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Abstract: Pharmacophore modeling is a successful yet very diverse subfield of computer-aided 

drug design. The concept of the pharmacophore has been widely applied to the rational design 

of novel drugs. In this paper, we review the computational implementation of this concept and 

its common usage in the drug discovery process. Pharmacophores can be used to represent 

and identify molecules on a 2D or 3D level by schematically depicting the key elements of 

molecular recognition. The most common application of pharmacophores is virtual screen-

ing, and different strategies are possible depending on the prior knowledge. However, the 

pharmacophore concept is also useful for ADME-tox modeling, side effect, and off-target 

prediction as well as target identification. Furthermore, pharmacophores are often combined 

with molecular docking simulations to improve virtual screening. We conclude this review 

by summarizing the new areas where significant progress may be expected through the 

application of pharmacophore modeling; these include protein–protein interaction inhibitors 

and protein design.

Keywords: ADME-tox, computer-aided drug design, pharmacophore fingerprint, protein 

design, virtual screening

What is computer-aided drug design?
Drug design is an expensive and laborious process of developing new medicine. 

This process has its origin in herbal remedies dating back millennia.1 Only since 

the last century have drugs had a (semi)synthetic origin.2 The first hit compounds 

often lack both potency and safety, and must therefore be optimized. While histori-

cally this was a trial-and-error process,3,4 soon rational strategies were developed 

to improve potency.5,6 As with any data handling procedures, computers have 

become a more prominent and ubiquitous tool in drug discovery since the 1980s.7 

The crossover between computational and pharmaceutical research is typically 

designated computer-aided drug design (CADD).8,9

CADD covers a broad range of applications spanning the drug discovery pipeline, 

although these are highly clustered in the early phases. The main purpose of CADD 

is to speed up and rationalize the drug design process while reducing costs.10 The aim 

of the earliest phase in drug discovery is to identify the first hit compounds, which 

is sometimes attempted by high-throughput screening (HTS), the testing of many 

thousands of compounds with a suitable activity assay. The in silico counterpart of in 

vitro HTS is referred to as virtual screening and aims at filtering libraries of molecules 

using computational methods to prioritize those most likely to be active for a given 

Jo
ur

na
l o

f R
ec

ep
to

r,
 L

ig
an

d 
an

d 
C

ha
nn

el
 R

es
ea

rc
h 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/JRLCR.S46843
http://dvpr.es/10sQsdG.qrcode
http://www.dovepress.com/qr.php?c=1zeQnkd
http://dvpr.es/1zeQnkd
mailto:arnout.voet@fys.kuleuven.be


Journal of Receptor, Ligand and Channel Research 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

82

Qing et al

target.11 Later in the drug discovery pipeline the potency of 

the hit and lead compounds needs to be improved.12 New 

derivatives are designed with or without a different scaffold 

at the core of the molecule.13 The ultimate goal is to design 

highly potent and specific molecules which also have a suit-

able intellectual property position.14 This can be achieved 

by classical medicinal chemistry approaches, where the 

design can be based on the observed structure–activity 

relationships (SAR) or based on structural information.15 

Computational methods however can also be used to create 

diverse derivatives based on different scaffolds,16,17 and then 

score them for improved potency. This prioritizes the most 

promising derivatives from a very wide chemical space 

in a relatively short time.18,19 However, the potency of the 

compounds is not the only consideration. Pharmacokinetic 

properties (absorption, distribution, metabolism, excretion) 

and toxicity, referred to as ADME-tox, are also of vital 

importance if a compound is to be clinically useful.20–22 

As well as a battery of in vitro and in vivo experiments, 

virtual methods have also been developed to predict the 

ADME-tox profile of drug-like compounds early during 

the development process.

The basis of all CADD methods is chemo-informatics, 

the application of data storage, handling, and retrieval 

methods to chemical structures, their properties, and 

biological activity.23,24 Chemo-informatics also covers 

the calculation of molecular descriptors that describe a 

chemical or physical property based on the molecules’ 

structure, and which can be used for filtering compounds.25 

In order to be able to compare and quantify (dis)similarity 

between molecules, molecular fingerprints are often the 

methods of choice.26

Another very important CADD subfield focuses on 

quantitative structure activity/property relationship (QSAR/

QSPR), in which the physicochemical properties (as cal-

culated by molecular descriptors) of a set of inhibitors are 

related to the inhibitory activity or toxicity to construct a 

predictive model for novel inhibitors.27–29 QSAR has become 

a very popular tool to profile novel inhibitors accurately in 

silico without going through expensive and time-consuming 

in vitro and in vivo assays.30

Probably the best known and most used CADD method 

is molecular docking simulations, whereby the 3D binding 

mode of a given ligand for a given biomolecular receptor 

(typically a protein structure) is predicted and scored for 

affinity. This is extremely useful for the structural analysis 

of protein–ligand interactions where experimental structural 

information is absent.31 Docking, however, has also become 

a very popular tool to screen for hit compounds virtually, or 

by reverse engineering to identify the target.32–35

The CADD methods briefly introduced earlier are some 

of the most widely known, but many more exist including 

artificial-intelligence-based methods.36,37 The topic of this 

review, however, is another very successful CADD method 

known as pharmacophore modeling.38–42 This review is 

aimed at medicinal chemists and others new to CADD 

and covers the history, progress, and current limitations 

of pharmacophore modeling. We do not list or compare 

the many different pharmacophore modeling programs or 

algorithms.

What is a pharmacophore?
Historical perspective
The original concept of the pharmacophore was developed 

by Paul Ehrlich during the late 1800s.43 At that time, the 

understanding was that certain “chemical groups” or func-

tions in a molecule were responsible for a biological effect, 

and molecules with similar effect had similar functions 

in common. The word pharmacophore was coined much 

later, by Schueler in his 1960 book Chemobiodynamics and 

Drug Design, and was defined as “a molecular framework 

that carries (phoros) the essential features responsible for a 

drug’s (pharmacon) biological activity.”44 The definition of 

a pharmacophore was therefore no longer concerned with 

“chemical groups” but “patterns of abstract features.”

Since 1997, a pharmacophore has been defined by the 

International Union of Pure and Applied Chemistry as:

A pharmacophore is the ensemble of steric and electronic 

features that is necessary to ensure the optimal supramo-

lecular interactions with a specific biological target and to 

trigger (or block) its biological response.45

The pharmacophore should be considered as the largest com-

mon denominator of the molecular interaction features shared 

by a set of active molecules. Thus a pharmacophore does not 

represent a real molecule or a set of chemical groups, but is 

an abstract concept. Despite this clear definition, the term 

pharmacophore is often misused by many in medicinal chem-

istry to describe simple yet essential chemical functionalities 

in a molecule (such as guanidine or sulfonamides), or com-

mon chemical scaffolds (such as flavones or prostaglandins). 

Often the long definition is simplified to “A pharmacophore 

is the pattern of features of a molecule that is responsible for 

a biological effect,” which captures the essential notion that 

a pharmacophore is built from features rather than defined 

chemical groups.
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Pharmacophore concepts in CADD
While the pharmacophore concept predates any form of 

electronic computer, it has nevertheless become an impor-

tant tool in CADD. Every type of atom or group in a mol-

ecule that exhibits certain properties related to molecular 

recognition can be reduced to a pharmacophore feature. 

These molecular patterns can be labeled as hydrogen 

bond donors or acceptors, cationic, anionic, aromatic, or 

hydrophobic, and any possible combinations.46 Different 

molecules can be compared at the pharmacophore level; this 

usage is often described as “pharmacophore fingerprints.” 

When only a few pharmacophore features are considered 

in a 3D model the pharmacophore is sometimes described 

as a “query.”

Pharmacophore fingerprint
While molecules are 3D entities, the pharmacophore rep-

resentation reduces a molecule to a collection of features 

at the 2D or 3D level.47,48 A pharmacophore fingerprint 

is an extension of this concept, and typically annotates a 

molecule as a unique data string. All possible three-point 

or four-point sets of pharmacophore features (points) 

are enumerated for each ligand.49 The distance between 

the feature points is counted in bonds (for  topological 

fingerprints), or by distance-binning when using 3D fin-

gerprints (Figure 1). The resulting fingerprint is a string 

describing the frequency of every possible combination at 

predefined positions within the string. Several variants of 

pharmacophore fingerprints have been designed and are 

frequently used.

Such a fingerprint can be used to analyze the  similarity 

between molecules or among a library of molecules. 

Alternatively, a fingerprint model can be used to analyze 

the common elements of active ligands to identify the key 

contributing features to the biological function.

Pharmacophore model or query
A pharmacophore model consists of a few features organized 

in a specific 3D pattern.50 Each feature is typically represented 

as a sphere (although variants exist) with a radius determin-

ing the tolerance on the deviation from the exact position 

( Figure 2). The features can be labeled as a single feature 

or any logic combination consisting of “AND,” “OR,” and 

“NOT” to combine different interaction patterns within one 

label. Additional features can describe forbidden volume 

interactions (typically to represent the receptor boundary).
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Figure 1 Pharmacophore fingerprints.
Notes: A pharmacophore fingerprint is the representation of a small molecule ligand (A) annotated with molecular interaction features (B) into a string. Typically, every possible 
three- (or four-) point combination of molecular interaction features (C), with different distances between the features, calculated either through space or by the number of bond 
lengths (D), is calculated and the frequency of occurrence is stored in a string (E). Such strings are useful for the easy comparison of similarity between multiple molecules.
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Such pharmacophore features are typically used as 

queries to screen small molecule libraries of compounds.51 

In these libraries all the compounds are present in their 

low-energy biorelevant conformations. Each of these con-

formations is fitted to the pharmacophore query by aligning 

the pharmacophore features of the molecule and the query 

is composed. If a molecule can be fitted inside the spheres 

representing the query features it is considered a hit molecule. 

Often the pharmacophore query can be too complex to find 

hit molecules from a given library, and partial matching may 

be allowed. In such cases only certain features considered 

essential for activity are matched. Additional uses of such 

models are to align molecules or facilitate molecular dock-

ing simulations.52–54

Depending on the situation and the type of experiment, 

multiple strategies are available to construct pharmacophore 

models, either manually or using automated algorithms, and 

this is discussed in the next chapter.

Pharmacophore modeling in virtual 
screening
Pharmacophore modeling is most often applied to virtual 

screening in order to identify molecules triggering the 

desired biological effect. For this purpose, researchers create 

a pharmacophore model (query) that most likely encodes the 

correct 3D organization of the required interaction  pattern. 

Depending on how much is known about the particular 

 protein target, different options are available to construct 

such a query (Figure 3).

In general, it is good practice to divide the ligand data 

into two sets, a training and an evaluation set to validate 

the generated pharmacophore query, when multiple active 

ligands (and inactive derivatives) are known.55

H-bond acceptor

H-bond donor

Cationic

Hydrophobic

Aromatic

Anionic

Figure 2 Pharmacophore query.
Notes: A pharmacophore query is comprised of different features. The features represent molecular recognition motifs such as hydrogen bond acceptors or donors, anionic, 
cationic, hydrophobic, and aromatic groups. The radius of the sphere determines the strictness of the geometric constraint. For features where the correct orientation 
of the interaction is important such as hydrogen bonds and the aromatic plane, a second feature can be used indicating the vector of the interaction (or the normal of the 
plane). A pharmacophore query can combine any of these features, with different radii and logic operations such as “AND,” “OR,” and “NOT.” On the left a hypothetical 
pharmacophore query for BRAF kinase is given.
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Figure 3 Four different situations for the pharmacophore search.
Notes: The figure shows the four different situations that may be encountered when 
starting a virtual screening. The situations include the absence of both the ligand and 
protein structure information, where except for divination, experimental screening is 
the only option. The second option is the presence of active ligands, but the protein 
structure is unknown, where pharmacophores can be used for ligand-based virtual 
screening. The best situation is when binding ligand and structural information is 
present. The most challenging option is when only a protein structure is available.
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While in all these cases pharmacophore queries are 

considered positive filters to identify compounds, they may 

in fact also be used as negative filters to avoid side effects 

as well.56,57

No protein structure and no ligand structure  
is known
If the target structure and all its ligands are unknown, pharma-

cophore modeling is impossible. The only option to employ 

the pharmacophore principle would be to design a diverse 

library employing a diversity metric based on pharmacophore 

fingerprints to ensure optimal diversity of the library, contain-

ing a wide variety of molecules with different pharmacophore 

feature composition. Indeed, considering the large number 

of available and potential compounds, the trend is to design 

libraries very carefully in order to cover chemical space 

efficiently in any search process.47,48,58,59

No protein structure, but active ligand structures  
are known
The other scenario is that the structure of the receptor (and 

any complex with the ligand) is unknown. This is frequently 

the case in drug discovery. If only a single active molecule 

is known, then it is impossible to map the key contributing 

pharmacophore features onto the molecule, and the only 

option may be to use similarity searches (such as using phar-

macophore fingerprints) to retrieve similar molecules.60 Once 

these have been tested, a set of multiple active and inactive 

compounds may be known and more advanced pharmacoph-

ore modeling can be utilized.

When a set of active ligands of known structure, with sim-

ilar or different scaffolds, is available, then it is possible to use 

ligand-based pharmacophore modeling.52,61 The  elucidation 

of the putative pharmacophore involves two steps. First, 

the conformational space of the flexible molecules needs to 

be covered extensively since the bioactive conformations are 

unknown. Second, the molecules need to be aligned by com-

mon pharmacophore features, which can be retained in a 3D 

model. Using inactive derivatives, the essence of the features 

as well as the permitted steric arrangement of the ligands 

can be mapped as well. The Catalyst-HypoGen algorithm 

in particular stands out from the variety of tools available 

for this purpose.62 This is a combination of QSAR and the 

pharmacophore method. It attempts to correlate structure 

and activity values (K
i
 or half maximal inhibitory concentra-

tion [IC
50

]) by constructing a pharmacophore model. Thus, 

HypoGen not only identifies a query compound as “active” 

or “inactive” in the traditional function of a pharmacophore 

model, but also predicts activity value based on regression 

of the training dataset.

Protein and ligand structures are known
In the third case, structural information is present for both 

ligands and the receptor protein. Usually a pharmacophore 

model represents the key features of a small molecule that 

allow it to bind to some receptor molecule, but this idea can 

be reversed and pharmacophore queries built from features 

of a protein active site.63 These features describe the principle 

interactions between the protein and its ligands, and can 

be mapped onto the bioactive conformation of the ligand. 

Ideally the structural model is derived from crystallographic 

or nuclear magnetic resonance data, but homology models or 

other structural data can be used as well. Although a struc-

ture for one ligand may be enough, it is beneficial to have 

3D information for multiple ligands to identify the common 

interactions. While this approach is compatible with the 

majority of pharmacophore modeling methods, LigandScout 

is notable as the first software package able to construct 

automatically a query from one or more Protein Data Bank 

(PDB) files based on protein–ligand interactions.64

Such structure-based pharmacophore queries have mul-

tiple applications. They can be used for virtual screening, 

ligand binding pose prediction, and comparison of binding 

sites.65

Only the protein structure is known
In the last case, structural information for the protein recep-

tor, but no active ligands, is known. In this case, a putative 

pharmacophore model can be constructed by analyzing the 

chemical properties of the binding site of interest. There 

are several different computational approaches that can 

directly convert 3D atomic structures of protein binding 

sites into queries. The interaction maps of the de novo drug 

design tool LUDI can be used to create a pharmacophore 

query.66 HS-Pharm is a knowledge-based method that uses 

machine-learning algorithms to prioritize the most interest-

ing interacting atoms and to generate an interaction map 

within the binding site.67 Subsequently, the interaction map 

is converted into pharmacophore features. The GRID pack-

age is another approach to analyze the pocket in order to 

identify the key interactions.68 Using molecular interaction 

fields, the most favorable positions of atomic probes in the 

binding site can be identified and converted into pharma-

cophore features.69 Although many successes have been 
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reported, the absence of any ligand structural information is 

a distinct disadvantage to drug design, since in the absence 

of a molecular scaffold it is hard to map the features in 3D 

space which can still be covered by atoms that are restrained 

by bond lengths and angles in the ligands.

In all of these examples, pharmacophore queries are 

utilized to identify active molecules that fulfill certain geo-

metric and chemical restraints. Because of the simple yet 

versatile character of a pharmacophore query, it can be used 

not only to identify active molecules, as suggested from the 

IUPAC (International Union of Pure and Applied Chemistry) 

definition of a pharmacophore, it can in fact also be used as 

a negative query, in order to identify molecules with undesir-

able properties.

In recent work by Voet et al, for example, a double 

pharmacophore query was utilized to identify strict human 

androgen receptor (hAR) antagonists.70 Prostate cancer 

therapy often relies on anti-androgens that antagonize the 

hAR function.71 However, resistant mutations tend to appear 

in the hAR so that the antagonists become agonists. In their 

work, the available structural information of the hAR with 

compounds in the agonist and the antagonist conformations 

were used. A pharmacophore query was generated based 

on the known antagonists in agonistic conformation, and 

remapped in 3D onto a second query in the antagonistic con-

formation. Following a combined pharmacophore screening 

method, compounds were identified that only fulfilled the 

antagonist query, but not the agonistic query. Experimental 

evaluation of the compounds confirmed the strictly antago-

nistic activity of the compounds toward both wild-type hAR 

and drug-resistant mutants.

Pharmacophore methods in docking 
simulations
As indicated in the previous section, pharmacophore models 

are very suitable as queries for virtual screening of databases. 

Nevertheless, one of the more common approaches in virtual 

screening is a so-called hierarchical approach in which differ-

ent methods are combined consecutively. This is also known 

as the funnel principle, where at each consecutive step the 

compounds most unlikely to be active are removed, leav-

ing the most promising compounds for virtual screening.72 

Typically, every step of the hierarchical approach consists 

of a more complex, computationally demanding step than 

the previous one. As such, pharmacophore models are often 

utilized as a filter to identify compounds that fulfill simple 

geometric and chemical functionality requirements of the 

query, prior to more complicated and computationally 

demanding approaches such as molecular docking.

Molecular docking simulations are computational meth-

ods that aim to predict the binding mode of a compound for a 

given receptor as well as the quality of the interaction, often 

by attempting to predict the affinity (free energy of binding) 

using a scoring function.31 Often molecular docking simula-

tions are used to screen large datasets of compounds for a 

given target, and compounds are ranked according to their 

predicted affinity. Due to the high number and diversity of 

the screening compounds, as well as the knowledge that most 

of the screened compounds are in fact probably inactive, the 

top scoring compounds are most likely inactive and better 

compounds are ranked below them. Although this ranking can 

still be better than random, typically only a few compounds 

are selected from those scoring best, and many of them often 

turn out to be inactive.73,74

Several options are available for combining docking-

based virtual screening with pharmacophore-based virtual 

screening:

•	 The database of ligands can be pre-filtered using a 

pharmacophore query, prior to evaluation using dock-

ing simulations.72

•	 The docking simulations can be post-filtered using a phar-

macophore query to remove any compounds that fail to 

bind according to the pharmacophore query. The method 

can also discard compounds that would have scored well 

in a pure pharmacophore search, but that fail to bind 

according to some hypothesis taking more information 

into account, such as incompatibility of the overall ligand 

structure with the receptor site. In such a case, the ligands 

are evaluated in absolute conformation and should not be 

allowed to align with the pharmacophore features.75

•	 Another alternative is to use the pharmacophore alignment 

to guide the placement during the docking simulations.76,77 

The pharmacophore model can in this case be used for 

the placement of the ligand, similarly to the fitting of a 

molecule into the pharmacophore query; or to guide the 

placement by using a constraint while scoring the different 

docking poses. The pharmacophore query could originate 

from a user-defined query or an automatically generated 

receptor-based pharmacophore query.53

Pharmacophore models are very useful for enriching the 

top scoring docking results with active compounds. This 

was demonstrated in the recent SAMPL4 virtual screening 

challenge where competitors were asked to rank a set of 

compounds for a given target, HIV-1 Integrase, without any 
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knowledge of activity of the compounds in the library.78 The 

top results were obtained for the group using a hierarchical 

method consisting of pharmacophore pre-filtering as well as 

pharmacophore post-filtering of the docking results.60

Applications of pharmacophores in 
ADMe-tox
Poor ADME-tox is a major contributing factor to failures 

during drug development and clinical trials.79,80 It is, there-

fore, widely accepted that the ADME-tox properties should 

be profiled early during the drug discovery process, and 

pharmacophore modeling approaches are often used for such 

ADME-tox predictions.81 The pharmacophore models can 

be used to identify possible interactions of drugs with drug-

metabolizing enzymes by matching the equivalent chemical 

groups of test molecules to those of drug molecules with a 

well-known ADME-tox profile.82

The enzymes of major importance for observed 

 ADME-tox profile are the cytochrome P450s (CYP) that 

initiate drug breakdown. It has been estimated that only 

six CYP isoenzymes (1A2, 2C9, 2C19, 2D6, 2E1, and 3A4) 

are responsible for over 90% of drug metabolism.83 Based 

on the observed interactions of known drugs with the CYP 

enzymes, receptor-based pharmacophore models have been 

generated that are able to predict the binding of a drug-like 

compound to a certain CYP and assess the possibility of 

degradation by this enzyme.84–87

Similarly, ADME-tox pharmacophore models have been 

generated for the uridine  5′-diphospho- glucuronosyltransferas

es, which are enzymes related to drug clearance, and transport-

ers such as P-glycoprotein and organic cation transporter.88,89

Pharmacophore-guided drug target 
identification
While typically the aim of CADD is to identify and optimize 

drug-like molecules for a given target, the opposite situa-

tion also exists. Often drug molecules are known, but the 

mechanism of action is unclear. These compounds are often 

derived from herbal medicine, or phenotypically developed 

drugs. In such cases, CADD may help identify the target. 

 Chemoinformatical fingerprint-based similarity tools are 

employed to identify close analogue compounds with a 

known mechanism of action.90,91 Nevertheless, pharmacoph-

ore modeling may also be an option, rather than screening 

compounds with a pharmacophore query. The molecule itself 

may become the query and the aim is to identify the most 

likely pharmacophore model that fits the molecule. Such 

 collections of pharmacophore models may be constructed 

manually or automatically generated from the PDB data-

base.64 Similarly, this approach may also be used to fish for 

a target for a given compound with a yet unknown activity.

One example of such an approach was reported by Roll-

inger et al.92 Using LigandScout, several plant metabolites 

were investigated and multiple potential drug targets were 

identified for these compounds. Experimental testing of the 

compounds for the given targets validated the applicability of 

this method. It may be expected that pharmacophore models 

will play a significant role in the future, as polypharmacol-

ogy or drug repositioning become more widespread.56,91,93 

Alternatively, this approach may also help to predict possible 

side effects or off-targets that can be taken into account to 

design more specific compounds.57

Limitations of pharmacophore 
methods
Despite the abundance of successful cases of drug design 

relying on pharmacophore modeling, as with any method, it 

is not failsafe and one should be cautious about the limita-

tions of this technique.94

The major limitation in virtual screening by pharmacoph-

ore is the absence of good scoring metrics. Whereas docking 

simulations are based on scoring functions trying to predict 

the affinity, and similarity searches utilize similarity metrics 

such as the Tanimoto score, pharmacophore queries do not 

have a reliable, general scoring metric. Most commonly, 

the quality of fitting the ligand into a pharmacophore query 

is expressed by the root mean square deviation between the 

features of the query and atoms of the molecule.55 This metric, 

however, is unable to take any similarity into account with 

known inhibitors, and also is unable to predict the overall 

compatibility with the receptor protein, and thus molecules 

that hit a pharmacophore query may be very different from 

other inhibitors and have functional groups which are not 

complementary with the receptor binding site, rendering 

them inactive despite being a perfect match.

A second limitation is the dependency of a pharmacoph-

ore-based virtual screen on a pre-computed conformation 

database. These databases only contain a limited number 

of low-energy conformations per molecule.95,96 It may be 

possible that an active molecule cannot be identified as the 

conformation is missing. This is especially the case for the 

many different conformations of rotatable bonds of small 

molecular functionalities such as hydroxyl groups. Differ-

ent rotations would be very hard to be  distinguished during 
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the  conformation generation in terms of root mean square 

 deviation differences, and thus may not be thoroughly 

sampled. Often pharmacophore search tools are able to rotate 

such bonds during the fitting process to obtain conformations 

with correct directions on the small flexible polar groups.

Finally, a major limitation is that there is no one clear 

way to construct a pharmacophore query. In many cases, 

pharmacophore models are able to retrieve molecules, but 

different models may have worked. One example is the case 

of Christ et al versus De Luca et al, where for a similar target, 

a similar yet slightly different pharmacophore was created.97,98 

While screens were performed on a similar dataset, very 

different molecules were identified. Although this is just 

one example, it is very likely that there are many more. This 

is also clear from the analysis of a wide variety of kinase 

inhibitors. In many cases, kinase inhibitors are very similar 

to each other and yet have very different activity profiles for 

the kinome. Pharmacophore approaches aimed at identifying 

kinase inhibitors would without any doubt identify kinase-

inhibitor-like molecules; nevertheless, there would not be a 

clear guarantee that these molecules would be active for the 

targeted kinase.99

In conclusion, plenty of experience and a certain dose 

of serendipity may be required for successful results. The 

influence of expert knowledge for in silico screening, also 

known as the in cerebro step, has been demonstrated during 

the virtual screening SAMPL4 challenge.60

While target identification, prediction of side effects, and 

ADME-tox profiling appear to be promising applications for 

pharmacophore modeling, success is limited for new mol-

ecule classes as information is lacking for such compounds 

or targets.100

Future perspectives on 
pharmacophore modeling
Pharmacophore modeling has been around since the begin-

ning of CADD and has evolved from a basic concept into a 

well-established CADD method with applications including 

similarity metrics, virtual screening, ligand optimization, 

scaffold hopping, target identification, and so on. Given the 

simplicity and versatility of the pharmacophore concept, it 

can be anticipated that further developments will be made 

in the future for different applications.

Fragment-based drug design
Over the last two decades, fragment-based drug design 

has become a well-established method for the rational 

 development of novel drugs.101 Rather than screening 

drug-like molecules (with molecular weights of around 

500 Da), smaller molecules with a molecular weight up to 

350 Da (referred to as fragments) are being screened for 

affinity with a receptor using highly sensitive biophysical 

methods. Fragments showing some affinity for the target are 

grown into bigger and more potent compounds, and frag-

ments binding to adjacent areas can be linked as well.

Since the diversity of small molecule fragments can 

easily be sampled with a few hundred compounds, in silico 

screening methods are highly suitable for fragment-based 

design. CADD methods such as docking and pharmacophore 

modeling have therefore also been used to identify fragment-

like compounds in silico prior to testing in vitro; subsequent 

fragment recombination can be used for the de novo design 

of inhibitors.66,102,103

In a first approach, the starting point is a single phar-

macophore query that spans two (or more) sub-pockets 

in the receptor binding site. An additional pharmacophore 

feature is added that does not represent a molecular rec-

ognition feature, but represents an atom in the fragments, 

where the two fragments of the different pockets may 

overlap and will be linked to each other.

Then fragments are identified that fulfill the features 

present in a sub-pocket of the pharmacophore query, as 

well as on the linking feature. Then the compatibility of the 

fragment hits for the respective sub-pockets is evaluated in 

terms of possibility to maintain the correct conformation 

after linking the two fragments. Subsequently the de novo 

designed compounds can be synthesized and evaluated.

In the following example, using a different yet similar 

strategy, Cavalluzzo et al designed a novel small molecule 

inhibitor binding to the LEDGF/p75 protein, based on an 

inhibitory peptide.104 They used predefined amino acid 

side chain fragments taken from the inhibitory peptide, 

and constructed a pharmacophore query to link the two 

predefined fragments with a third scaffold fragment that 

mimicked similar interactions as the peptide. All possible 

compounds were enumerated virtually, and for the com-

pounds that were able to adopt a conformation similar to 

the pharmacophore query after linking all fragments, the 

chemical synthesizability was assessed. Following synthe-

sis, the inhibitory potency of the compound was found to 

be 30 µM IC
50

 compared to 7.4 µM IC
50

 for the most potent 

inhibitory peptide.105

Even when active fragments have been identified using 

the classical in vitro methods, computational pharmacoph-

ore methods can be applied to identify novel derivatives. 

For example, pharmacophore fingerprint-based similarity 
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 searching and the generation of 3D pharmacophore  queries 

are suitable means to identify bigger and more potent 

 molecules from small molecule libraries.

Protein–protein interaction (PPI) 
inhibition
Although once thought to be undruggable, “high-hanging 

fruits on the drug discovery tree,” PPIs have drawn a great 

deal of attention in recent years.106 The undruggable image 

has disappeared and an increasing number of small molecule 

inhibitors of PPIs (SMPPII) have been reported. Most of 

the early inhibitors originate from HTS.107 Structural analy-

sis of proteins in PPI complexes and inhibitor complexes 

show that the interactions at the PPI interface are being 

mimicked by the ligand.108 SMPPII are found to copy the 

natural interaction not only in terms of shape and chemistry, 

but even at the electrostatic potential level.109 This mimicry 

suggests that the pharmacophore queries created from PPI 

complex structures can be used to identify SMPPII via  virtual 

screening.110 Different methods can be employed to map the 

pharmacophore features onto the amino acids present at 

the PPI interface.111 Several SMPPII discoveries have been 

achieved, thanks to pharmacophore searches using manually 

created search features,112,113 or a consensus of interactions 

at the PPI interface,114,115 or using automated methods,116 

or by identification of the key interactions using molecular 

interaction field analysis.69

PPIs are especially promising targets for controlling 

inappropriate signaling, as found in diseases such as cancer. 

The usefulness of pharmacophore modeling to create queries 

encoding the key interactions at the PPI interface will prob-

ably strongly stimulate the discovery of novel SMPPII using 

pharmacophores, both as a stand-alone virtual screening tool 

and incorporated into pipelines with other methods.

A potential role in protein design?
Although pharmacophore modeling originated as a drug 

design concept and, as indicated earlier, is nowadays a key 

element of CADD, pharmacophore modeling shows promise 

in the currently burgeoning field of computational protein 

design.117 Rather than designing drugs for a given protein 

target, the aim in computational protein design is to derive an 

amino acid sequence that will fold into a given structure with 

a desired function. In many cases, this may involve protein–

small molecule ligand interactions,118 and for these it can 

easily be imagined that pharmacophores may be used simply 

by reversing the process of small molecule drug design for a 

known protein structure.

First of all, suitable protein templates (enzymes or 

 otherwise) should be identified for the protein redesign 

 process. The ligand of interest could serve as a query to try 

to identify possible binding proteins, which can then later be 

redesigned to give optimum complementarity to the ligand. 

Second, during the virtual protein design process, often 

multiple rotamers of different amino acids are sampled to 

identify the most desirable ones.119 Similar to ligand fitting 

with a pharmacophore query, the protein side chains can be 

fitted to features describing the complementary interactions 

required at the protein–ligand interface.

Conclusion
The pharmacophore concept was first put forward as a useful 

picture of drug interactions almost a century ago, and with 

the rise in computational power over the last few decades, 

has become a well-established CADD method with numer-

ous different applications in drug discovery. Depending on 

the prior knowledge of the system, pharmacophores can be 

used to identify derivatives of compounds, change the scaf-

fold to new compounds with a similar target, virtual screen 

for novel inhibitors, profile compounds for ADME-tox, 

investigate possible off-targets, or just complement other 

molecular methods. While there are limitations to the phar-

macophore concept, multiple remedies are available at any 

time to counter them. Given this versatility, it is expected that 

pharmacophore modeling will maintain a dominant role in 

CADD for the foreseeable future, and any medicinal chemist 

should be aware of its benefits and possibilities.
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