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Abstract: In obesity, dysregulated metabolism and aberrant expansion of adipose tissue lead 

to the development of tissue hypoxia that plays an important role in contributing to obesity-

 associated metabolic disorders. Recent studies utilizing adipocyte-specific hypoxia-inducible 

factor-α (HIF-α) gain- or loss-of-function animal models highlight the pivotal involvement of 

hypoxic responses in the pathogenesis of obesity-associated inflammation and insulin resistance. 

HIF-1α, a master transcription factor of oxygen homeostasis, induces inflammation and insulin 

resistance in obesity, whereas its isoform, HIF-2α, exerts opposing functions in these obesity-

associated metabolic phenotypes. In this review, recent evidence elucidating functional implica-

tions of adipocyte HIFs in obesity and, more importantly, how these regulate obesity-associated 

inflammation, fibrosis, and insulin resistance will be discussed. Further, we propose that modula-

tion of HIF-1 could be a potential novel therapeutic strategy for antidiabetic treatment.
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Introduction
Hypoxia has been the focus of intensive investigation mainly due to its functional and 

clinical implication in numerous pathological conditions including cancer, inflamma-

tion, tissue injury, and ischemic diseases.1 It has been known for many decades that 

hypoxia is one of the prominent factors that influence energy balance and obesity 

from initial metabolic studies among high-altitude population and obstructive sleep 

apnea patients.2 Intriguingly, there is a significant inverse relationship between body 

mass index and altitude of residence, whereas obstructive sleep apnea patients display 

oxidative stress, systemic hypertension, and hypoxia-inducible factor (HIF) dependent 

inflammation. Although these seemingly contradictory effects of hypoxia highlight the 

important and complicated role of hypoxia on energy balance and metabolism, little 

is known about key molecules and signaling pathways in the relationship between 

hypoxia and obesity.

Hypoxia occurs when oxygen demand exceeds supply, which results in insufficient 

oxygen supply into tissues or cells. Recent animal studies have demonstrated that 

adipose tissues become hypoxic in obesity.3–5 Potential contributors to the onset of 

adipose tissue hypoxia in obesity include: 1) inadequate blood flow to white adipose 

tissues;6 2) overall increase in adipocyte size, which is larger than oxygen’s diffu-

sion capacity of 150–200 µm;7 or 3) enhanced oxygen consumption by adipocytes 

or inflammatory cells infiltrated into the obese microenvironment.8–10 Yet, molecular 

and cellular mechanisms that initiate and maintain the hypoxic microenvironment in 

obese adipose tissues remain to be elucidated.
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Glucose intolerance is characterized by systemic 

hyperglycemia due to impaired glucose absorption and 

utilization by cells, and is considered as a prediabetic state 

associated with insulin resistance.11 About 80%–90% of 

people diagnosed with type 2 diabetes are also diagnosed 

as obese.12 A number of preclinical and clinical studies have 

suggested that chronic inflammation may be the crucial link 

between obesity and insulin resistance.13–15 Virtually all obese 

animals and humans display low-grade chronic inflammation 

in their adipose tissues, which is characterized by proinflam-

matory macrophage infiltration and oxidative stress. Given 

that hypoxia is one of the prominent regulators for inflamma-

tion and reactive oxygen species production,16–19 hypoxia and 

cellular hypoxic responses may provide mechanistic insight 

into causal relationships between obesity, inflammation, and 

insulin resistance.20

HIFs, oxygen-sensitive transcriptional regulators, 

mediate cellular and microenvironmental hypoxic remod-

eling.21 Upon oxygen deprivation, alpha subunits of HIFs 

are stabilized, translocated to the nucleus, and bound to 

hypoxia responsive elements to induce hypoxia-regulated 

gene expression. Recently, we and other groups, utilizing 

animal model systems, reported that adipocyte-specific 

constitutively active HIF-1α expression aggravates diabetic 

phenotypes with adipose tissue inflammation and fibrosis. 

Furthermore, loss of HIF-1α in adipocytes significantly 

attenuates obesity-associated inflammation and improves 

insulin sensitivity.22–26 These findings argue for critical 

involvement of hypoxic HIF-1 signaling in metabolic dis-

orders in obese mice. However, little is known about how 

the hypoxic adipose microenvironment affects the biology 

of adipocytes and other critical cell components in obesity 

such as macrophages. Moreover, recent studies by our group 

and others utilizing animal models with cell type-specific 

knocking-out or overexpression of genes in hypoxic sig-

naling pathways demonstrated that different types of cells 

differentially respond to hypoxia, and further, exhibit unique 

hypoxic responses and phenotypes.27–35 This suggests that 

there may be multidirectional interaction among adipocytes 

and surrounding non-adipocytes including macrophages, 

endothelial cells, and various mesenchymal cells. Addi-

tionally, it should be noted that independently established 

aP2-cre mice display differential temporal/spatial Cre 

expression in adipocytes as well as in non-adipocytic 

lineage cells including myeloid and neuronal cells.36 This 

may be responsible for seemingly contradictory phenotypes 

among the various HIFs gain- and loss-of-function mouse 

models (Table 1).

In this review, we will describe the functional effects of 

HIF signaling on metabolically dysfunctional adipocytes and 

how this modulates obesity and insulin resistance. Although 

non-adipose tissue HIF signaling has been implicated in 

obesity and other metabolic disorders, this has been elegantly 

reviewed elsewhere37 and will not be discussed here. We will 

also discuss inhibition of HIF signaling as a potential thera-

peutic target for obesity and metabolic diseases.

HIFs
The HIF proteins are central transcription factors of oxygen 

homeostasis. HIFs are a heterodimeric complex composed of 

an α and a β subunit. Both the subunits belong to the basic 

helix-loop-helix Per/Arnt/Sim (PAS) family of transcrip-

tion factors and are constitutively expressed in the cell. The 

HIF-α subunit is oxygen-sensitive and is rapidly degraded 

in nonhypoxic conditions with a half-life of less than 

10 minutes,38 whereas the HIF-β subunit is constitutively 

expressed.39 In the presence of ample oxygen, the prolyl and 

asparaginyl hydroxylases hydroxylate the oxygen-dependent 

domain (ODD) of HIF-α on specific proline and asparag-

ine residues, respectively.40–42 Prolyl hydroxylases (PHDs) 

require molecular oxygen, Fe(II), ascorbate, and the Krebs 

cycle intermediate, 2-oxoglutarate, as substrates.40,41 Proline 

hydroxylation allows the von Hippel–Lindau protein, a tumor 

suppressor E3 ubiquitin ligase, to bind and target HIF-α for 

proteasome degradation via polyubiquitination, whereas 

asparaginyl hydroxylation inhibits transcription activities 

of HIFs by blocking HIF interaction with the transcriptional 

cofactor, p300.42–45 In response to hypoxic conditions, the 

lack of available molecular oxygen, an absolute requirement 

for HIF hydroxylation, stabilizes HIF-α increasing cellular 

levels of the protein and facilitating its translocation into 

the nucleus. In the nucleus, HIF-α heterodimerizes with 

HIF-β and forms complexes with other coactivators, such 

as p300, in order to bind to hypoxia-responsive elements of 

genomic DNA and to transactivate its target genes (Figure 1). 

In addition to oxygen availability, inducible changes in 

the cellular abundance of the PHDs (PHD1–3) provide an 

additional interface that regulates the oxygen-sensitive HIF 

signaling.46

There are three HIF-α subunits identified: HIF-1α, -2α, 

and -3α. HIF-1α has been most-extensively  characterized. 

HIF-1α mediates adaptation and survival to hypoxia 

through activating genes involved in angiogenesis (eg, vas-

cular endothelial growth factor [VEGF]), glucose uptake 

(eg, glucose transporter 1), and glycolysis (eg, lactate 

dehydrogenase and pyruvate dehydrogenase kinase 1).47 
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Although another isoform, HIF-2α, also termed endothelial 

PAS domain-containing protein 1, shares similar functional 

homology and common target genes to HIF-1α,48 recent 

studies have demonstrated that they have non-overlapping 

target genes that are uniquely involved in HIF-2α-mediated 

cellular processes such as erythropoietin and the stem cell 

factor octamer-binding transcription factor 4.49–52 Fur-

thermore, HIF-1α and HIF-2α appear to have opposing 

activities in certain contexts.53 In von Hippel–Lindau tumor 

suppressor (VHL)-null renal cell carcinoma cells, where 

both HIF-1α and HIF-2α are constitutively active, HIF-2α 

may function as a tumor- promoting player whereas HIF-1α 

exhibits tumor-suppressing activities.54,55 This counteraction 

of the two isoforms may be mediated in part by functional 

crosstalk between HIF-αs and the proto-oncogene c-Myc.56 

When HIF-1α is available, it attenuates c-Myc transcriptional 

activity by disrupting c-Myc/Max complexes. On the other 

hand, HIF-2α associates with Max, stabilizing the c-Myc/

Max complexes and enhancing c-Myc transcriptional activ-

ity. More opposing functions of HIF-1α and HIF-2α have 

been shown to be critical in nitric oxide (NO) homeostasis 

of macrophages, keratinocytes, and endothelial cells.28,33,57 

HIF-1α induces the expression of inducible nitric oxide 

synthase (iNOS), which increases the production of NO. 

HIF-2α, on the other hand, induces arginase expression, 

which inhibits NO production by removing L-arginine, a 

substrate for NO  production.  Consistent with these previ-

ous findings, our recent study suggested that these opposing 

functions of HIF-1α and HIF-2α are critically involved in 

the pathogenesis of adipocyte dysfunction in obesity.58 We 

will discuss in more detail the functional effects of HIFs on 

obesity and insulin resistance in this review.

Adipose tissue hypoxia in obesity
While atmosphere oxygen tension is 160 mmHg (21%), 

physiological oxygen levels vary significantly between 

the tissues from 150 mmHg (17%) in the upper respira-

tory tract to 1–10 mmHg in the retina.20 Although human 

clinical studies have reported contradictory results in the 

levels of adipose tissue blood flow and oxygenation in 

obese subjects,59–62 direct measurement of oxygen tension 

by  oxygen-meters revealed that oxygen tension in white 

adipose tissue in obese mice (leptin-deficient mutant ob/ob 

mice) and high-fat fed mice is approximately 15 mmHg 
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Figure 1 Oxygen-dependent regulation of HiF-1α.
Notes: when ample oxygen is present, proline residues in the ODD of the HiF-1α subunit are hydroxylated by PHDs that require oxygen as a substrate. The hydroxylated 
HiF-1α subunit is then recognized and bound by vHL, which targets HiF-1α for polyubiquitination and proteasomal degradation. HiF-1α asparagine residue is hydroxylated 
by the FiH blocking HiF-1α association with coactivator p300, which in turn prevents full transcriptional activation of HiF-1. Under hypoxic conditions, enzymatic activity of 
PHDs and FiH is inhibited and HiF-1α subunits are stabilized and translocated to the nucleus, where with binding partner HiF-1β and coactivator p300, HiF-1 binds to the 
HRes in the promoter of target genes that are involved in the process of hypoxic adaptation and survival.
Abbreviations: BNiP3, BCL2/adenovirus e1B 19kDa protein-interacting protein 3; CA iX, carbonic anhydrase iX; ePO, erythropoietin; FiH, factor-inhibiting HiF; Glut, 
glucose transporter; HiF, hypoxia-inducible factor; HK, hexokinase; HRes, hypoxia-response elements; LDHA, lactate dehydrogenase A; ODD, oxygen-dependent domain; 
PHDs, prolyl hydroxylases; SCF, Skp1–Cul1–F-box-protein; veGF, vascular endothelial growth factor; Ub, ubiquitin; vHL, von Hippel–Lindau tumor suppressor protein.
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Table 1 in vivo and in vitro models for adipocyte HiFs

Cre/promoter Expression (nonadipose) HFD Metabolic phenotypes

In vivo studies
HIF-1α gain-of-function 
Halberg et al22

 
aP2-HiF-1α- 
ODDΔ

 
wAT, BAT 
(macrophage22)

 
12 wks

 
Body weight and AT mass 
Glucose intolerance  
AT Inflammation and fibrosis 

HIF-1α loss-of-function 
Jiang et al23 
 
 
Kihira et al24 
 
 
 
Lee et al58 
 
 
Krishnan et al25 
 
 
Zhang et al78

 
aP2-Cre* 
 
 
aP2-Cre** 
 
 
 
aP2-Cre** 
 
 
aP2-Cre-eRT 
 
 
aP2-DN-HiF-1α

 
wAT, BAT, (CNS, PNS, heart,  
muscle, testis, macrophage36,107)  
 
wAT, BAT (CNS, PNS36,108,109) 
 
 
 
wAT, BAT,(CNS, PNS36,108,109) 
 
 
wAT, BAT, (heart, muscle,  
salivary gland36) 
 
Not determined

 
12 wks 
 
 
15 wks 
 
 
 
15 wks 
 
 
27 wks 
 
 
28 wks

 
Body weight and AT mass  
Glucose intolerance and insulin resistance  
AT Inflammation and fibrosis  
Body weight and AT mass  
Glucose intolerance and insulin resistance  
AT Inflammation  
 
AT mass  
Glucose intolerance and insulin resistance  
AT inflammation and fibrosis  
Body weight and AT mass  
Glucose intolerance and insulin resistance  
Cardiomyopathy  
Body weight and AT mass  
Glucose intolerance and insulin resistance  
AT inflammation 

HIF-1β loss-of-function 
Jiang et al23 
 
 
Lee et al26

 
aP2-Cre* 
 
 
aP2-Cre*

 
wAT, BAT, (CNS, PNS, heart,  
muscle, testis, macrophage36,107)  
 
wAT, BAT, (CNS, PNS, heart,  
muscle,  testis, macrophage36,107)

 
12 wks 
 
 
12 wks

 
Body weight and AT mass  
Glucose intolerance and insulin resistance  
AT inflammation  
Body weight and AT mass  
Glucose intolerance and insulin resistance 

HIF-2α loss-of-function 
Lee et al58

 
aP2-Cre**

 
wAT, BAT, 
(CNS, PNS36,108,109)

 
15 wks

 
Body weight  
Glucose intolerance and insulin resistance  
AT inflammation 

HIF-1α/2α loss-of-function 
Lee et al58

 
aP2-Cre**

 
wAT, BAT, (CNS, PNS36,108,109)

 
15 wks

 
AT mass  
Glucose intolerance and insulin resistance  
AT inflammation and fibrosis 

Cell line HIF expression Phenotypes

In vitro studies

HIF-1α gain-of-function 
Lin et al77

 
NiH 3T3-L1

 
HiF-1α-ODDΔ

 
Adipogenic differentiation 

HIF-2α gain-of-function 
Shimba et al79

 
NiH 3T3-L1

 
wild type HiF-2α

 
Adipogenic differentiation 

Notes: *Generated by Barbara Kahn group (Beth israel); **generated by Ronald evans Group (Salk institute).
Abbreviations: AT, adipose tissue; BAT, brown adipose tissue; CNS, central nervous system; HFD, high-fat diet; HiF, hypoxia-inducible factor; ODDΔ, oxygen-dependent 
domain deleted; PNS, peripheral nervous system; wAT, white adipose tissue.

(,2%) as compared to lean mice that have oxygen tensions 

ranging from 45 to 55 mmHg.5 Recent studies from our 

group and others have further shown that in obese adipose 

tissues, hypoxia can be detected by the hypoxia-specific 

chemical probe, pimonidazole, as well as by immunohis-

tochemical detection of HIF-1α expression (Figure 2).3,5,22 

In relatively severe hypoxic conditions, pimonidazole 

becomes reduced and binds to sulfhydryl groups of 

various molecules forming pimonidazole adducts in the 

hypoxic cells.63 Although this method is not quantitative 

and it is unable to detect mildly hypoxic tissues (above 

10 mmHg pO
2
), it has been widely used and shown to be 

effective in consistently detecting tissue hypoxia of cancer 

and ischemia.

Despite compelling evidence of hypoxia in obese adipose 

tissues, the onset mechanisms of adipose tissue hypoxia in 

obesity are not fully understood. Obesity is characterized by 

hyperplasia (cell number increase) as well as hypertrophy 
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(cell size increase) of obese adipocytes resulting in a rapid 

enlargement of adipose tissue. Given that the diffusion 

capacity of oxygen is limited to 150–200 µm, aberrantly 

enlarged adipose tissue may have insufficient intra-adipose 

blood perfusion contributing to hypoxia in these tissues.7 

One can then reason that restoring blood perfusion into 

adipose tissue may attenuate adipose tissue hypoxia and 

adipocyte dysfunction in obesity. Several groups attempted 

to address this by modulating vasculature and VEGF expres-

sion and activity. Rupnick et al have shown that angiogenesis 

inhibitor TNP-470 treatment in ob/ob mice has a profound 

weight-loss effect that is associated with vascular remodel-

ing, decreased endothelial cell proliferation, and increased 

endothelial cell apoptosis without any apparent toxicity in 

3T3-L1 preadipocytes.64 This suggests that weight loss is 

due to an endothelial-mediated antiangiogenic mechanism. 

A subsequent study by Bråkenhielm et al has demonstrated 

that TNP-470 prevents obesity and lowers insulin level sug-

gesting that antiangiogenic therapy may improve insulin 

sensitivity.65 In contrast to these initial observations, a recent 

study by White et al showed that TNP-470 treatment induces 

glucose intolerance indicating that, despite a significant 

weight loss, antiangiogenic vascular suppression may result 

in adipocyte dysfunction and systemic diabetic phenotypes.66 

More direct observations have been reported from studies 

utilizing adipocyte-specific gain-of-function or loss-of-

function VEGF transgenic animals.6 Several studies reported 

that overexpression of VEGF in adipocytes significantly 

attenuated obesity and insulin resistance in high-fat diet-fed 

mice, whereas another study showed that  β-actin-mediated 

partial suppression of systemic VEGF expression displayed 

resistance to  high-fat diet-induced obesity.67–70 One can specu-

late that VEGF derived from non-adipocytes, particularly 

macrophages, may have differential effects on obesity and 

insulin resistance. Although the exact nature of discrepancy 

still remains to be determined, these studies highlight the 

complexity of adipose tissue VEGF and vasculature that 

appear to play a critical role in adipose blood perfusion and 

hypoxia, which in turn, regulate metabolic homeostasis.

In addition to oxygen supply through vasculature, tis-

sue oxygen tension or oxygen availability is determined by 

oxygen consumption rate of local cellular components in 

various physiologic and pathologic conditions.8–10 Our recent 

study provided evidence for the increased oxygen consump-

tion of adipocytes as an initial contributor to adipose tissue 

hypoxia in high-fat diet-induced obesity.58 Intriguingly, 

short-term exposure to a high-fat diet (less than 3 days) was 

sufficient to create adipose tissue hypoxia as determined by 

adipose tissue accumulation of hypoxia probe pimonidazole, 

HIF-1α and its target gene expression, and elevated levels of 

glycolysis and lactate. It should be noted that mice as early 

as 3 days after high-fat diet did not show any significant 

adipose tissue remodeling suggesting that this is independent 

of adipose tissue oxygen perfusion. Although mechanisms 

have not been fully elucidated, saturated free fatty acids 

increase mitochondrial oxygen consumption through the 

adenine nucleotide translocator (ANT)-dependent uncou-

pling of mitochondrial respiration.71,72 ANTs, localized in 

the mitochondrial inner membrane, induce proton leakage by 

pumping protons into the mitochondrial matrix. We showed 

that the oxygen consumption rate of primary adipocytes 

isolated from 3 days high-fat diet-fed mice was significantly 

elevated, even in the presence of oligomycin, indicating the 

uncoupling mechanism. Further, cultured 3T3-L1 adipocytes 

treated with saturated free fatty acids displayed increased 

oxygen consumption, which is inhibited by ANT inhibitor 

carboxyatractyloside. In high-fat diet-fed mice, both phar-

macological (carboxyatractyloside treatment) and genetic 

(viral ANT2 short hairpin RNA knock-down) inhibitions of 

ANT successfully alleviated adipose tissue hypoxia without 

changes in systemic oxygen saturation, which are associated 

with improved glucose tolerance and insulin sensitivity. These 

observations indicate that adipose tissue oxygen consumption 

rate is a critical determinant for adipose tissue hypoxia and 

HIF-1α expression promoting obesity-associated metabolic 

dysfunction.

Taken together, these studies provide evidence for a 

model of adipose tissue hypoxia in obesity. In prolonged or 

chronic obesity, uncontrolled expansion of adipose tissue 

may cause insufficient blood perfusion and oxygen delivery 

leading to perhaps more persistent adipose tissue hypoxia. 

In the short-term or transient manner, prior to adipocyte 

Figure 2 HiF-1α expression in obese adipose tissues.
Notes: (A) Hematoxylin and eosin staining of adipose tissues of obese mice fed a 
high-fat diet for 15 weeks shows enlarged adipocytes with significant inflammatory 
cell infiltration (*). (B) HiF-1α is detected by immunohistochemistry (black arrows) 
in obese adipose tissues.
Abbreviation: HiF, hypoxia-inducible factor.
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hypertrophy and hyperplasia, elevated saturated free fatty 

acids increase adipocyte oxygen consumption resulting in 

a state of relative hypoxia via ANT-mediated uncoupled 

mitochondrial respiration. Although biological significance 

of the relationship between these two distinct mechanisms 

is not fully understood, HIF-mediated hypoxic signaling 

appears to be invariably activated in hypoxic obese adipose 

tissue and exerts a broad and deep influence on adipocyte 

biology and metabolic disorders.

Regulation of adipogenesis  
and adiposity by HIFs
As nutritional intake exceeds energy expenditure, the 

remaining energy is stored in white adipocytes leading to 

 hypertrophy. While hypertrophy prevails and rapidly occurs 

in obesity, the link between hyperplasia and obesity is still 

controversial.73 Considering childhood obesity influences 

adipocyte number in adulthood, it is conceivable that there 

is some kind of positive relevance between excessive food 

intake and hyperplasia.73 One possible mechanism is the 

induction of adipogenesis factors by severe and chronic 

hypertrophy of adipocytes.74 However, the precise mecha-

nism of how obesity affects induction of hyperplasia needs 

to be further studied. In the case of hyperplasia, appropriate 

recruitment of angiogenesis factors needs to be accompanied 

with fat-tissue enlargement.75 During fat-pad expansion, 

adipocytes communicate with endothelial cells via paracrine 

signaling and hypoxia seems to be a critical regulator of 

angiogenesis.75 Given that hypoxia is a prominent feature 

in obese adipose tissues, functional roles of HIFs in adipo-

genic activation and differentiation have been of particular 

interest.

HiF-1α
Early studies have demonstrated that HIFs play an impor-

tant role in in vitro adipogenic differentiation of 3T3-L1 

 preadipocytes (Table 1). He et al reported that HIF-1α 

protein levels were elevated by 3T3-L1 adipocyte differen-

tiation.76 Lin et al showed that hypoxia prevents differen-

tiation of 3T3-L1 by sustaining the expression of pref-1, a 

preadipocyte-secreted inhibitor of adipocyte differentiation.77 

Induction of HIF-1α appears to be a key contributor to the 

hypoxia-mediated maintenance of the undifferentiated state. 

These early in vitro studies suggest that HIFs may play an 

important role in adipogenic differentiation.

Adipocyte-specific ablation of HIF-1α activity in obesity 

animal models provides evidence that HIF-1α may promote 

adipogenesis in high-fat diet-mediated obesity. Adipocyte 

Hif-1α-null mice exhibited less body weight, reduced 

white adipose tissue mass, and reduced adipocyte size on 

high-fat diet.23–25 One study showed that adipocyte-specific 

over expression of a truncated dominant-negative form of 

HIF-1α resulted in more severe obesity with increased white 

adipose tissue mass.78 However, the biological implication 

of truncated HIF-1α used in this study has not been char-

acterized and obese phenotypes appear to be due to brown 

adipose tissue-dependent mechanisms. Studies conducted 

by Jiang et al and Lee et al demonstrated that adipocyte-

specific deletion of HIF-1β, an obligate partner of HIF-1α, 

results in a lean phenotype and smaller adipocyte size.23,26 

In support of these studies, transgenic overexpression of 

the constitutively active form of HIF-1α (ΔODD-HIF-1α) 

in adipocytes led to increased body weight and adiposity.22 

Our recent study, however, showed that adipocyte Hif-1α-null 

mice exhibit normal body weight on both normal chow and 

high-fat diet.58 Furthermore, there was a significant increase 

in white adipose tissue mass and adipocyte size in adipocyte 

Hif-1α-null mice as compared to wild type control mice. 

Yet, in this study, Hif-1α-null mice exhibited a significant 

improvement in glucose tolerance and insulin sensitivity 

suggesting that adipocyte HIF-1 signaling may exert its 

antidiabetic effects through systemic metabolic regulation 

(eg, fat mobilization or inflammation) rather than regulation 

of adipogenic differentiation.

HiF-2α
In contrast to HIF-1α, HIF-2α overexpression in 3T3-L1 

significantly enhanced the peroxisome proliferator activator 

γ2-mediated adipogenesis that is associated with increased 

glucose uptake and lipid biosynthesis, suggesting that 

HIF-2α promotes in vitro adipogenic differentiation.79 

However, a recent study by Park et al has demonstrated that 

hypoxic induction of Wnt10b suppresses adipogenesis of 

3T3-L1.80 HIF-2α, not HIF-1α, appears to be responsible 

for transactivation of the Wnt10b gene, which maintains 

preadipocytes in an undifferentiated state in hypoxia. We 

recently generated adipocyte-specific HIF-2α knockout 

mice and revealed that HIF-2α ablation in adipocytes aggra-

vates high-fat diet-induced obesity and insulin resistance, 

suggesting that HIF-2α may play a role in suppressing 

adipogenic differentiation and obesity when fed a high-fat 

diet or it may counteract HIF-1α activities as proposed 

previously.58

Despite contradictory observations on functional contribu-

tions of HIFs to adiposity, it illuminates multifaceted roles of 

HIFs in the regulation of adipogenic differentiation in obesity. 
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However, it remains unclear whether aP2, also termed fabp4, 

promoter-driven adipocyte-specific Cre mice used in the 

above-mentioned studies display recombination in preadipo-

cytes.36 Thus, it will be of critical importance to characterize 

HIF signaling in conjunction with the adipocyte cellular 

lineage trace. For example, adipocyte precursor-specific Cre 

lines can be employed to elucidate specific roles of HIFs in 

the differentiation of preadipocytes into adipocytes.81

HIFs and insulin resistance
Association of obstructive sleep apnea that is characterized 

by repetitive cycles of intermittent hypoxia with metabolic 

disorders including obesity and insulin resistance has 

been reported in a number of clinical studies in humans, 

suggesting that oxygen homeostasis is one of the key con-

tributors to glucose metabolism and insulin sensitivity.2,82 

Moreover, lean mice as well as ob/ob mice exposed to 

intermittent hypoxia have been shown to develop systemic 

insulin resistance.83 Regazzetti et al have demonstrated 

that hypoxia is sufficient to suppress the insulin signal-

ing pathway in human and murine adipocytes.84 Hypoxia 

(1% O
2
) or hypoxia mimetic CoCl

2
 treatment significantly 

reduced phosphorylation of insulin receptor (IR) and 

protein kinase B in 3T3-L1 and differentiated human 

adipocytes. Moreover, inhibited insulin signaling was 

associated with the reduction of insulin-induced glucose 

uptake. Overexpression of HIF-1α or HIF-2α mimicked 

hypoxia-induced insulin signaling inhibition whereas 

siRNA knockdown of HIF-1α or HIF-2α partially restored 

insulin signaling in hypoxia indicating that HIF signaling 

is an important component of adipocyte insulin signaling. 

Although molecular and cellular mechanisms underly-

ing the links between adipose tissue hypoxia and insulin 

resistance is still poorly understood, recent studies from 

our group and others provide insight into how hypoxic 

adipose microenvironment in high-fat diet-induced obese 

mice affects adipocyte functions. Further, these studies 

provide insight on how adipocyte hypoxic HIF signaling 

influences systemic metabolic homeostasis.

HiF-1α
Adipocyte-specific Hif-1α deletion in high-fat diet-induced 

obese mice consistently exhibits improved glucose toler-

ance and insulin sensitivity. Jiang et al further demonstrated 

that adipocyte Hif-1α-null mice have enhanced systemic 

insulin signaling pathways such as phosphorylation of 

Akt in white adipose tissue, liver, and skeletal muscle.23 

Consistently,  adipocyte Hif-1α-null mice show increased 

expression of adiponectin, which is known to promote energy 

expenditure and insulin sensitivity, and decreased expression 

of SOCS3 that inhibits IR signaling by preventing autophos-

phorylation of IR. Another study by Krishnan et al employed 

aP2 Cre-ERT2 mice allowing the inducible deletion of Hif-1α 

in adipocytes to avoid potential Cre recombination/Hif-1α 

deletion during embryonic and early postnatal development.25 

Upon tamoxifen-induced Hif-1α ablation, high-fat diet-

induced obese mice exhibited a significant improvement in 

systemic metabolism including lean phenotype, increased 

glucose tolerance and insulin sensitivity, and attenuated 

obesity-associated cardiomyopathy. Indirect calorimetric 

analysis revealed that adipocyte loss of HIF-1α promotes 

systemic energy expenditure and fatty acid β-oxidation 

in visceral adipose tissue of high-fat diet-fed mice. The 

authors further showed that peroxisome proliferator-activator 

receptor gamma coactivator-1 alpha (PGC-1α), a central 

transcriptional coactivator of mitochondrial biogenesis and 

energy metabolism, is critically involved in Hif-1α-mediated 

fatty acid oxidation in adipose tissue.85 PGC-1α activity 

is negatively regulated by acetylation at the protein level. 

Intriguingly, PGC-1α was heavily acetylated in the high-fat 

diet-fed wild type mice whereas virtually no acetylation 

was detected in adipocyte Hif-1α-null mice. This suggests 

that loss of HIF-1α results in PGC-1α deacetylation, which 

in turn promotes transcriptional activity of PGC-1α on its 

target genes involved in mitochondrial biogenesis and energy 

expenditure. Accordingly, Hif-1α-null adipocytes contain 

more mitochondria with increased expression of numerous 

PGC-1α target genes. Sirtuin 2, a nicotinamide adenine 

dinucleotide (NAD+)-dependent deacetylase that can target 

PGC-1α,86 was identified to be bound and transcriptionally 

repressed by HIF-1α. Taken together, this study demonstrated 

that HIF-1α/sirtuin 2/PGC-1α axis plays a crucial role in 

regulating fatty acid oxidation and energy expenditure in 

white adipose tissue. In support of the above loss-of-function 

studies, Halberg et al reported that overexpression of a 

constitutively active form of HIF-1α (ΔODD-HIF-1α) in 

adipocytes exhibited increased body weight and decreased 

glucose tolerance, demonstrating that aberrant HIF-1 activity 

leads to an exacerbated diabetic phenotype.22 

Our recent study further provides evidence for the func-

tional contribution of HIF-1α to the hypoxia-associated insu-

lin resistance. Adipocyte Hif-1α deletion improved glucose 

tolerance and systemic insulin sensitivity in muscle, liver, 

and adipose tissue on a high-fat diet.58 At the molecular level, 

we found that HIF-1α-induced iNOS leads to NO produc-

tion in obese adipose tissue. NO has been shown to inhibit 
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insulin signaling by S-nitrosylation-dependent inactivation 

of Akt.87

Adipocyte-specif ic HIF-1β deletion has also been 

analyzed to evaluate the role of the HIF signaling pathway 

in obesity.23,26 Adipocyte Hif-1β-null mice were lean and 

 resistant to age- and high-fat diet-mediated insulin  resistance. 

These results indicate that mice lacking adipocyte HIF-1β 

exhibit similar phenotypes to HIF-1α knockout mice. How-

ever, it should be noted that the HIF-1β subunit is an obligate 

partner protein for DNA binding and transcription of both 

HIF-1α and HIF-2α, as well as other PAS-domain containing 

proteins such as aryl hydrocarbon receptor.88 Indeed, some 

differential effects of HIF-1α and HIF-1β deletions have 

been indicated. For example, there was a significant differ-

ence in the temporal course of body weight gain and onset 

of improvement of glucose metabolism.23 Nonetheless, these 

studies support the critical roles for hypoxia/HIF signaling 

in adipocytes by regulating metabolic homeostasis.

HiF-2α
Given recently proposed antagonistic roles of HIF-1α and 

HIF-2α in NO homeostasis, HIF-1α promotes NO produc-

tion by inducing its target iNOS, while HIF-2α suppresses 

NO production by inducing its target, arginase, removing 

NO precursor L-arginine.28,33,57 As a result, we sought to 

determine the effects of adipocyte Hif-2α deletion on obe-

sity and glucose metabolism. Adipocyte Hif-2α-null mice 

exhibit increased body weight, reduced glucose tolerance, 

and insulin sensitivity on a high-fat diet that is associated 

with increased NO levels and arginase expression in adi-

pose tissue.58 This suggests that HIF-2α plays a protective 

role against obesity-induced insulin resistance and further 

supports opposing roles of HIF-1α and HIF-2α in adipo-

cyte glucose metabolism. In order to better understand the 

interplay of the two HIF-α isoforms in obesity, we created 

adipocyte-specific HIF-1α/HIF-2α double-knockout mice 

and, intriguingly, found that double-knockout mice appear 

to recapitulate virtually all phenotypes that HIF-1α knock-

out mice exhibit: improved glucose tolerance and insulin 

sensitivity, reduced NO  production, and attenuated adipose 

tissue inflammation and fibrosis. These results suggest that 

HIF-1α exerts predominant roles in contributing to the 

development of obesity-induced insulin resistance, while 

HIF-2α prevents the pathological metabolic progress by 

suppressing HIF-1α activity. Yet, further studies will be 

required to better elucidate the molecular mechanisms 

underlying the opposing interaction between HIF-1α 

and HIF-2α in dysfunctional adipocytes. A possibility of 

HIF-2α having parallel or HIF-1α-independent protective 

mechanisms should not be excluded as well.

HIFs and obesity-associated 
inflammation
One of the hallmarks of obesity is low-grade chronic inflam-

mation in metabolic tissues including adipose tissue.13–15 In 

response to imbalanced metabolic stimuli, adipocytes initiate 

inflammatory signaling pathways that lead to the induction 

of inflammatory cytokines such as tumor necrosis factor-α 

(TNF-α).89–91 Subsequently, various inflammatory cell 

populations are infiltrated into adipose tissues. In particu-

lar, proinflammatory (M1) macrophages have been shown 

to be a prominent immune cell population recruited into 

obese adipose tissues of obese humans as well as genetic or 

dietary-induced obese mice, which further contributes to the 

adipose tissue inflammatory response.15 Although metabolic 

imbalance has been proposed to be a major initial cause of 

the inflammatory response in obesity, molecular and cellular 

processes that regulate inflammatory signaling, cytokine 

expression, and inflammatory cell recruitment remain to be 

elucidated.

HiF-1α
Obesity-associated inflammation contributes to insulin 

resistance and metabolic dysfunction in obesity.13–15 Accord-

ingly, Hif-1α knockout mice exhibiting improved glucose 

tolerance and insulin sensitivity invariably have less inflam-

mation characterized by decreased macrophage infiltration 

and inflammatory cytokine expression as well as reduced 

adipose tissue fibrosis. Kihira et al showed a significant 

decrease in the expression of a macrophage marker, F4/80, 

and crown-like structures resulting from clustered mac-

rophages surrounding dying or dead adipocytes in high-fat 

diet  adipocyte Hif-1α knockout mice.24 Moreover, the 

expression of obesity-associated inflammatory cytokines, 

TNF-α and monocyte chemoattractant protein-1 (MCP-1), 

was decreased in adipose tissues of Hif-1α knockout mice. 

Our recent study also demonstrated a reduction of M1 mac-

rophage infiltration in adipose tissues in the adipocyte Hif-1α 

knockout mice.58 Consistent with these results, macrophage 

markers, such as F4/80 and CD11b, and inflammatory cytok-

ines, such as TNF-α, MCP-1 (CCL2), RANTES (CCL5), 

interleukin-6, macrophage inflammatory protein-1α, and 

CYR62, were significantly reduced in adipose tissues of 

Hif-1α knockout mice. Conditioned medium of Hif-1α-null 

adipocytes showed reduced chemotactic capacity in vitro. 

The diminished chemotaxis of Hif-1α-null adipocytes 
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was confirmed in vivo by  showing decreased migration 

of fluorescently labeled primary macrophages into the 

adipose tissues of Hif-1α knockout mice. Consistently, the 

mice overexpressing a constitutively active form of HIF-1α 

(ΔODD-HIF-1α) in adipocytes showed elevated local adi-

pose tissue  inflammation.22 By gene expression profiling, 

adipose tissue-specific HIF-1α activation led to induction 

of macrophage markers such as F4/80, CD68, and CSF1R, 

as well as monocyte chemoattractants such as CCL2, CCL7, 

and CCL8, along with alteration of extracellular matrix 

(ECM) remodeling genes. Although further follow-up stud-

ies should be warranted to delineate the exact role of HIF-1α, 

the above-noted studies highlight HIF-1α as an essential 

inducer for obesity-associated inflammation.

There is increasing evidence that adipose tissue fibrosis 

and ECM remodeling in obesity may be a key factor that 

induces adipose tissue inflammation and insulin resistance.22,92 

It has been suggested that limiting expansion of adipose tis-

sues by fibrosis may cause adipose tissue dysfunction in 

the obese condition.22,93 An original study by Halberg et al 

demonstrated that adipocyte HIF-1α activation characteristi-

cally induces adipose tissue fibrosis that is associated with 

a general upregulation of a number of ECM molecules and 

their regulators including lysyl oxidase (LOX).22 Consistently, 

genetic or pharmacological inhibition of HIF-1 led to less 

fibrotic accumulation in adipose tissues.93

HiF-2α
Considering opposing roles of HIF-1α and HIF-2α, adi-

pocyte Hif-2α knockout mice exhibited increased adipose 

tissue inflammation on high-fat diet characterized by more 

M1 macrophage infiltration and higher expression of inflam-

matory genes including TNF-α, IL-1, and 5-lipoxygenase-

activating protein.58 This suggests that HIF-2α suppresses 

obesity-associated inflammation in adipose tissues. However, 

it remains to be determined whether HIF-2α contributes 

directly to anti-inflammatory processes or indirectly through 

suppressing proinflammatory activities of HIF-1α.

Targeting hypoxia and HIFs  
for treatment of obesity  
and insulin resistance
For many decades, the focus on treating obesity has been 

nonpharmacological management such as changes in diet 

and degree of physical exercise. Although surgical proce-

dures such as laparoscopic gastric bypass have been effec-

tively used for severely obese patients for over a decade 

without  significant adverse effects, and administration of 

 sympathomimetic drugs has been popular, these treatments 

can be invasive and dangerous to the patients.94,95 Recently, 

there has been an effort to reduce and reverse the hyperplasia 

in adipose tissue by inhibiting angiogenesis based on the 

hypothesis that the hyperplasia of white adipose tissue is 

dependent on angiogenesis.96–98 Angiostatin and endostatin, 

the endogenous inhibitors that act via inhibition of Col1 

expression and c-Jun N-terminal kinase (JNK) pathway, were 

shown to reduce the body weight of obese mice. TNP-470 

and VEGFR2-specific inhibitors have also been shown to 

prevent obesity in ob/ob mice subjected to a high-fat diet.65,66 

TNP-470 is an antibiotic, which has antineoplastic effect in 

mammalian tissues. Its mechanism has been proposed to be 

an inactivation of methionine aminopeptidase 2 and an induc-

tion of p53 pathway.99 Alongside the normalization of white 

adipose tissue, TNP-470 also alleviates insulin insensitivity. 

However, it has also been shown to be neurotoxic which may 

alter appetite in test subjects and requires further investiga-

tion. Other potential therapeutic agents, such as a specific 

peptide motif that binds a specific vascular marker in white 

adipose tissue, were shown to have a positive effect but do 

not induce apoptosis. Given that antiangiogenic approaches 

may promote hypoxia and HIF-1 activity, further investiga-

tion will be required to evaluate the therapeutic potential of 

antiangiogenesis.

Given profound contributions of hypoxia to the devel-

opment of obesity and insulin resistance as well as a 

significant attenuation of obesity and/or insulin resistance 

phenotypes in mice lacking HIF-1α in adipose tissue, one 

can argue for HIF-1 inhibition as a potential therapeutic 

strategy for obesity and insulin resistance. Two of these 

therapeutic agents, PX-478 and digoxin, have been recently 

tested on high-fat diet-induced obesity animal model by 

Sun et al.93 PX-478 (S-2- amino-3-[4’-N,N,-bis(chloroethyl)

amino]phenyl propionic acid N-oxide dihydrochloride) 

is a potent HIF-1α inhibitor that was initially identified 

via high-throughput screening for compounds that inhibit 

HIF-1α expression and tumor growth.100 Although its 

mechanisms of inhibiting HIF-1α protein accumulation are 

not fully understood, recent studies suggest that PX-478 

may inhibit HIF-1α via multiple mechanisms including 

transcription, translation, and protein degradation.101 

HIF-1α inhibition by systemic PX-478 administration 

normalized high-fat diet-induced body weight gain and 

fat mass, indicating that overall adiposity was reduced. 

The fasting glucose levels and insulin sensitivity were also 

improved and energy expenditure was increased by PX-478 

administration. Aberrant plasma levels of  cholesterol, 
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triglycerides, and leptin, as well as local adipose tissue 

leptin expression, were normalized in PX-478-treated 

mice. Furthermore, PX-478 treatment led to the reduction 

of inflammatory cytokines and adipose tissue macrophage 

infiltration. This is associated with decreased expression 

of fibrotic genes including Col1, Col3, and lysyl oxidase 

as well as reduced ECM accumulation.

A cardiac glycoside, digoxin, was identified through 

a library screening for a potential small-molecule HIF-1 

inhibitor.102 The administration of digoxin and other 

cardiac glycosides showed a significant anticancer effect 

by inhibiting HIF-1α translation. Digoxin also showed 

potent beneficial anti-obese and antidiabetic effects in 

high-fat diet mice.93 Digoxin may have molecular targets 

other than HIF-1 and has a relatively narrow therapeutic 

index. Despite this limitation, digoxin has been a com-

monly prescribed drug for the treatment of heart failure. 

If the efficacy on obesity and insulin resistance could be 

guaranteed, further studies for safe use of this drug should 

be considered.

Taken together, these studies provide a  proof-of-concept 

for HIF-1α inhibition as a novel therapeutic strategy to 

modify the detrimental obesity-induced tissue inflamma-

tion and insulin resistance. Intriguingly, a recent study by 

Rahtu-Korpela et al has shown that prolyl 4-hydroxylase-2 

(P4H-2) inhibition, which stabilizes HIFs, protected 

against obesity and insulin resistance, indicating that acti-

vation of HIF could be used as a therapeutic strategy for 

Obesity 
Excessive energy intake
Lack of physical activity

Elevated oxygen consumption
Uncoupled mitochondrial respiration

Inadequate blood perfusion
Adipocyte hyperplasia and hypertrophy

Hypoxia

HIF-1α HIF-2α
PX‐478
Digoxin

Adipogenesis

Preadipocyte
proliferation and differentiation Inflammation Fibrosis

Glucose intolerance

Insulin resistance

Metabolic disorders

?

?

?

Figure 3 Regulation of obesity and diabetes by HiFs.
Notes: In obesity, insufficient blood perfusion and elevated oxygen consumption result in adipose tissues hypoxia that leads to induction of HIFs. HIF-1α contributes to the 
development of insulin resistance and other metabolic disorders by promoting obesity-associated inflammation and fibrosis. In contrast, HIF-2α exhibits protective roles against 
HiF-1α-mediated diabetic phenotypes. The pharmacological modulation of HiF activities can be an effective therapeutic strategy for antiobesity and diabetes therapies.
Abbreviation: HiF, hypoxia-inducible factor.
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 obesity and associated phenotypes.103 Although, this study 

utilized whole-body p4h2-deficient mice and pharmaco-

logical administration of P4H inhibitor which may exert 

antiobesity and antidiabetic effects through modulating 

nonadipose tissues such as liver and muscle and/or through 

HIF-independent mechanisms. This accentuates the poten-

tial adverse outcomes in targeting HIF-1α in obesity and 

metabolic dysfunction.

Conclusion
Despite that a number of preclinical and clinical studies have 

repeatedly demonstrated the causal association of adipose tis-

sue inflammation with insulin resistance, molecular cues that 

link between obesity, inflammation, and insulin resistance 

still remain to be delineated. Recent advancements identify-

ing hypoxia as a prominent microenvironmental component 

of obese adipose tissue directs us toward the missing link 

(Figure 3): HIF-1 signaling that leads to the development 

of obesity-associated inflammation and insulin resistance. 

A number of small-molecule compounds and antisense 

oligonucleotides that inhibit HIF-1 activity in novel ways 

are currently in development or clinical trial.104–106 Thus, 

it is imperative that we gain a better understanding of how 

HIF-1 signaling exerts adipose tissue inflammation and 

insulin resistance.
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