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Abstract: In medical research, clinical practice must often be undertaken with imperfect 

information from limited resources. This study applied Bayesian imperfect information-

value analysis to realistic situations to produce likelihood functions and posterior distri-

butions, to a clinical decision-making problem for recurrent events. In this study, three 

kinds of failure models are considered, and our methods illustrated with an analysis of 

imperfect information from a trial of immunotherapy in the treatment of chronic granu-

lomatous disease. In addition, we present evidence toward a better understanding of the 

differing behaviors along with concomitant variables. Based on the results of simulations, 

the imperfect information value of the concomitant variables was evaluated and differ-

ent realistic situations were compared to see which could yield more accurate results for 

medical decision-making.
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Introduction
Recurrent events data on chronic diseases permeate medical fields, hence it is very 

important to have suitable models and approaches for statistical analyses.1 Published 

literature on recurrent events, (include childhood infectious diseases;2 cervical cancer;3 

colon cancer;4,5 clinical trials;6 and dose-finding7). Treatment of recurrent events is 

still a clinical challenge today. A central problem in recurrent survival modeling is 

determining the distribution of the time [0, T ]; that is, the first event defines the popu-

lation of interest and initiates the start of the time interval at t=0, while the second 

event is the event of interest and terminates the time interval at time t=T. Research-

ers focused on an observed point process, along with fixed concomitant variables.7 

Among these variables, the primary ones are age (time elapsed since birth) and/or time 

elapsed since an important event (eg, commencement of illness, date of operation), 

and they are regarded as being of prime interest.8 It is often desirable to assess the 

relationship between mortality and these primary concomitant variables. In general, 

any of the concomitant variables can be discrete or continuous. Among continuous 

variables, age plays an important role, and it is almost always recorded as the date 

of entry. Other variables, including recurrent events, are usually not only age depen-

dent, but also vary from time to time, somewhat irregularly, for the same individual. 

The said variables are usually measured at the beginning of, and also periodically 

during the course of, a clinical trials. It is very important to note that, if the model 

involves values of concomitant variables measured after treatment has commenced, 

and these values are affected by the treatment itself, there is a need for special care 

in the interpretation of the results of analyses.9,10 At the time of decision-making, 
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the measure probability of future deterioration of disease, 

which is likely to be uncertain, is of primary interest for the 

clinical physician.11 

Generally, gathering additional data will not always be 

economical. Pratt et al described:

[...] the increase in utility which would result if the deci-

sion maker learned that Z=z (additional information). The 

utility which results from learning that Z=z will be called 

the value of the information z.12

Wendt stated: 

Information that will reduce the risk of a decision may be 

costly in time, effort, or money. The maximum amount 

that should be invested in the information – its fair 

cost – depends upon payoffs and prior probabilities of the 

hypotheses.13

In Bayesian decision theory, the payoff is the loss func-

tion, and the diagnosticity of the data source is represented 

by the likelihood function. Bayesian decision theory and an 

analysis of the value of information can be used to decide 

whether the evidence in an economic study is “sufficient” 

substantiation. However, collecting additional clinical recur-

rent data will not always be low cost. According to Chang 

and Cheng,14 which was based on the assumption that we 

could obtain perfect information about the concomitant 

variables of interest. 

In medical research, clinical practice must often be under-

taken with imperfect information from observational studies 

and limited resources (these reasons include, the diagnostic 

accuracy of infectious diseases;15 the sample size calculations 

for randomized clinical trials;16 health tracking information 

management for outpatients;17 estimating diagnostic accu-

racy of multiple binary tests;18 or the reference standard for 

panel diagnosis19). In this light, it seems more reasonable to 

assume that the information we collect will be imperfect. In 

such situations, it becomes important to choose the optimal 

sample size for recurrent data. Since more extensive sam-

pling will give us information that is more nearly perfect, 

but only at an increased cost, knowing the value of infor-

mation is a good basis for determining the optimal amount 

of information to collect.20,21 In seeking optimal amount of 

information, both “qualitative information” and “quantitative 

information” are considered. Qualitative information does 

not come from actual failure data, but from expert opinion or 

past experience. In such cases, no actual failure data will be 

available for use in Bayesian value of information analysis. 

On the other hand, quantitative  information is considered 

to be sample information that comes from an actual failure 

dataset. In this case, the nonhomogeneous Poisson process 

(NHPP) data can be transformed to equivalent homoge-

neous Poisson process data. According to the empirical 

investigation of Chang and Cheng,14 this paper discusses the 

decision analysis procedure when the collected information 

is assumed to be imperfect. 

Imperfect information analysis  
for survival model parameters
This section describes the processes of prior and posterior 

decision making for each of the three clinical failure models 

(linear, power law, and exponential) when only imperfect 

information is available.1 Further, Figure 1 is a flowchart of 

the proposed Bayesian procedure. In this case, the additional 

information is imperfect, additional data or other information 

can be obtained by more detailed analysis of the existing data. 

However, before collecting additional information, one must 

investigate its possible outcomes and costs of each candidate 

sampling plan, to determine whether collecting additional 

Select failure model

Fit in with NHPP?

Derive the prior
decision-making analysis

Is the EVSI greater than
the cost of collecting

information?

No

Yes

Collect information

Derive the posterior
decision-making analysis

Figure 1 Flowchart of the Bayesian decision analysis procedure.
Abbreviations: eVsi, expected value of sample information; nhPP, nonhomogeneous 
Poisson process.
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information is worthwhile and also which sampling plan is 

the best in terms of cost-effectiveness.

The case of unknown λ0 and known β
Two parameters, λ

0
 (the scale factor) and β (the aging rate), 

are useful in characterizing different clinical cases. The 

known aging processes about β and the information we col-

lect for λ
0
 may be imperfect. Detailed root cause analysis 

could conceivably provide information only about λ
0
; for 

example, by revealing whether the root causes of observed 

failures were gene-related. Following discussion is based 

on NHPP.20 

Qualitative information analysis
Collected information may not come from actual clinical 

failure data, but from physician opinions or past experiences. 

In such cases, it is still important to develop a procedure 

to take into account other types of information. Suppose ω 

is the estimated quantity of interest, which can be either 

the scale factor λ
0
 itself or some function of it (eg, M, the 

expected number of failures during the time period [t, T] 

under the status quo). Three heuristic assumptions can 

be used as a basis for formulating a model for imperfect 

information:21–23

1. If no sample is taken at all, the posterior distribution 

will be identical to the prior distribution. Therefore, the 

posterior mean (ie, E′{ω}) will be equal to the prior mean 

(ie, E{ω}), which is known, and the distribution of the 

posterior mean will have a mass of 1 concentrated at the 

prior mean.

2. Under appropriate conditions, an infinitely large sample 

will yield exact on knowledge of ω; ie, E′{ω} = ω. There-

fore, before such a sample is taken, the distribution of 

E′{ω} will be identical to the prior distribution of ω itself. 

In this case, the information is perfect.

3. As the sample size increases from 0 to infinity, the dis-

tribution of E′{ω} will spread out from a single point at 

E{ω}, corresponding to case 1, toward the prior distribu-

tion of ω as a limit, as in case 2. In these intermediate 

cases, the information is imperfect.

Further explanation follows, let S be the information 

we have collected. According to the theory of probability, 

we have E
s
{Eω{ω | S}} = E{ω}, and Vars{Eω{ω  | S}} = Var{

ω} - E
s
{Varω{ω  | S}}. Here, Eω{ω  | S} is equivalent to the 

posterior mean E′{ω}. Based on the heuristic assumptions 

above, we shall consider only sequences {S
n
} for which the 

corresponding sequence {E
n
′{ω}} converges in distribution 

to ω are considered; ie, lim
n→∞

 Var{{E
n
′{ω}}} = Var{ω} and 

lim
n→∞

 P(E
n
′{ω}  c) = P(ω   c), where n is in some sense a 

measure of the sample size or the amount of information 

contained in S
n
.

Further, the assumption of the distribution of E
n
′{ω} has 

the same functional form as the distribution of ω, except that 

the variance decreases as n increases; furthermore, we will 

assume that the rate of this decrease is some function of 

the prior mean, E{ω}, and the prior variance, Var{ω}. This 

assumption may be reasonable if the information collected 

is not from observing actual clinical failures, but rather from 

more detailed analysis of existing data, such as detailed root 

cause analysis of observed events. This process will reduce 

the uncertainty about the estimated risk, but may not change 

the shape of the distribution for the estimated risk.24

If the estimated risk ω discussed previously is assumed to 

be the clinical failure rate in the absence of trends, then it will 

be constant in time; ie, λ. We assume that λ~Gamma(a,g), 

and that the sample data of n recurrent events have been 

collected over a period of time x (ie, S = (n,x)). We then 

have E{λ} = a/g, Var{λ} = a/g2, and the likelihood function 

Lik(n, x | λ) = (λx)n exp(-λx)/n!. By taking expectations of  

n, we can get:

 E
s
{Varλ{λ | S}} = a/(g2 + gx) = Var{λ}[g/(g + x)]. (1)

It is easy to see that as x increases, E
s
{Varλ{λ | S}} → 0, 

and therefore Var
s
{Eλ{λ | S}} → Var{λ}. The rate at which 

the expected variance E
s
{Varλ{λ | S}} decreases in this 

case is g/(g + x), where g = E{λ}/Var{λ}. Once the poste-

rior expected value and the variance for λ are derived, 

the expected value of sample information (EVSI ) can be 

calculated according to:

 

EVSI Min E L a

Min E Min E L a S C

j j

i S j j
i

=

− +
=

=

1 2

1 2

,

,
( )

{ ( , )}

{ { { ( , ) | }}

θ

θ
II

iS( )},( )  (2)

where C
I
 is the cost of collecting additional information, S(i) 

is the ith sampling plan under consideration, and C
I
(S(i)) is 

the cost of the ith sampling plan.

If EVSI 0, then it is not worthwhile to collect additional 

information. Conversely, if EVSI .0, then we can start col-

lecting data and prepare for a posterior analysis.

If we know the cost of collecting each additional sample 

datum, then the expected net gain of sampling information 

(ENGS) can be derived. The sample size with the highest 

ENGS will be the optimum.25 Figure 2 shows the relation-

ships among EVSI, C
I
, and ENGS.
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We also assume that the same rate of decrease in the vari-

ance can also be used to study the value of imperfect informa-

tion in the case of trends. Figure 3 shows the expected value 

of imperfect information about λ
0
, when λ

0
 has a gamma 

prior distribution for the power law failure model. Since the 

value of imperfect information gets larger as the sampling 

time gets longer, we can then determine the optimal sampling 

time based on the assumption that the cost of collecting addi-

tional information is linear in the sampling time x. Empirical 

investigation suggests that collecting additional information 

tends to be worthwhile for short sampling times, but that 

the gain from collecting additional information eventually 

decreases as the sampling time gets longer.

Quantitative information analysis
Quantitative information here is considered to be sample 

information that comes from an actual clinical dataset. Sup-

pose that a patient has a planned lifetime T, and the decision 

of whether to maintain the status quo or to perform some 

intervention treatment at time t must be made, the decision 

variable we are dealing with is then the expected number 

of failures during the time period [t,T]. Since failure times 

are assumed to be drawn from an NHPP with the intensity 

function λ(t) = λ
0
h(β;t), the expected number of failures in 

[t,T  ] under the status quo is given by:

 

M M T t s ds h s ds

H T H t
t

T

t

T≡ = = ∫∫
= − =

( , , , ) ( ) ( ; )

[ ( ; ) ( ; )]

λ β λ λ β

λ β β λ
0 0

0 0
HH, (3)

where H y h s dsy( ; ) ( ; )β β= ∫0 , and H ≡ H(β) = H(β;T) - H(β;t). 

Suppose that undertaking the intervention treatment will 

reduce the failure intensity by a fraction ρ, where 0ρ1. 

Then, the expected number of failures in [t,T  ], if the inter-

vention treatment is performed, is given by:

 
λ ρ ρ λ ρ( )( ) ( ) ( ) .s ds H Mt

T 1 1 1
0

− =∫ − = −  (4)

On the basis of the assumptions given above, we therefore 

have a two-action problem with a linear loss function, where the 

loss for taking action a
1
 (ie, continuing with the status quo) is 

C
A
M and the loss for taking action a

2
 (ie, undertaking the inter-

vention treatment) is C
A
(1 - ρ)M + C

R
, where C

A
 is the cost of a 

failure if it occurs, and C
R
 is the cost of the proposed undertaking 

of the intervention treatment. The expected loss for the status 

quo is simply C
A
E{M}, and the expected loss for undertaking the 

intervention treatment is C
A
(1 - ρ)E{M} + C

R
. If we substitute in 

the functional form for H corresponding to a particular failure 

model, we can then perform a Bayesian decision analysis. Since 

we have a two-action problem with linear loss, it is apparent that 

the expected value of perfect information (EVPI) is:

C m M f m dm E M M

C M m f m dm

A C MM

A C M

M

C

C

ρ

ρ

( ) ( )

( ) ( )

−

−

∞

∫

∫

if  { } , and

if 

C


0
  { }       

C
E M M ,









 (5)

where M
C
 = C

R
/(C

A
ρ) is the cutoff value of E{M} for under-

taking the intervention treatment. 

In this case, it is relatively easy to identify the optimal 

decision,26 since the NHPP data can be transformed to 

equivalent homogeneous Poisson process data by the trans-

formation z = H(β;x). 

The linear failure model
The likelihood functions have a common kernel function 

of the form λ λ
0 0
nexp z( )− , where z x x= + β 2 2/  for the linear 

failure model. Bayesian prior and posterior analyses can be 

carried out simply by comparing the mean values of λ
0
 with 

the cutoff value τ
C
 for prior and posterior analysis.6 If the 

mean values of prior and posterior are smaller than τ
C
, then 

we should maintain the status quo; if not, then we should 

Expected value
of information

x* Sampling time

CI

EVSI

ENGS = EVSICI

Figure 2 Relationships among EVSI, CI, and ENGS.
Note: *Optimal sampling time.
Abbreviations: CI, cost of collecting additional information; ENGS, expected net 
gain of sampling information; EVSI, expected value of sample information.

Expected value
of information

Sampling time for λ0

EVSI CI

E{λ0}

Figure 3 expected value of imperfect information about λ0.
Abbreviations: CI, cost of collecting additional information; EVSI, expected value 
of sample information.
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undertake the intervention treatment. The values of τ
C
 for 

the linear failure model can be derived as follows:

 
C C T t T t

R A
/ /{ [ ( ) ]}.ρ β− + −2 2 2  (6)

The power law failure model
The likelihood functions have a common kernel function of 

the form λ λ
0 0
nexp z( )− , where z = xβ in the power law failure 

model. Bayesian prior and posterior analyses can be carried 

out simply by comparing the mean values of λ
0
 with the cutoff 

value τ
C
 for prior and posterior analysis.11 If the mean values 

of prior and posterior are smaller than τ
C
, then we should 

maintain the status quo; if not, then we should undertake the 

intervention treatment. The values of τ
C
 for the power law 

failure model can be derived as follows: 

 
C C T t

R A
/[ ( )].ρ β β−  (7)

The exponential failure model
The likelihood functions have a common kernel function of 

the form λ λ
0 0
nexp z( )− , where z = [exp(βx) - 1]/β for the expo-

nential failure model. Bayesian prior and posterior analyses 

can be carried out simply by comparing the mean values of 

λ
0
 with the cutoff value τ

C
 for prior and posterior analysis.5 

If the mean values of prior and posterior are smaller than τ
C
, 

then we should maintain the status quo; if not, then we should 

undertake the intervention treatment. The values of τ
C
 for the 

exponential failure model can be derived as follows: 

 
β ρ β βC C T t

R A
/{ [ ( ) ( )]}.exp exp−  (8)

Suppose λ
0
 is distributed as Gamma(m,y). The posterior 

distribution for λ
0
 will then be Gamma(m+n, y+z). In this 

case, the EVSI is given by

 

C H
m

y

mNB m p n

y z

mzNB m p n

y z y

NB m

A
C C

C

ρ

τ

−
+

−
+ −
+





− −

( , , ) ( , , )

( )

[ ( ,

1 1

1 pp n
C

, )]




 (9)

when E{λ
0
}  τ

C
, and by

C H NB m p n

m

y z
NB m p n

zNB m p n

y

A C C

C
C

ρ τ ( , , )

( , , )
( , , )





−
+

+
+ −





1 1




 (10)

when E{λ
0
} . τ

C
, where NB(a,b,c) denotes the cumulative 

distribution function of the negative binomial distribution with 

parameters a and b evaluated at point c, n
C
 is the smallest inte-

ger greater than or equal to τ
C
( y + z) - m, and p = y/(y + z).

The case of known λ0 and unknown β
As with the initial failure rate λ

0
, the information we collect 

for β may be imperfect. Detailed root cause analysis could 

conceivably provide information only about β; for example, 

by revealing whether the root causes of observed failures 

were related to the process of aging.

Qualitative information
In analyzing qualitative information, we make the same 

heuristic assumptions as qualitative information analysis 

and apply the same assumed rate of decrease in the vari-

ance of β. Figure 4 shows the expected value of imperfect 

information when β has a uniform prior distribution for 

the power law failure model. Since the value of imperfect 

information gets larger as the sampling time gets longer, we 

can then determine the optimal sampling time based on the 

assumption that the cost of collecting additional informa-

tion is linear in the sampling time. Empirical investigation 

suggests that collecting additional information tends to be 

worthwhile for short sampling times, but that the gain from 

collecting additional information (C
I
) eventually decreases 

as the sampling time gets longer.

Quantitative information analysis
The EVSI and the ENGS are not available when the sample 

information is from actual clinical failure data. Physicians can 

judge whether collecting additional information from clinical 

data is worthwhile only by referring to the expected value of 

perfect information (eg, according to the EVPI, the physi-

cian can evaluate whether collecting additional  information 

Expected value
of information

EVSI

Sampling time for β

CI

E{H}

Figure 4 expected value of imperfect information about β.
Abbreviations: CI, cost of collecting additional information; EVSI, expected value of 
sample information; E{H}, the expected number of failure functions.
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from clinical data is worthwhile or not). Bayesian prior and 

posterior analysis can be carried out as long as the prior and 

posterior expectations for H can be obtained, either analyti-

cally or numerically. Based on the results of Chang et al12 

we can compare the prior and/or posterior mean values of H 

with the cutoff value τ
C
. If the relevant mean is smaller than 

τ
C
, then we should maintain the status quo; if not, then we 

should undertake the intervention treatment.

The case of unknown λ0 and unknown β
As with, the information we collect for both λ

0
 and β may 

be imperfect. 

Qualitative information
If both λ

0
 and β are qualitative, we can make the same heuristic 

assumptions and apply the known rates of decrease in the vari-

ances of λ
0
 and β, respectively. Figure 5 shows the expected 

value of imperfect information about λ
0
 and β when λ

0
 has a 

gamma prior distribution and β has a uniform prior distribution 

for the power law failure model. Since the value of imperfect 

information gets larger as the sampling time gets longer, we can 

determine the optimal sampling time based on the assumption 

that the cost of collecting additional information is linear in the 

sampling time. Empirical investigation suggests that collecting 

additional information tends to be worthwhile for short sampling 

times, but that the gain from collecting additional information 

eventually decreases as the sampling time gets longer.

Quantitative information
When actual clinical failure data are available, neither the 

EVSI nor the ENGS information are available. However, prior 

and posterior analyses can be performed as long as the prior 

and posterior expectations for M (ie, the expected number of 

recurrent events under the status quo) can be derived, either 

analytically or numerically. The likelihood functions of the 

first n* failure times for the linear, power law, and exponential 

failure models are, respectively:

 

Lik x x x x

x
x

n
n

i
i

n

n
n

( , , , | , ) ( )*

*

*

1 2 0 0
1

0

1 λ β λ β

λ
β

= +




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− +

=
∏*

exp ** ,
2

2













 (11)

 

Lik x x x x

exp x

n
n n

i
i
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*
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*

*
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1

1

0

 λ β λ β

λ

β

β

=






−
=

−

∏
,, and  (12)

 

Lik x x x

exp x
x

n

n
i

i

n
n

( , , , | , )

exp( )
*

*
*

*

1 2 0

0
1

0

1

 λ β

λ β λ
β
β

= −
−



=

∑  .  (13)

The joint posterior distribution for λ
0
 and β obtained by 

Bayesian updating is simply proportional to the product of 

the joint prior distribution for λ
0
 and β and the likelihood 

function. However, the derivation of the posterior analysis 

is often cumbersome and must generally be performed by 

numerical integration. Furthermore, if the prior distributions 

for λ
0
 and β are Gamma(a,g) and Uniform(a,b), respectively, 

then the joint posterior distribution for λ
0
 and β, which the 

given likelihood function can be obtained by incorporating 

equation (11), (12) and (13) as the following:

f x x x

K x exp

n

a n n
i

i

n

( , | , , , )

[ (

*

* *
*

λ β

λ β λ γ
β

0 1 2

0
1

1

1

0



= 



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−+ −

=

−

∏ ++ x a b
n*

)], , ,β λ β  
0

0  

 
 (14)

where K x exp x d da n n
i

i

n

na

b
= 





− ++ −

=

−
∞

∏∫∫ λ β λ γ λ β
β

β
0

1

1

1

00 0
* *

*

*
[ ( )]   is 

the normalizing constant. 

Once the posterior joint distributions for λ
0
 and β are 

obtained, the posterior density function for M (ie, the expected 

number of failures during the time period [t,T ] under the 

status quo) can be derived by substituting the appropriate 

densities for λ
0
 and β. Bayesian prior and posterior analyses 

can be carried out by comparing the prior and posterior mean 

values of M with the cutoff value M
C
. If the relevant mean is 

smaller than M
C
, then we should maintain the status quo; if 

not, then we should undertake the intervention treatment.

Example with recurrent chronic 
granulomatous disease 
In order to analyze the behavior of the proposed model, a 

set of recurrence events data were simulated with chronic 

Expected value
of information

EVSI

Sampling time for λ0 and β

CI

E{M}

Figure 5 expected value of imperfect information about λ0 and β. 
Abbreviations: CI, cost of collecting additional information; EVSI, expected value of 
sample information; E{M}, the expected number of failure functions.
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granulomatous disease (CGD).1 CGD is an inherited disease 

caused by defects in superoxide-generating nicotinamide 

adenine dinucleotide phosphate (NADPH). Most cases of 

CGD are transmitted as a mutation on the X chromosome 

and can also be transmitted via CYBA and NCF1 and affect 

other PHOX proteins. In developed countries, survival of 

CGD patients have lived beyond the third decade of life. In 

developing countries, both delay in diagnosis of CGD and 

poor compliance with long-term antimicrobial prophylaxis 

are responsible for high morbidity and premature mortality. 

In one study, the use of prophylactic itraconazole reduced 

the incidence of fungal infections, but the effectiveness of 

long-term prophylaxis remains to be evaluated. Patients 

with CGD benefit from recombinant human interferon-γ 
(rIFN-γ) prophylaxis. However, fungal infections remain 

the main cause of mortality in CGD. Failure data from a 

trial of immunotherapy for the treatment of CGD have been 

previously studied.27 In this study, we have used the unknown 

λ
0
 and known β case to illustrate the model developed in 

preposterior analysis. We assume that the cost of collecting 

and analyzing actual failure data is US$500 per year from the 

start of the observation period t
0
 = 4.417. The assumption of 

US$500 per year for collecting actual clinical failure data is 

made to give the same cost as in the case of perfect informa-

tion (ie, C
I
 = 10,000) if the data are collected for the entire 

20 years. The optimal sampling time can then be evaluated. 

In this example, since the clinical failure data are already 

available, we assume that the cost of analyzing the clinical 

failure data is associated with tasks such as reviewing medical 

records and interviewing physicians. Discounting of the data 

collection cost over time is not considered.

The purpose of this study was to identify the ranges 

of numerical values for which each option will be most 

efficient with respect to the input parameters. If the recur-

rent process of CGD is modeled by the linear failure model 

with β = 0.6, then the optimal sampling time is 11.300 years 

from the start of the observation period. The ENGS for this 

case is 8,595.52. If the recurrent process of CGD is mod-

eled by the power law failure model with β = 1.65, then the 

optimal sampling time is 10.277 years from the start of the 

observation period. The ENGS for this case is 6,410.37. If 

the recurrent process of CGD is modeled by the exponential 

failure model with β = 0.16, then the optimal sampling time 

is 14.541 years from the start of the observation period. The 

ENGS for this case is 10,117.91. Since the optimal sampling 

period of [4.317, 14.541] exceeds the observation period 

of [4.317, 14.417], we would presumably use the entire 

available dataset. In this case, the ENGS would be 10,034.40, 

which is slightly smaller than the net gain of 10,117.91 

that would be expected if data from the full 10.224 years 

identified as optimal were available. The above results are 

consistent with the results of EVPI, which show that col-

lecting perfect information would be desirable for all three 

clinical failure models (and hence that collecting imperfect 

information might also be worthwhile). 

Prior and posterior analyses
Prior and posterior analyses can be carried out by compar-

ing the prior and posterior mean values of λ
0
 with the cutoff 

value τ
C
. If the mean of λ

0 
is smaller than τ

C
, then we should 

maintain the status quo; if not, then we should undertake 

the intervention. 

linear failure model
If the recurrent process of CGD is modeled by the linear 

failure model with β = 0.6, then the cutoff value of E{λ
0
} at 

which the risk reduction action becomes cost-effective is 

τ
C
 = C

R
/{C

A
ρ[T - t + β(T 2 - t2)/2]} = 0.1186. Since the prior 

mean E{λ
0
}=0.1 is smaller than τ

C
, maintaining the status 

quo would be the optimal prior decision (ie, prior to col-

lecting any information). Taking into account the failure 

data within the optimal sampling period [4.317, 11.300], 

the posterior mean E′{λ
0
} is 0.2090, which is greater than 

τ
C
, so undertaking the risk reduction action would be the 

optimal posterior decision.

Power law failure model
If the recurrent process of CGD is modeled by the power law 

failure model with β = 1.65, then the cutoff value of E{λ
0
} 

at which the risk reduction action becomes cost-effective 

is τ
C
 = C

R
/{C

A
ρ(T β - tβ)} = 0.1282. Since the prior mean 

E{λ
0
} = 0.1 is smaller than τ

C
, maintaining the status quo 

would be the optimal prior decision. Taking into account 

the failure data within the optimal sampling period [4.317, 

10.277], the posterior mean E′{λ
0
} is 0.1673, which is greater 

than τ
C
, so undertaking the risk reduction action would be 

the optimal posterior decision.

exponential failure model
If the recurrent process of CGD is modeled by the exponential 

failure model with β=0.16, then the cutoff value of E{λ
0
} 

at which the risk reduction action becomes cost-effective 

is τ
C
 = C

R
/{C

A
ρ[exp(βT ) - exp(βt)]/β} = 0.08281. Since the 

prior mean E{λ
0
} = 0.1 is greater than τ

C
, undertaking the 

risk reduction action would be the optimal prior decision. 

Taking into account the failure data within the total  available 
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observation period [4.317, 14.417], the posterior mean E′{λ
0
} 

is 0.1906, which is still greater than τ
C
, so undertaking the 

risk reduction action would also be the optimal posterior 

decision.

Table 1 summarizes the results of the analyses per-

formed for the case of unknown λ
0
 and known β. As can 

be seen from Table 1, the observed data generally support 

the adoption of the risk reduction action. This is also sup-

ported by the prior analysis for the exponential failure model 

(which shows a steep increase in failure rate after the end 

of the observation period), but not by the prior analysis for 

the linear and power law failure models (which show much 

less steep increases).

Discussion
The effective management of uncertainty is one of the most 

fundamental problems in medical decision-making. Cur-

rently, most medical decision models rely on point estimates 

for input parameters, although the uncertainty surrounding 

these values is well recognized. It is natural that the physician 

should be interested in the relationship between changes in 

those values and subsequent changes in model output. 

The empirical investigation of the CGD case study was 

discussed as follows. First, the base case in the case of 

unknown λ
0
 and known β, the width of values of λ

0
 within 

which collecting additional information is desirable is larger 

for the exponential failure model than for either the linear 

failure model or the power law failure model. Similarly, the 

EVPI for the base case is larger for the exponential failure 

model than for the other failure models. These results suggest 

that the possibility of rapid aging with the exponential failure 

model may make reduction of uncertainty more important, as 

one might expect (although it would not have been entirely 

clear a priori whether we should expect the possibility of 

rapid aging to favor data collection or the immediate adop-

tion of the risk reduction action). 

Second, in the case of known λ
0
 and unknown β, and the 

width of the range of values of E{M}, within which collect-

ing additional information is desirable is much larger for 

both the power law failure model and the exponential failure 

model than for the linear failure model. This is because the 

functional form of M is more sensitive to the value of β for 

the power law and exponential failure models than for the 

linear failure model. The range of values of λ
0
 within which 

collecting additional information is desirable is also larger 

for the power law and exponential failure models than for 

the linear failure model. Finally, the EVPI is larger for both 

the power law and exponential failure models than for the 

linear failure model. These results again show the importance 

of reducing uncertainty when rapid aging is possible, as is 

intuitively reasonable. Similar results are also found in the 

case of unknown λ
0
 and unknown β.

Overall, as one could expect, the case of unknown λ
0
 

and unknown β represents greater uncertainty than the 

other two cases, since the EVPI for the case of unknown λ
0
 

and unknown β is larger than for the other two cases. Thus, 

even with the linear failure model (where the prior decision 

is always to maintain the status quo), the optimal posterior 

decision is to undertake the risk reduction action. In this 

study, an NHPP was used for describing the CGD. Three 

kinds of failure models (linear, exponential, and power law) 

were considered, and the effects of the scale factor and the 

aging rate of these models were investigated. The failure 

models were studied under the assumptions of unknown 

scale factor and known aging rate, known scale factor and 

unknown aging rate, and unknown scale factor and unknown 

aging rate, respectively. In addition, in order to analyze the 

value of information under imperfect, we devised a method 

Table 1 Decision analysis for the case of unknown λ0 and known β

Linear  
failure model

Power law  
failure model

Exponential  
failure model

Prior E{λ0} 0.1 0.1 0.1

Range of E{λ0} for collecting information 0.0688–0.1500 0.0848–0.1568 0.0212–0.1245

assumed value of β 0.6 1.65 0.16

Range of β for collecting information 0.5085–1.5437 1.6292–1.9339 0.1310–0.1900
EVPI 14,995.45 12,215.69 18,654.01
Optimal sampling period [4.317, 11.300] [4.317, 10.277] [4.317, 14.417]
ENGS 8,595.52 6,410.37 10,034.40
Cutoff value of E{λ0} for risk reduction 0.1186 0.1282 0.0828
Prior decision status quo status quo Risk reduction
Posterior E′{λ0} 0.2090 0.1673 0.1906
Posterior decision Risk reduction Risk reduction Risk reduction

Abbreviations: E{λ0}, expected value of λ0; E′{λ0}, posterior expected value of λ0; ENGS, expected net gain of sampling information; EVPI, expected value of perfect information.
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for experts’ knowledge which are usually the absence of 

sharply defined criteria for dealing with such situations. 

Further, we demonstrated our method with an analysis of 

data from a trial of immunotherapy in the treatment of CGD. 

In some situations, the data were simply inadequate for 

any predictions to be made with a high level of confidence. 

Thus, it is recognized that practical judgments are very 

often, inevitably, strongly guided by subjective judgment. 

Bayesian decision analysis provides a means of quantifying 

subjective judgments and combining them in a rigorous way 

with information obtained from experimental data. Instead of 

considering only the sparse failure data, Bayesian analysis 

can provide a technique by which prior knowledge, such as 

expert opinion, past experience, or similar situations, can 

be taken into account.

Conclusion
The scientific development on clinical decision-making is 

toward a model-based analysis with evidence of available 

data. The diverse clinical data and events make complicated 

clinical decision-making an actual evaluating challenge. One 

approach to this issue is to develop a Bayesian information-

value analysis that explicitly represents that the history of the 

disease along with concomitant variables and the impact of 

treatments. The Bayesian decision model is essential by which 

the impact of alternative clinical scenarios and uncertainty in 

model input can be evaluated. The Bayesian decision analysis 

can be useful for determining, analytically or numerically, 

the conditions under which it will be worthwhile to collect 

additional information. Value-of-information analysis can 

provide a measure of the expected payoff from proposed 

research, which can be used to set priorities in research and 

development. In addition, it seems reasonable to assume 

that the information we collect will be imperfect. In such 

situations, it becomes important to choose the optimal sam-

pling time or the optimal sample size. Since more extensive 

sampling will give us information that is more nearly perfect, 

but only at an increased cost, knowing the value of informa-

tion is a good basis for determining the optimal amount of 

information to collect. In this study, a major concern was on 

how the imperfect information value should be interpreted, 

integrated, simulated, and effectively linked to medical 

practice. Three clinical failure models (the linear, power 

law, and exponential failure models) were evaluated to give 

a better understanding of the differing history of the disease 

associated with concomitant variables. Based on the results 

of this study, the power law and exponential failure models 

appear to be more sensitive than the linear failure model 

toward the requirement of being requisite among others.  

In particular, the result of exponential failure model may be 

less real istic, since the intensity function often becomes too 

steep after the observation period. One area in which further 

work might be desirable is in the study of other failure models 

using the same procedure developed in this study.
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