleep technologists. As can be observed in the 

figures below, these four statistics show strong correlations 

between Z-ALG and the technologists. The Pearson correla-

tion coefficients (r) range from a minimum of 0.89 for WASO 

to a maximum of 0.96 for LPS. The Pearson correlation 

coefficient, mean error, and standard deviation are shown at 

the bottom of each figure.

Discussion
In the present study, the automated sleep–wake detection 

algorithm, Z-ALG, was compared on an epoch-by-epoch 

basis to visually scored and consensus agreed upon full 

PSG recordings. Z-ALG provides sleep–wake information 

on a 30-second epoch-by-epoch basis, as well as summary 

statistics such as TST, SE, WASO, and LPS. Although no 

information is provided about sleep architecture other than 

sleep–wake determination, Z-ALG demonstrated high reli-

ability and validity in the detection of sleep versus wake 

not only for good sleepers but also for those with a variety 
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Figure 4 Bland–Altman plot of total sleep time between sleep–wake detection 
algorithm (Z-ALG) and the consensus of sleep technologists. r=0.954 and  
bias =0.193±0.290.
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Figure 5 Bland–Altman plot of sleep efficiency between sleep–wake detection 
algorithm (Z-ALG) and the consensus of sleep technologists. r=0.928 
and bias =0.029±0.044.

Table 4 Contingency table of validation statistics for both the 
entire sample and subgroups

n Sensitivity Specificity PPV NPV k

Entire  
sample

99 95.5% 92.5% 98.0% 84.2% 0.85

Insomnia  
subgroup

35 96.7% 91.6% 97.2% 90.4% 0.88

Apnea  
subgroup

5 95.0% 89.3% 94.4% 90.3% 0.85

PLM/RLS  
subgroup

22 95.1% 91.8% 97.8% 83.2% 0.84

SSRI/SNRI  
subgroup

4 91.2% 92.8% 97.8% 74.6% 0.77

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; 
SNRI, serotonin–norepinephrine reuptake inhibitor; SSRI, selective serotonin 
reuptake inhibitor; PLM, periodic limb movement; RLS, restless leg syndrome.

of sleep complaints as well as those taking antidepressants. 

Although we believe that Z-ALG shows a considerable 

accuracy advantage over the results obtained from  actigraphy, 

additional research in which Z-ALG and actigraphy are 

directly compared should be performed.

Z-ALG is the sleep–wake detection algorithm developed 

for use in conjunction with the Zmachine, a single-channel 

EEG acquisition and analysis system using data from dif-

ferential mastoids (A
1
–A

2
). The Zmachine includes automatic 

impedance checking18 to verify good impedances at the 

start of recording and at intervals throughout the recording, 

as good data quality is critical to algorithm performance. 

The Zmachine was originally developed for use with cogni-

tive behavioral therapy for insomnia.13 In addition to measur-

ing objective TST to facilitate sleep restriction therapy, the 

Zmachine can also alert patients to leave bed in accordance 

with stimulus control instructions if the device detects that 

the individual has been awake for more than a clinician-

determined amount of time (eg, 20 minutes). The Zmachine 

can also provide immediate patient feedback in terms of 

various sleep statistics, such as TST, SE, LPS, and WASO. 

For this intended purpose, Z-ALG must exhibit both high 

sensitivity and specificity in detecting sleep versus wake. 

A lack of Z-ALG sensitivity would, for example, result in 

an overestimation of wake time, leading to false alerts to 

leave bed. Similarly, a lack of specificity would result in 

the overestimation of sleep that could result in failing to 

appropriately alert patients to leave bed. In either situation, 

the effectiveness of the Zmachine would be degraded. To 

meet these requirements, Z-ALG provides individualized 

tuning of sleep detection parameters for each patient, thus 

enabling more accurate sleep–wake classification over a 

diverse population as compared to algorithms relying on 

population-based (supervised) training.

For 99 healthy and sleep disorder adults, Z-ALG achieved 

an overall sensitivity for detecting sleep of 95.5%, with a 

specificity of 92.5%, PPV of 98.0%, and NPV of 84.2%. A 

study involving 15 healthy adults9 reported a sensitivity of 

98.1% for detecting sleep with a specificity of 82.5%, PPV of 

97.2%, and NPV of 87.6%. Another study involving 29 healthy 

adults11 reported a PPV of 94.8% for detecting sleep with an 

NPV of 83.5%, but did not report sensitivity and specificity 

for detecting sleep. Using the contingency table provided in 

this publication,11 we calculated a sensitivity of 98.0% for 

Table 3 Contingency table showing the number of sleep-wake 
epochs in each classification

Z-ALG Consensus sleep technologist 
scores

Sleep Wake
Detected as sleep TP =62,933 FP =1,276
Detected as wake FN =2,940 TN =15,632

Abbreviations: TP, true positive; TN, true negative; FP, false positive; FN, false 
negative.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Nature and Science of Sleep 2014:6 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

121

Sleep–wake detection

other forehead or scalp EEG electrode locations. Although 

this manuscript only details the sleep–wake detection results 

from Z-ALG, future versions of the algorithm will further 

separate sleep into light sleep, deep sleep, and REM. These 

results will be reported in future publications.

From Table 2, it can be seen that Z-ALG misclassified 

31.1% stage 1 sleep as wake. It would be highly desirable if 

stage 1 detection accuracy could be improved in the future. 

However, this result is not surprising, given that other algo-

rithms performed similarly.9,12 The accurate detection of 

stage 1 sleep appears to remain an open problem in this field. 

Furthermore, from the Bland–Altman plots of Figures 4–7, 

the errors in the four sleep statistics are not insignificant 

for some subjects. For example, the maximal error of the 

LPS is about 0.5 hour (30 minutes), which almost meets the 

diagnostic criteria for insomnia and could potentially lead 

to misinterpretation. Therefore, continued improvement in 

the accuracy of Z-ALG is of high importance.

A limitation of the present study is that the sleep disorders 

subgroups, listed in Table 4, are classified according to self-

reports and were not clinically verified prior to inclusion in 

the study. Another limitation is that there are too few subjects 

in the sleep disorder subgroups to base any conclusions about 

Z-ALG performance (they were only included in Table 4 for 

completeness). However, the SSRI/SNRI subgroup does hint 

at degraded Z-ALG performance. The study of larger sleep 

disorder populations, using a variety of patient demographic 

types, should be performed in the future to further understand 

Z-ALG strengths and limitations and to improve the perfor-

mance of future versions of the algorithm.

Future research regarding Z-ALG will also include 

validation studies using the data collected by the Zmachine 

device to evaluate the system’s performance as a whole. 

Additionally, studies should assess this system in insomniacs 

in a trial of cognitive behavioral therapy for insomnia in order 

to evaluate the Zmachine as an adjunct to traditional therapy. 

Although additional research is desirable to further verify the 

clinical utility of the Zmachine, this study has shown that 

Z-ALG is a reliable and valid tool for detecting sleep and 

wake and for computing accurate sleep-related statistics.
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Figure 6 Bland–Altman plot of latency to persistent sleep between sleep–wake 
detection algorithm (Z-ALG) and the consensus of sleep technologists. r=0.962 and 
bias =−0.094±0.202.
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Figure 7 Bland–Altman plot of wake after sleep onset between sleep–wake 
detection algorithm (Z-ALG) and the consensus of sleep technologists. r=0.887 and 
bias =−0.099±0.197.

detecting sleep, with a specificity of 63.9%. Finally, a study 

involving 44 healthy and sleep disorder adults12 divided 

into two groups reported detection statistics for each stage 

of sleep, but not sleep–wake. Using the contingency table 

provided in this publication,12 we calculated the sensitivity 

for detecting sleep in each group (1 and 2) as 95.4%, with 

specificities of 79.0% and 78.3%, PPVs of 94.3% and 93.7%, 

and NPVs of 82.5% and 83.3%, respectively. Because differ-

ent EEG channels, different subject populations, and different 

methods of analysis were used to evaluate each algorithm, 

there is no sufficient uniformity to draw any concrete conclu-

sions about the superiority of one technology over the other. 

To properly compare different algorithms, a clinical study 

in which all algorithms are challenged with the same data 

and analyzed using a standardized methodology is required. 

Z-ALG uses the A
1
–A

2
 EEG channel, which, although pos-

ing unique challenges from a signal processing perspective, 

enables comfortable use during sleep and is less intrusive than 
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