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Abstract: Cancer cells cocultured in vitro show unexpected differential growth rates that classical 

exponential growth models cannot account for. Two noninteracting cell lines were grown in the 

same culture, and counts of each species were recorded at periodic intervals. The relative growth 

of population ratios was found to depend on the initial proportion, in contrast with the traditional 

exponential growth model. A proposed explanation is the variability of growth rates for clones 

inside the same cell line. This leads to a log-quadratic growth model that provides both a theoretical 

explanation for the phenomenon that was observed, and a better fit for our growth data.
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Introduction
Given that emergence of resistant cells underlies the time to relapse for cancer patients 

undergoing chemotherapy, the growth rate of these tumor cells is a crucial issue. Cancer 

therapies usually yield undetectable levels of residual and resistant cancer stem cells 

(CSCs) in patients. However, upon repeated mitosis, CSCs can seed a cell progeny that 

progressively reconstitutes tumors, but the proportion and mitotic rate of such CSCs 

are highly variable in treated patients. The classical exponential growth model predicts 

that the relative growth of fast-growing clones should increase exponentially with time, 

regardless of their initial rates in patients. On the other hand, however, this model is 

challenged by heterogeneity of the clonal progeny from a cancer cell and the resulting 

Darwinian selection in this progeny for access to nutrients.1,2 To investigate this, we 

grew two noninteracting human cancer cell lines either separately or together in cell 

cultures with medium containing an unlimited supply of nutrients, and modeled the cell 

growth rates observed in the cocultures. The exponential growth model is so elementary 

and has been known for such a long time,3,4 that it seems almost too simple to actually 

fit real cell growth data.5 However, for a given cell line grown in unlimited supporting 

medium, an excellent linear fit is usually observed for the logarithm of population 

size against time.6,7 Our experiments were conducted with two well known laboratory 

strains, ie, a non-Hodgkin’s lymphoma B-cell line (American Type Culture Collection 

[ATCC] CRL-2261;8 RL) and a cell line derived from a patient with acute monocytic 

leukemia (TCC TIB-202;9 THP-1). As a control experiment, the two cell lines were 

grown separately. An excellent log-linear fit was observed. Both strains were grown 

in the same solution. No interaction between the two species could occur, other than 

possible competition for nutrients in the culture medium. This was avoided by main-

taining a sufficient supply of medium by volume and continuous renewal. The initial 
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proportions of the faster growing RL strain were fixed at 

0.5%, 1%, 5%, and three replicates were made for each initial 

proportion. With the classical exponential growth model, the 

relative proportion of RL versus THP-1 would be predicted to 

increase exponentially over time, at a rate independent of the 

initial proportions. Somewhat unexpectedly, this turned out 

to be false. Figure 1 presents a plot of the ratio of observed 

RL versus THP-1 counts on a logarithmic scale. The time 

scales have been shifted so that the origin corresponds to 

the time at which each proportion reaches 5%. The slope of 

the regression line decreases as the initial proportion of the 

more rapidly growing strain increases, ie, the slope with an 

initial proportion of 5% (red) is smaller than that with initial 

proportions of 1% (green) and 0.5% (blue).

In vitro experiments with simultaneous growth of two or 

more microorganisms have been carried out for a long time 

(see Dykhuizen10 for a review). The variability of growth 

rates in human leukemia cell clones has been investigated by 

 Tomelleri et al.11 However, to the best of our knowledge, this is 

the first description of an experiment with two different cancer 

lines showing the phenomenon of dependence of the ratio 

growth rate on the initial condition, as shown in Figure 1.

The objective of this paper is to propose a stochastic 

growth model explaining this phenomenon, and show that 

the fit of the data by that model is better than that with the 

exponential growth model.

It has long been known that exponential proliferation 

is a valid approximation only for a certain fraction of the 

observation period.12 Many different models have been pro-

posed as growth curves.13,14 At the beginning of a cell growth 

experiment, a lag phase15–17 is usually observed, and this is 

the case in our data. This lag phase could account in part for 

the phenomenon investigated here. Indeed, when starting 

from a proportion of 0.5%, the lag phase has elapsed when 

reaching 1%, but if one starts with a 1% proportion, the lag 

phase only begins at the initial instant. However, the lag phase 

does not explain differential growth rates after all cultures 

have reached a proportion of 5.0%, since at that time, the 

lag phase has elapsed in the first two cases. Another simple 

explanation is proposed here, ie, the intrinsic variability of 

growth rates.5,11 Here, the notion of growth rate is under-

stood in the sense of branching processes4 as a “large-scale 

approximation” that applies to the whole clone stemming 

from a given cell and not just to that cell alone. Therefore, 

the variation in growth rates can only be genetic, ie, one 

value is associated with each cell present at the beginning 

of the experiment, and this will be the growth rate of the 

whole clone stemming from that cell. If growth rates among 

RL cells vary, the proportion of fast dividing mitotic cells 

among RL cell clones will gradually increase. When reach-

ing the proportion of 5%, there will be more rapid breeders 

among RL if the initial proportion was 0.5% than if it was 

1%. This intuitively explains why the estimated growth rate 

over a given time interval is larger when the proportion of 

RL reaches 5% after starting from 0.5%.

Mathematically, it will be shown that, assuming variable 

growth rates among cells of the same species, naturally leads 

to a log-quadratic model of population growth instead of the 

traditional log-linear (or exponential) model. It will be shown 

that the log-quadratic model induces a better fit for our data. 

Using that model, the observed phenomenon can be explained 

and quantified. Indeed, if the actual growth is log-quadratic 

instead of log-linear, the fit of a log-linear model yields esti-

mated slopes that vary with the initial condition; this theoretical 

explanation is shown in Figure 2. The derivation of the log-

quadratic model from the hypothesis of variable growth rates 

uses the cumulant generating function of random growth rates. 

A similar explanation had been proposed by Hansen.18

Materials and methods
experimental methods
The THP-1 (ATCC TIB-202) cell line derives from human 

acute monocytic leukemia. It has a monocyte morphology 

and expresses the cell surface marker CD13. The cell line RL 
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Figure 1 logarithms of ratios of rl/ThP-1. The three replicates for each initial 
condition are marked by circles, triangles and squares. All curves have been shifted 
to the first day where the proportion RL/THP-1 passes 5%. red marks correspond 
to an initial proportion of 5%, green marks to 1%, blue marks to 0.5%. The three 
regression lines are represented with corresponding colors. The slopes (time 
unit: hour) are 0.0084 (red line, initial proportion 5%), 0.0138 (green line, initial 
proportion 1%), and 0.0154 (blue line, initial proportion 0.5%).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Medical Statistics 2014:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

31

Simultaneous growth of two cancer cell lines

(ATCC CRL-2261) was derived from human non-Hodgkin’s 

lymphoma and expresses the cell surface marker CD20. 

These two cell lines were cultured as indicated by the supplier 

(ATCC, Manassus, VA, USA; http://www.lgcstandards-atcc.

org) at 37°C and 5% CO
2
 in liquid Roswell Park Memorial 

Institute-1640 medium (Lonza, Levallois, France) supple-

mented with 10% heat-inactivated fetal calf serum, 2 mM 

L-glutamine, 100 U/mL penicillin, and 100 g/mL streptomy-

cin (Invitrogen, Cergy Pontoise, France). This medium con-

tains inorganic salts, amino acids, vitamins, and D-glucose 

(2 g/L). THP-1 and RL cells, alone and in competition, 

were cultured in T75 flasks with 50 mL of medium without 

agitation. At the beginning of culture, cells were seeded at 

0.3×106 cells/mL per day for all conditions.

The different cell cultures were counted and, if necessary, 

diluted with complete medium if the cell concentration was 

higher than 0.7×106 cells/mL to adjust the concentration to 

0.3×106 cells/mL. These concentrations lead to no competi-

tion for nutrients. The culture dilutions were adjusted to the 

cell growth in each flask; eg, RL cell culture was more diluted 

than THP-1 cell culture. Cells from simultaneous cultures 

were analyzed by flow cytometry in the following manner 

to determine the percentage of each cell line in the culture. 

The cells were centrifuged, washed with phosphate-buffered 

saline and incubated for 10 minutes with antibodies against 

CD20 coupled with the fluorochrome APC-Cy7 to identify 

RL cells and against CD13 coupled with the fluorochrome 

phycoerythrin (both from BD Biosciences, Pont de Claix, 

France) to identify THP-1 cells. Cells cultured from a 

single cell line were used as controls. The fluorescence of 

50,000 cells was then analyzed using an LSR II cytometer 

(BD Biosciences).

Two sets of experiments were performed over 35 days, 

with daily measurements. In the first set, the two cell lines 

(RL and THP-1) were grown in separate culture flasks in 

duplicate. In the second set, the two cell lines were grown in 

the same culture flask in triplicate with an unlimited amount 

of nutrients in each case. Three initial proportions of RL (the 

more rapidly growing strain) were considered, ie, 0.5%, 1%, 

and 5%. For each set of experiments, each day of culture, each 

replicate, the numbers of cells of each type were recorded. 

The dataset is available upon request. For these data, dif-

ferent least square fits of the log-quadratic model (6) were 

performed for each of the two separate growth patterns (first 

set of experiments), and for simultaneous growth (second set 

of experiments).

Mathematical model
In this section, a mathematical derivation of a log-quadratic 

growth model, based on variable growth rates, is proposed. 

Consider first the classical model of exponential growth for a 

single clone, stemming from the general theory of branching 

processes.4,19,20 From a single cell at time 0, the clone grows 

to size N (t) at time t. Under fairly general hypotheses on the 

division time distribution, there exists a positive constant b, 

the growth rate (also called the Malthusian parameter), such 

that almost surely:

 
lim ( ) ,
t

bte N t C
→+∞

− =  (1)

where C is a random variable with finite expectation and 

variance. This is one of the basic results of the theory of 

branching processes.19,20 Thus, it is reasonable to assume 

N(t) = Cebt as a model of the growth curve for a single clone. 

Assume now that the population grows from a large number 

n of identical initial cells.

For i = 1, …, n, let N
i
(t) be the size at time t of the clone 

stemming from cell i:

 
N t e Ci

bt
i( ) ,=  (2)

where the C
i
 are independent identically distributed random 

variables. The total population at time t is:

 N t N ti
i

n

( ) ( )= ⋅
=
∑
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Figure 2 Theoretical explanation for observed differential growth rates. The figure 
represents a quadratic growth in time, at three different intercepts: log(0.05) (red), 
log(0.01) (green), and log(0.005) (blue). The three solid curves are parabolas. The 
green and blue dashed lines are linear fits over an interval starting at the point where 
the corresponding parabola reaches log(0.05). The green and blue solid lines are 
time shifts, illustrating the differential slopes.
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By the law of large numbers, almost surely:

 lim
( )

( ),
n

vtN t

n
e C

→∞
= E

where E(C) denotes the mathematical expectation of the 

random variable C. This justifies the classical log-linear 

model:

 log ( ) ,N t a bt( ) = +  (3)

where a = log(N (0)). General references on log-linear models 

are given in Mair21 and von Eye and Mun.22

Consider now a second population growing according to 

the same model, and denote by M(t) its size at time t.

 log( ( )) .M t a b t= +′ ′

Assume b . b′ (the first population grows faster). 

The ratio R(t) = N(t)/M(t) then also follows a log-linear 

model:

 log( ( )) ( ) ( ) .R t a a b b t= − + −′ ′

Whatever the interval of time it is observed in, the 

growth rate b − b′ does not depend on the interval nor on 

the initial proportion. This is contradicted by our observa-

tions (Figure 1).

Assume now that clones stemming from different initial 

cells may have different growth rates. The new model is:

 N t e Ci
B t

i
i( ) ,=

 
(4)

where (B
i
, C

i
) are independent and identically distributed 

copies of a random couple (B, C). The joint distribution of 

(B, C) is of course unknown, and we shall make the tech-

nical assumptions that B and C are independent, and that 

B has faster than exponential decaying tails. By the same 

argument of law of large numbers, the global population N 

(t) should satisfy:

 log( ( )) log( ( )).N t a eBt= + E

Note that the function log(E(eBt)) exists for all t$0 if the 

distribution of B has more rapid than exponential decaying 

tails. This function is the cumulant generating function 

of B,23 well known in large deviation theory.24 Let µ be the 

expectation of B, σ its standard deviation, and γ
1
 its skewness. 

The first three terms of the Taylor expansion of log(E(eBt)) 

then are:

 
log( [ ]) ( ),E e t t t o tBt = + + +µ σ σ γ2

2
3

1 3 3

2 6
 (5)

In the particular case where B follows a Gaussian distribu-

tion, the first two terms give the exact expression:

 log( [ ]) .E e t tBt = +µ σ 2
2

2

In that case, the growth of N(t) is quadratic in logarithmic 

scale:

 log(N(t)) = a + bt + ct2 (6)

with a=log(N(0)), b = µ, and c = σ2/2. Equation (6) will be 

referred to as a log-quadratic model (see von Eye and Mun22 

(Chapter 9) and Stone et al25 for an application in a similar 

 context).  Assuming that the distribution of B is Gaussian may 

seem unrealistic, but whatever the distribution of B, if its expec-

tation is µ = b and variance σ2 = 2c, equation (6) remains true 

as a second-order approximation because of (5). This justifies 

the use of (6) as a model, in case of variable growth rates.

If two populations grow according to a log-quadratic 

model, then the ratio of the two population sizes does too. 

Denote again that ratio by R(t), assuming that the choice has 

been made to put the more rapidly growing population on 

the numerator, so that R(t) increases.

 log(R(t)) = a + bt + ct2 (7)

with a = log(R(0)) and b, c.0. In practice, growth rates are 

estimated by a log-linear regression over a given interval, 

say [T
1
, T

2
]. This amounts to approximating (7) by:

 log(R(t)) = α̂ + β̂t,

where α̂ and β̂ are optimal in the sense of mean squares:

 

2

1

2 2ˆˆ( , ) arg min ( ) .
T

T
a bt ct t dtα β α β= + + − −∫  (8)

The solution of (8) is easily obtained:

 2 2
1 2 1 2 1 2

ˆˆ ( 4 ) and ( ).
6

= − + + = + +
c

a T T T T b c T Tα β

For a fixed span T
2
 − T

1
, the “equivalent growth rate” β̂  

increases as T
1
 increases (see Figure 2 for an illustration). This 

explains the phenomenon shown in Figure 1. More precisely, 

let T
1
 be the time at which R reaches the value R

1
 . R(0):

 

T b b c
R

R1
2 11

2
4

0
= − + +















log

( )
.

The equivalent growth rate in a time interval of duration 

t after T
1
 will be β̂  = b + c(2T

1
 + t). It will be larger than the 

growth rate during an interval of the same width starting 

at 0, which is b + ct.
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Thus the log-quadratic model (6) provides a theoretical 

explanation for the phenomenon of the differential growth 

rates observed. As will be shown in the next section, it also 

provides a better fit with our data.

Results
Separate growth of rl
Let Y

ik
 denote the logarithm of cell count at time t

k
 and 

 replicate i (i=1, 2).

We consider the following model:

 Y a bt ctik k k ik= + + +2 ε , (9)

where ε
ik
 are centered Gaussian random variables with a 

common standard deviation. For RL cells, it turned out that 

the coefficient c, which we shall call “curvature”, was not 

significantly different from zero (P=0.698). Therefore, a lin-

ear model without a quadratic term was fitted. Table 1 reports 

the estimated coefficients. Figure 3 presents the residual 

analysis. The two coefficients a and b are significantly dif-

ferent from zero. The 95% confidence interval of the mean 

RL growth rate b is [0.0311, 0.0315]. This corresponds to a 

doubling time between 22 and 22.3 hours. The proportion of 

the variation of Y
ik
 explained by the fitted model is excellent 

(R2=0.99). The QQ plot of residuals (Figure 3) is close to 

linear, and the plot of residuals versus time does not show 

any misspecification of the non-random part or a heterosce-

dasticity problem. The Durbin-Watson test (P=0.12) and the 

runs test (P=0.69) indicate no violation of the hypothesis of 

error independence.

Separate growth of ThP-1
The model remains the same, see Equation (9). At first, it 

was fitted to the full dataset. Three observations at the end of 

the experiment period were detected as outliers, and there-

fore excluded from the final analysis. Table 2 reports the 

Table 1 estimations for the logarithm of rl cell counts

Coefficient Estimate SE P-value

a 12.21 3×10−2 ,2×10−16

b 0.0313 9×10−5 ,2×10−16

Abbreviations: Se, standard error; rl cells, American Type culture collection 
crl-2261 cells.
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estimated coefficients. Figure 4 presents the residual analysis. 

In contrast with the RL case, the curvature c is significantly 

positive (P=8.6×10−11). The proportion of the variation of 

Y
ik
 explained by the fitted model is excellent (R2=0.99). The 

95% confidence interval of the mean THP-1 growth rate b 

is [0.0204, 0.0227]. This corresponds to a doubling time 

between 30.5 and 34 hours, ie, slightly below the values 

given in Tsuchiya et al9 (35–50 hours) and above those of 

Tsuchiya et al26 (24 –30 hours).

The QQ plot of residuals (Figure 4) is close to linear, 

and the plot of residuals versus time does not show any 

misspecification of the non-random part or a heteroscedas-

ticity problem. The Durbin-Watson test (P=0.16) and the 

runs test (P=0.75) indicate no violation of the hypothesis of 

error independence. As expected, the growth rate of THP-1 

is significantly smaller than that of RL (P,0.0001).

Simultaneous growth of rl and ThP-1
Let Y

ijk
 denote the logarithm of the ratio of RL to THP-1 cell 

counts at time t
k
, where i denotes the replicate (i = 1, 2, 3) 

and j the initial nominal value of the ratio, which will be 

called “dilution”. Indices j = 1, 2, 3 correspond to dilutions 

of 0.5%, 1%, and 5%, respectively. Four different models 

were considered:

 Y a a btijk j k ijk= + + + ε  (M0)

 Y a a bt b tijk j k j k ijk= + + + + ε  (M1)

 Y a a bt b t ctijk j k j k k ijk= + + + + +2 ε  (M2b)

 Y a a bt ct c tijk j k k j k ijk= + + + + +2 2 ε  (M2c)

 Y a a bt b t ct c tijk j k j k k j k ijk= + + + + + +2 2 ε  (M3)

Model (M0) is the simplest: the expected log ratio Y
ijk 

is modeled by a straight line, the slope b of which does not 

depend on dilution. In model (M1), the slopes b + bj may 

depend on dilution. In the actual fit, the slopes are found to 
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Figure 4 Fit and validation of the log-quadratic model for ThP-1 cells. 
Abbreviations: ThP-1 cells, American Type culture collection TiB-202 cells; AcF, autocorrelation function.

Table 2 estimations for the logarithm of ThP-1 cell counts

Coefficient Estimate SE P-value

a 12.37 5×10−2 ,2×10−16

b 0.0212 4×10−4 ,2×10−16

c 5×10−6 7×10−7 8.6×10−11

Abbreviations: Se, standard error; ThP-1 cells, American Type culture collection 
TiB-202 cells.
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decrease as the initial proportion of RL increases. This is 

consistent with Figure 1. However, it hides the relevance 

of the quadratic models. Model (M3) is the complete log-

quadratic model: both the slopes b + b
j
 and the curvatures 

c + c
j
 may depend on dilution. Models (M2b) and (M2c) are 

embedded into (M3): in model (M2b), the slope does not 

depend on dilution and in model (M2c) the curvature does 

not depend on dilution.

For all four models, the linear fit was computed, and 

pairs of embedded models were then tested by Fisher’s test 

of analysis of variance. The results are shown in Table 3: the 

degrees of freedom (df), the Fisher’s test statistic F, and the 

ANOVA P-values are given. The conclusions are the follow-

ing. The first three comparisons are significant, ie, the bigger 

model is better than the embedded one, and the (M3) versus 

(M2c) comparison is not. The conclusion of the four com-

parisons is that the best fitted model is (M2c). This indicates 

that if curvatures are included in the model, the slopes do 

not depend significantly on dilution. This is consistent with 

the theoretical derivation of the log-quadratic model (7). 

In model (M2c) the estimated slope is b̂=6.1×10−3 and the 

95% confidence interval on b is [5.6×10−3, 6.6×10−3]. Recall 

from (7) that the slope b of (M2c) should be understood as 

the difference between the slopes of models (9) for RL and 

THP-1. From the two previous sections, the estimated dif-

ference is 1.01×10−2, which is above the confidence interval 

on b in (M2c). Next, we tested the three pairwise differences 

of curvatures c
j
 in the accepted model (M2c). The results 

are presented in Table 4, and the value of the Student’s t-test 

statistic and the P-value are given (degrees of freedom, 293). 

All three differences are significant. The estimated values 

of the c + c
j
 curvatures are given in Table 5. It turns out that 

c
1
.c

2
.c

3
. Therefore, the curvature c + c

j
 decreases as the 

initial proportion of RL increases. This phenomenon is similar 

to that observed in Figure 1. Indeed, when the curvatures are 

neglected (model [M1]), the slopes were found to be decreas-

ing as the initial proportion of RL increases. The theoretical 

explanation is given by the mathematical model. Model 

(M1) amounts to keeping only the first term in the Taylor 

expansion (5). Since the next term is positive, the adjusted 

values of the slopes increase with time. Model (M2c) consid-

ers the first two terms in (5), neglecting the third one. If that 

neglected term is positive, then the same effect will occur, ie, 

adjusted values of curvatures increase with time. The third 

term is proportional to the skewness of B.  Observing decreas-

ing curvatures as in Table 5 is an indication that the skewness 

of B may be positive, where B is the (random) difference 

in growth rate between RL and THP-1. Koutsoumanis and 

Lianou5 have proposed a logistic distribution as a model for 

variability in growth rate. That distribution has null  skewness. 

We conjecture that distributions with positive skewness pro-

vide better models for variable growth rates.

Conclusion
It is a well-known fact that unchecked populations grow expo-

nentially fast, and this is backed up by countless experiments 

that validate the mathematical theory of branching processes.4 

Any clone stemming from a single cell can be associated 

with an exponential growth rate, also called the Malthusian 

parameter. It can be seen as the slope, over a large period 

of time, of the line fitting logarithms of the number of cells 

against time. What is questioned here is the idea that clones 

stemming from different cells in a given strain should have 

the same growth rate. Unlike Koutsoumanis and Lianou5 or 

Tomelleri et al,11 we do not provide direct evidence for the 

intrinsic variability of growth rates, but instead indirect proof 

coming from a simultaneous growth experiment.10

This entailed growing two cancer cell lines, ie, RL8 and 

THP-1,9 in the same vessels. If a single growth rate existed for 

all RL clones and another for all THP-1 clones, then the ratio 

should grow exponentially, the rate being the difference of the 

two growth rates. In that case, the growth rate of the ratio should 

not depend on the initial proportions of RL versus THP-1. Our 

observations disproved this, ie, the growth rate of the ratio was 

Table 4 Pairwise tests for differences in cj curvatures in model 
(M2c)

Null hypothesis t P-value

c1 = c2
2.4 0.016

c1 = c3
17.9 6.3×10−49

c2 = c3
16.1 4.5×10−42

Table 3 Tests of embedded models for the log ratio of rl versus 
ThP-1 cell counts

Embedded models df F P-value

(M3) versus (M2b) (2, 291) 24.67 1.3×10−10

(M2b) versus (M1) (1, 293) 22.8 8×10−39

(M1) versus (M0) (2, 294) 118 1.8×10−38

(M3) versus (M2c) (2, 291) 2.68 0.0705

Abbreviations: df, degrees of freedom; rl cells, American Type culture collection 
crl-2261 cells; ThP-1 cells, American Type culture collection TiB-202 cells.

Table 5 estimated c + cj curvatures in model (M2c)

Dilution j c + cj

j=1 (0.5%) 5.3×10−6

j=2 (1%) 4.96×10−6

j=3 (5%) 1.6×10−6

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Medical Statistics 2014:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

36

hamon et al

found to increase as the initial proportion of RL decreased 

(Figure 1). Assuming that growth rates may vary among clones 

provides both intuitive and theoretical explanations.

The intuitive explanation is as follows. Consider a growth 

rate as attached to each cell of a given clone. If clones grow 

at different rates, the proportion of cells in faster growing 

clones will gradually increase. In other words, the distribu-

tion of growth rates at increasing times will be shifted toward 

larger values. This explains why, when the initial proportion 

of RL cells is 0.5%, the population of RL contains more rapid 

breeders at the time it reaches 5% than at time 0. Therefore, 

the (apparent) growth rate for an initial proportion of 0.5% 

is larger than for an initial proportion of 5%.

The theoretical explanation is as follows. If growth rates 

of different clones are considered as independent random 

variables with a positive variance, then the model fitting 

the logarithms of cell numbers against time must contain a 

quadratic term proportional to the variance of growth rates: 

variable growth rates imply that higher-order terms must be 

added to the classical log-linear model. Now if a population 

grows according to a log-quadratic model, and a log-linear 

model is fitted instead, then the estimated slope over an 

interval of time should increase as the interval moves to 

the right (see Figure 2). This will overestimate the mean 

growth rate.

To validate our theoretical explanation, we had to com-

pare the fits of the log-linear and log-quadratic models to our 

experimental data. For the separate growth data, the log-linear 

model was better than the log-quadratic model for RL, but the 

reverse was true for THP-1. The log-quadratic model clearly 

provided a better fit for simultaneous growth data. This may 

seem paradoxical; indeed, the same model should be adopted 

for separate and simultaneous growths. The explanation 

of this apparent contradiction is statistical. The estimated 

curvature terms are in all cases smaller by several orders of 

magnitude than the estimated slopes. Therefore, the log-linear 

and log-quadratic models can hardly be distinguished when 

the cell counts range over several orders of magnitude, as in 

separate growths. This cannot be the case for simultaneous 

growth data, where the ratios range from a few percent to 

100%. We believe that if more values were collected at the 

beginning in a separate growth experiment, then the log-

quadratic model would provide a better fit.

There remains the issue of a probabilistic model to be fit on 

variable growth rates. Our derivation of the cumulant generat-

ing function shows that classical models of positive random 

variables, such as gamma, log-normal, or logistic distributions,5 

cannot be used here. Indeed, their exponentially decaying tail 

implies that the equivalent growth rate would become infinite 

at a finite time, which is not realistic. Therefore, a truncated 

model would have to be used instead. In any case, the chosen 

distribution would have to by adjusted to real data. Ideally, these 

data should be collected from the observation of colony growth 

of individual cells, as reported by Koutsoumanis and Lianou 

for Salmonella enterica5 or by Tomelleri et al11 for leukemia 

cells. This will be the objective of future work.
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