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Abstract: Hyperactivity of trigeminal sensory neurons is a major process to generate recurrent 

headache, typical of migraine attacks. How physiological nociception is converted into strong 

pathological pain remains, however, poorly understood. In recent years, certain neuropeptides 

and their receptors have been shown to modulate sensory neuron nociception and to contribute 

to the persistent hyperalgesia due to the sensory stimulus sensitization that defines the clinical 

experience of chronic pain syndromes, including migraine. Using calcitonin gene-related peptide 

(CGRP) and brain natriuretic peptide (BNP) as examples, this review addresses the mechanisms 

through which neuropeptides might modulate nociceptor activity. One attractive notion is that 

pain signaling by trigeminal sensory neurons is potently regulated by the ambient levels of these 

peptides: CGRP is thought to facilitate neuronal firing responsible for trigeminal sensitiza-

tion necessary to trigger headache, whereas BNP is proposed to act as a negative regulator of 

trigeminal neuron activity. For either peptide, the key target appears to be the ATP-gated P2X3 

receptor that, widely expressed by trigeminal sensory neurons, generates fast, large excitation 

to release glutamate onto second-order brain neurons. The fine balance between the activities of 

these peptides is suggested to ultimately determine whether nociception is perceived at higher 

center as a physiological or pathological response. Hence, the clinical goal of CGRP antagonism 

using either pharmacological receptor blockers or monoclonal antibodies (to sequester this 

peptide or to directly inhibit its receptor) is currently considered a novel approach for migraine 

prophylaxis and to treat acute headache attacks.
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Introduction – migraine pain can arise via chronic 
dysfunction of nociceptive neurons
While the molecular mechanisms of nociceptive neuron signaling have been widely 

investigated,1 the pathophysiological basis of chronic pain is less understood. A proto-

typical case is the recurrent chronic headache of migraine, which is a highly prevalent 

and disabling neurovascular disorder2 affecting a significant proportion of the adult 

population worldwide, and representing an enormous socioeconomic and health care 

burden for both the individual and society.3–5

Migraine is characterized by attacks of headache associated with autonomic nervous 

system dysfunction, and in about one-third of the cases, with transient neurological 

symptoms termed “aura”, whereby aberrant visual perceptions are the commonest 

complaint.6 Despite the fact that the migraine attack etiology remains largely unknown, 
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evidence points to the notion that migraine headache results 

from strong activation of primary afferent neurons (trigeminal 

ganglion [TG] nociceptors) that innervate craniofacial tissues 

(including meninges and their blood vessels) and project to 

the trigeminal nucleus of the brainstem and spinal cord with 

further signal processing at higher brain centers.7–9 In physi-

ological conditions, membrane depolarization (arising from 

mechanical, thermal, or chemical stimuli) of the peripheral 

terminals of TG nociceptors widely distributed over the cran-

iofacial territory will, if sufficiently large to reach a certain 

threshold, evoke action potentials that propagate to the central 

nervous system. To decode such stimuli and convert them into 

sensory information, TG neurons express a range of recep-

tors/ion channels that confer stimulus-related excitation. The 

depolarization induced by sensory stimuli is then modulated 

by membrane ion channels (e.g. K+ channels) that constrain 

the excitation propagating via voltage-gated Na+ channels 

responsible for the generation of action potentials. Con-

veying painful signals to the brain, therefore, demands a 

delicate balance between excitatory and inhibitory processes 

at the level of TG neurons. When such a fine equilibrium is 

pathologically disrupted, sensitization develops, whereby TG 

neurons become hyperresponsive even to mild stimuli: in the 

case of migraine, this is an important phenomenon to trigger 

headache.10 Furthermore, allodynia, namely pain generation 

by non-noxious stimuli, can occur in response to peripheral 

and central inputs.10–12 Symptoms of sensitization during 

migraine include throbbing headache and its aggravation 

during routine physical activities that increase intracranial 

pressure such as coughing and bending over.13,14

The question then arises as to whether sensitiza-

tion can originate from functional changes in the recep-

tor proteins transducing the sensory stimulus and/or in 

the voltage-dependent ion channels controlling neuron 

excitability. Recent studies have demonstrated that trigeminal 

sensory neurons express a large number of integral membrane 

proteins that sense strong external stimuli like pungent odors, 

chemicals, or temperature changes. The interest in their role 

related to migraine resides in the possibility that such proteins 

can be important triggers of migraine pain attacks either via 

direct activation of trigeminal neuron firing or via release of 

local mediators, in turn, exciting trigeminal neurons. This 

complex scenario presumably requires a delicate equilibrium 

between mechanisms dampening or enhancing neuronal 

excitability, and its derangement may lead to acute and/or 

chronic headache.15 Due to space constraints, the present 

short review focuses on the mechanisms of trigeminal pain 

transduction and how two endogenous neuropeptides, namely 

calcitonin gene-related peptide (CGRP) and brain natriuretic 

peptide (BNP), may up- or downregulate it. These (and other) 

neuropeptides might also be the intermediaries of the action 

of certain external stimuli on trigeminal sensory neurons as 

outlined earlier. Updated reviews are currently available for 

general involvement of CGRP in pain processing,16,17 while 

the role of BNP in maladaptive sensory signaling is a more 

recent finding.18,19

Molecular mechanisms of 
nociceptors involved in migraine 
pain signaling: shifting targets can 
facilitate pain onset
A large body of evidence has identified membrane pro-

teins expressed on dural afferent nerve endings and on the 

soma of TG neurons and suggested to play an important 

role in migraine pathophysiology.20 Immunolabeling and 

retrograde-labeling experiments in rodents have revealed 

that most small- and medium-sized TG neurons innervating 

the dura express voltage-insensitive acid-sensing cationic 

channels (ASICs) as well as transient receptor potential 

(TRP) channels and purinergic P2X receptors.21–23 Although 

pharmacological block of cortical-spreading depression (the 

underlying process mediating aura) and TG activation was 

experimentally elicited by the potassium-sparing diuretic 

amiloride via an action proposed to suppress ASIC activity,23 

there is little evidence that prior to (or during) a migraine 

attack, the local extracellular pH values can fall to a level 

sufficient for strong ASIC activation.

TRP receptor/channels comprise a wide family of mem-

brane proteins with multifarious functions of relevance to 

pain processing.15,24 For instance, the potential role of TRPA1 

receptors in migraine has been considered because TRPA1 

agonists may trigger migraine headache in susceptible 

individuals.25–28 Nevertheless, TRPA1 receptors, which are 

expressed only by a small minority of sensory neurons,29 

are typically stimulated by reactive oxygen species, and it 

is currently unclear whether such agents are generated in 

sufficient amount to trigger migraine or are by-products of 

subsequent neurovascular dysfunction associated with head-

ache and contributing to sustain it. Recent results indicate that 

chemical irritants found as environmental pollutants may also 

stimulate TRPA1 channels and evoke headache.30

Among the family of TRP receptors that can contribute to 

triggering migraine attacks, transient receptor potential vanil-

loid (TRPV)-4 is expressed by meningeal fibers: its activation 

by cold temperature31 or airborne irritants32 produces afferent 
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nociceptive signaling from the head that may contribute to 

migraine headache. TRPM8 channels that are activated by 

cold are also proposed to be involved in triggering trigemi-

nal neuron activity33 in accordance with the notion that a 

TRPM8 gene variant confers susceptibility to migraine.34 

While several studies have demonstrated capsaicin (and 

heat)-sensitive TRPV1 channels to be important for the 

development of inflammatory, thermal pain conditions,35–37 

their ultimate role in migraine remains unclear, and there are 

no current antimigraine drugs blocking TRPV1 receptors in 

clinical use.

Cannabinoids have been commonly associated with 

analgesic effects. In the case of headache, trigeminal neurons 

express the G-protein-coupled CB1 receptors that are the 

principal transducers of the neuronal action of endogenous 

endocannabinoids like anandamine and 2-acylglycerol.15 The 

hypothesis of the role of endocannabinoids in migraine was 

proposed as part of a syndrome (clinical endocannabinoid 

deficiency) with facilitated onset of pain.38 This concept was 

supported by the clinical observation of low endocannabinoid 

levels in the cerebrospinal fluid of migraine patients.39 The 

role of endocannabinoids in trigeminal pain processing is 

complex because anandamide can produce contrasting effects 

on the trigeminovascular unit activity, in which neurons, glia, 

and local vascular elements interact at meningeal level.40,41 

Furthermore, anandamide exerts several cellular effects 

distinct from CB1 receptor activation, including activation 

of TRPV1 receptors.42 These multifarious actions by endo-

cannabinoids may ultimately converge onto the modulatory 

effects of neuropeptides.

A number of studies have proposed that an acute attack 

of migraine is associated with a large release of ATP into 

the extracellular compartment to stimulate nociceptors.43 

While ATP receptors constitute a heterogeneous population, 

those with ionotropic properties and therefore, producing rapid 

ion current responses, belong to the P2X subclass. Among 

ATP-sensitive P2X receptors, the P2X3 receptors are selec-

tively and almost exclusively expressed by sensory ganglion 

neurons,44,45 suggesting their key role in processing pain. The 

subject of P2X3 receptors has been reviewed in detail.46,47 

In the mouse TG, P2X3 receptors are expressed by the vast 

majority of sensory neurons that may also express receptors for 

capsaicin (TRPV1)48 and have been implicated in craniofacial 

pain,49,50 including migraine.47 These data highlight the role of 

P2X3 receptors in nociception, and suggest that they may be 

an important target for novel analgesic drugs.51 For instance, 

dihydroergotamine (DHE), a nonselective ergot alkaloid 

derivative extensively used for the acute treatment of migraine, 

depresses ATP-mediated sensitization of TG neurons via 

downregulation of P2X3 receptors:52 these data suggest that 

the effectiveness of DHE in treating migraine might be partly 

due to its inhibitory effect on P2X3 receptors.

Ca2+-activated potassium channels may also contribute 

to controlling the hyperactivity of the trigeminocervical 

complex. Activation of neuronal large-conductance calcium-

activated potassium channels (BK
Ca

 or MaxiK) induces 

hyperpolarization of neurons,53 while intravenous administra-

tion of the MaxiK opener NS1619 dose-dependently inhibits 

neurogenic dural vasodilation in a model of trigeminovascu-

lar nociception.54 Among the group of voltage-independent 

K+ channels, the TRESK K2P channel modulates cellular 

excitability55 and is expressed in the TG. Although muta-

tion in the KCNK18 gene that encodes a protein member of 

the TRESK subfamily of leak K+ channels was reported to 

be linked to familial migraine,56 it was later suggested that 

KCNK18 might act as a modifier instead of being sufficient 

to cause typical migraine.57

Certain genetic mutations associated with familial 

migraine and affecting channels directly involved in hyperex-

citability have provided further information to understand the 

primary mechanisms underlying migraine pathophysiology. 

In particular, the genes known to cause familial hemiple-

gic migraine (FHM) are all involved in ion homeostasis 

across the neuronal cell membrane. Missense mutations in 

CACNA1A gene encoding the pore-forming subunits of the 

neuronal voltage-gated P/Q-type Ca2+ channel (Cav2.1) are 

reported to be the commonest cause of FHM type 1.58 Such 

mutation determines a major gain of function of Cav2.1 chan-

nels whose activation threshold is shifted to more negative 

membrane potential.59 Thus, not only this mutation favors 

neuronal excitability, but it also facilitates presynaptic release 

of transmitter, in particular glutamate.60

Migraine pain: sensitization process 
and its triggers
A number of studies and a large body of clinical as well as 

preclinical data have provided evidence for the involvement 

of sterile inflammation as one important mechanism for the 

activation of the migraine pain pathway.61 This process is 

purported to produce abnormal cross talk between neurons 

and nonneuronal cells in the TG and to reinforce activation 

and recruitment of immune cells releasing inflammatory 

agents to perpetuate sensitization.62–65 A recent study with in 

vitro TG cultures and a cell-line of macrophages has, in fact, 

shown how co-culturing these cells enhances phagocytic 

activity of macrophages and augments functional responses 
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by P2X3 receptors.64 During neurogenic inflammation, 

several neuropeptides, neuromodulators, and other signaling 

molecules are released from neurons and glial and inflamma-

tory cells of the trigeminovascular system. Pro-inflammatory 

cytokine levels have been found to be elevated in the plasma 

and in the cerebrospinal fluid of migraineurs.66–68 Bradykinin, 

histamine, serotonin (5-HT), and prostaglandin E2 cause 

mechanical sensitization and increase the excitability of 

somatic69 and meningeal nociceptors.10,11 Other inflammatory 

mediators like interleukins 1 (IL-1), 6 (IL-6), and 8 (IL-8) 

and tumor necrosis factor α exert their effects through the 

endogenous release of eicosanoids and sympathetic amines.70,71 

Increased nitric oxide (NO) production within the meninges 

may also contribute to migraine headache in patients.72 These 

inflammatory mediators collectively modulate the activity of 

various ion channels.73,74

Neuropeptides as modulators of 
nociceptors in migraine
The seminal observation that a pharmacological antagonist 

of the endogenous neuropeptide CGRP was a potent anti-

migraine drug75 catalyzed a strong focus on the action of 

CGRP in migraine. CGRP is a 37-amino acid neuropeptide 

derived from the gene encoding calcitonin by alternative 

splicing of mRNA and proteolytic processing of its precur-

sor.76,77 CGRP exists as two isoforms, α- and β-CGRP.78,79 

α-CGRP is predominant in the central and peripheral 

nervous systems, while β-CGRP is mainly present in the 

enteric nervous system.80 Jugular plasma concentrations of 

CGRP are increased during attacks of migraine.81 In addition, 

release of CGRP is produced by electrical stimulation of TG 

fibers.82 Chemical stimuli that activate, for example, TRPA1 

or TRPV1 receptors, or endogenous mediators liberated by 

neuroinflammatory cells increase the release of CGRP.82–84 

These data have, therefore, led to consider CGRP as a major 

“migraine mediator” as recently reviewed.16,17,85,86

CGRP is known to mediate neurogenic inflammation in 

peripheral tissues by increasing blood flow, and by recruiting 

immune cells, that may, in turn, activate sensory neurons.87 

In accordance with this notion, the peptide evokes strong 

stimulation of NO synthesis and release from trigeminal 

ganglia88 as well as liberation of inflammatory cytokines.89 

Furthermore, CGRP can promote the release of endogenous 

algogenic mediators like bradykinin from TG satellite cells,63 

thus contributing to the creation of a chemical milieu that 

facilitates sensory neuron activity. Its receptors are expressed 

in most peripheral components of the trigeminovascular sys-

tem, including blood vessels, Schwann cells, dural mast cells, 

satellite glial cells, and a subpopulation of TG neurons.90 

The importance of CGRP in the pathophysiology of migraine 

pain is supported by the fact that its intravenous administra-

tion causes delayed migraine-like headache in migraineurs, 

whereas CGRP receptor antagonists are proving effective 

in treating migraine,91 in line with the notion that migraine 

patients may somehow be hypersensitive to the CGRP-

positive modulation of nociception.75,92 It has been suggested 

that CGRP may mediate cross talk between TG neurons and 

satellite glial cells63 resulting in the increased expression 

and/or membrane targeting of specific pain receptors, such 

as ATP-gated P2X3, as well as an increased production of 

other inflammatory mediators, like IL-1β, thus sensitizing 

nociceptors and reinforcing neuroinflammation.93,94

An interesting issue concerns the origin of endogenous 

CGRP release with particular relevance to the migraine 

attack. Recent studies have suggested that low levels of endo-

cannabinoids may decrease their inhibitory control over the 

trigeminovascular system in migraine patients, a phenomenon 

that, in turn, may lead to increased CGRP.95 The action of 

endocannabinoids can also include a site in the brainstem to 

regulate trigeminal excitability.96 The mechanism of action 

of endocannabinoids in migraine remains, however, incom-

pletely understood in view of the activation of TRPV1 recep-

tors by anandamide and the implications of this result for the 

control of the local vasculature at meningeal level.

Gain of function of P2X3 receptors 
is an important mechanism of 
CGRP action
CGRP has been demonstrated to upregulate the membrane 

expression and function of P2X3 receptors86,94,97 through 

enhancing gene transcription and receptor membrane 

targeting.98 The mechanisms of P2X3 facilitation mediated 

by CGRP involve the activation of complex intracellular 

pathways and depend on protein kinase A (PKA) and pro-

tein kinase C (PKC) activity.94,98 It is noteworthy that only 

a minority of TG neurons can bind CGRP94 suggesting that 

the action of this peptide is discrete and can perhaps be 

amplified via further signaling processes within and between 

TG cells. In vivo studies confirm that CGRP injection into 

the temporomandibular joint capsule leads to early, PKA-

dependent increase in P2X3 receptors of the spinal trigeminal 

nucleus neurons.97

The potentiating action by CGRP on P2X3 recep-

tors is typically slow as it requires approximately 1 hour 

to develop fully, and it persists long after the peptide is 

eliminated.94 Importantly, this effect of CGRP is selective 
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for P2X3 receptors because, in TG cultures, it does not 

affect TRPV1 receptors.94 Furthermore, it has been proposed 

that neuronal P2X3 receptor activation and ensuing depolar-

ization can also release CGRP, thereby perpetuating a self-

supporting process for TG neuron sensitization.20

A significant component of the action by CGRP occurs 

indirectly, through the release of the algogenic neurotrophin 

brain-derived neurotrophic factor (BDNF).98 In accor-

dance with this view, P2X3 receptor expression is pro-

moted by CGRP/BDNF-dependent activation of calcium/

calmodulin-dependent kinase II and of the transcription 

factor CREB.98 Patients show significantly higher BDNF 

serum levels during migraine attacks.68,99 BDNF is a key 

mediator of plasticity in trigeminal nociceptive pathways,100 

and it has been shown to facilitate P2X3 receptor function.98 

Thus, CGRP and BDNF may be viewed as a combinatorial 

stimulus to facilitate TG sensitization.

The constitutive upregulation of P2X3 receptors in TG 

of the mouse model of FHM-1 is due to the higher level of 

CGRP release probably caused by increased Ca2+ inflow via 

gain of function of Cav2.1 channels.63,101,102 Furthermore, 

the perturbed intracellular Ca2+ homeostasis of such neurons 

enhances calcineurin activity with consequent change in the 

delicate intracellular balance between phosphorylation and 

dephosphorylation processes of P2X3 receptors with a posi-

tive impact on their function.101 Thus, preclinical and clinical 

data concur to show a pivotal role of CGRP in the migraine 

pain attack and suggest upregulated P2X3 receptors as a 

major contributor to TG sensitization.

Clinical pharmacology of CGRP 
antagonists to treat headache
The growing evidence linking migraine to neuropeptide 

signaling emphasizes the view that neuropeptide receptors 

represent an important area for pharmacological treatment. 

Despite recent advances in the structure of CGRP receptors 

obtained with crystallography, the design of effective CGRP 

antagonist remains a significant challenge in view of the het-

eromeric nature of the receptor complex.103 Table 1 summa-

rizes a few recent data for CGRP inhibitors based on receptor 

antagonists (the “gepants”) or monoclonal antibodies used 

for current clinical investigations. Detailed reviews on this 

subject are also available.17,91,103

 CGRP antagonists appear to be attractive new drugs 

because they lack vasoconstrictor effects that limit the use of 

other migraine therapies by patients with cerebral or coronary 

vascular disease.114–116 It is noteworthy that, since antago-

nists can possess distinct species specificity for the CGRP 

receptor,103 the present discussion is primarily centered on 

human studies. In a Phase II double-blind randomized clinical 

trial of 126 patients with migraine, the olcegepant response 

rate to block a migraine attack was comparable to that of 

triptans.75 Its tolerability was good, but this drug could only 

be administered by intravenous injection,75 thus represent-

ing a pitfall for treatment accessibility and repetition. More 

recently developed CGRP antagonists are available as oral 

formulation. Some of them (namely telcagepant/MK-0974 

and MK-3207) were shown to be effective against migraine, 

but, due to liver toxicity concerns, their development was 

discontinued.117,118 Three new CGRP receptor antagonists 

(BI 44370 TA, BMS-927711, and MK-1602) have com-

pleted Phase II trials, although only two have been reported 

(BI 44370 TA and BMS-927711) (Table 1).

A recent positron emission tomography study in man 

has shown that telcagepant achieved only low receptor 

occupancy at an efficacious dose, suggesting that large-

scale antagonism of brain CGRP receptors is unlikely to be 

required for migraine efficacy.119 It is, however, feasible that 

central CGRP receptor antagonism may provide additional 

therapeutic benefits.119

Table 1 Current CGRP antagonists/antibodies in clinical trial for migraine therapy

Code name Type Indication Administration route Clinical phase References

BiBN4096BS  
(olcegepant)

CGRP receptor antagonist Acute treatment intravenous Phase ii 75,104–106

Bi 44370 TA CGRP receptor antagonist Acute treatment Oral Phase ii 107
BMS-927711 CGRP receptor antagonist Acute treatment Oral Phase ii 108,109
MK-1602 CGRP receptor antagonist Acute treatment Oral Phase ii in progress 

(NCT01613248)
LY2951742 Humanized antibody against CGRP Prophylactic treatment Subcutaneous Phase ii 110,111
ALD403 Humanized antibody against CGRP Prophylactic treatment intravenous Phase ii 112
LBR-101 Humanized antibody against CGRP Prophylactic treatment Subcutaneous Phase ii 113
AMG 334 Humanized antibody against CGRP 

receptor
Prophylactic treatment Subcutaneous Phase ii in progress 

(NCT01952574)

Abbreviation: CGRP, calcitonin gene-related peptide.
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An alternative approach to pharmacological antagonists 

is the use of antibodies to target CGRP or its receptor. 

The sustained inhibition of CGRP signaling produced by 

monoclonal antibodies pharmacokinetically differentiates 

them from the CGRP antagonists, and renders the use of 

antibodies more suitable as prophylactic treatment rather 

than acute migraine medication.

One advantage with the antibody therapies is that they 

are structurally very different from the CGRP antagonists; 

thus, it is less likely that similar liver toxicity problems will 

be encountered. However, they are of high cost, and at least, 

some of them require an injectable route of administration. 

Moreover, the potential onset of immunological reactions 

should be borne in mind, and chronic depletion of CGRP 

may have adverse side effects actually induced by the 

lack of this peptide. While monoclonal antibodies are not 

expected to cross the blood–brain barrier in physiological 

conditions, the integrity of this barrier during an attack of 

migraine with associated release of circulating inflammatory 

factors remains a subject for future studies. Hence, it is not 

clear whether these antibodies exert their pharmacological 

effects simply through a peripheral site of action. There are, 

in fact, suggestions that CGRP antagonists may work partly 

through a central mode of action,120 even if this hypothesis 

is not without controversies121,122 and not fully consistent 

with recent functional imaging data.119 It should, however, 

be recalled that the TG is outside the blood–brain barrier 

even in physiological conditions, and it remains an acces-

sible target for these antibodies (or, indeed, pharmacological 

blockers). Thus, it will be of great interest to examine if the 

CGRP antibodies display comparable long-term efficacy as 

the CGRP antagonists.

There are no clinical data based on multicenter trials, in 

which the efficacy of antibodies against the CGRP receptor 

(or the peptide itself) has been compared versus administra-

tion of CGRP pharmacological antagonists. Furthermore, it 

is not known if there is any advantage in terms of migraine 

control in using an antibody therapy directed against 

the CGRP receptor rather than the circulating peptides. 

These issues will also need extensive future studies in view 

of the possible long-term changes in CGRP receptor func-

tion, once the natural ligand activity has been inhibited in a 

persistent manner.

LY2951742 and ALD403 are fully humanized monoclonal 

antibodies that potently and selectively bind to CGRP.111,123 

ALD403, in particular, binds to both α and β forms of human 

CGRP (affinity K
d
 ,20 pM123), and LBR-101 binds to the 

peptide receptor-binding site of CGRP.113 After antibody-

dependent sequestration of circulating CGRP, the peptide 

receptors might remain available to other endogenous ligands 

supporting ongoing receptor signal transduction in neurons 

and nonneuronal cells.

Advances in antibody design technology have paved the 

way for an improved generation of therapeutic antibodies.124 

Thus, therapeutic antibodies can be modified to increase their 

specificity125 and decrease their risk of adverse reactions, for 

example, by modulating their immune effector functions, 

extending their half-life, and optimizing their antigen-binding 

domains. The antibody stability is an important issue since, in 

order to neutralize CGRP, whose plasma levels are fluctuating 

during the course of the illness, high antibody concentra-

tions should be attained. This goal is, however, not without 

problems as mechanism-related and nonspecific adverse 

reactions have been reported, including immunogenicity.126 

Guidelines for the therapeutic use of antibodies have recently 

been published (http://www.ema.europa.eu/ema/). It should 

be noted that certain pharmacological antagonists of CGRP 

can also induce adverse reactions as shown, for example, by 

interruption of the trials with the CGRP receptor antagonist 

telcagepant.127

BNP is a potential endogenous 
negative regulator of nociceptive 
signaling
While CGRP is the prototypical neuropeptide for the sensiti-

zation of TG neurons, it seems likely that there are also endog-

enous neuropeptides to downregulate the activity of P2X3 

receptors and they would, thus, represent an intrinsic negative 

feedback system to control pain sensitivity. Recent evidence 

has been gathered in support of a potential involvement of 

the natriuretic peptide system in the modulation of peripheral 

sensory neuron nociceptive signaling.128–131 The natriuretic 

peptides are a family of structurally related hormones widely 

known for their important effects on the cardiovascular sys-

tem and the regulation of water–electrolyte homeostasis.132 

These include atrial natriuretic peptide (ANP), BNP, and 

the C-type natriuretic peptide (CNP).133 All three peptides 

showed distinct amino acid sequence that hints to their 

separate genetic origin.

Natriuretic peptides exert their physiologic effects 

through binding, with different affinities, to three mem-

brane receptor subtypes: the natriuretic peptide receptors 

A (NPR-A), B (NPR-B), and C (NPR-C), which are also 

known as guanylate cyclase A (GC-A), B (GC-B), and the 

clearance receptor, respectively. NPR-A is activated mainly 

by ANP and BNP.133,134
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Unlike CGRP, the functional consequences of BNP action 

on neurons are less understood. Nevertheless, while BNP and 

its receptor NPR-A are both expressed in the rat dorsal root 

ganglia (DRG), their signaling may attenuate inflammatory 

pain through a mechanism involving the opening of large-

conductance Ca2+-activated K+ (BK
Ca

) channels.129 Microarray 

gene profiling has indicated that chronic pain models enhance 

BNP and its NPR-A in rat DRG. NPR-C is also present in 

DRG, where it colocalizes with TRPV1 channels. Here, 

however, NPR-C activation by CNP displays diametrically 

opposite effects compared to NPR-A, as it enhances thermal 

hyperalgesia in a TRPV1- and PKC-dependent fashion.128 These 

results indicate the coexistence of functional NPRs in DRG that 

exhibit contrasting effects on pain transduction, which raises 

question on how the two functions are inter-related and whether 

the natriuretic peptide modulatory role can also be generalized 

to cranial ganglia and other pain conditions.

In relation to migraine mechanisms, ANP gene expres-

sion has been shown to increase following experimental 

cortical-spreading depression.135 Moreover, a recent clinical 

report documents that the BNP precursor (proBNP) levels are 

raised in the jugular vein blood during a migraine attack,136 

indicating a potential involvement of BNP in migraine 

pathophysiology.

Many migraine mediators have, in common, the ability 

to alter both neuronal and vascular function (eg, CGRP, sub-

stance P, bradykinin). This property is also shared by natriuretic 

peptides that activate cGMP-dependent pathways via GC in 

vascular cells to induce vasodilation137,138 and to stimulate nitric 

oxide synthase and NO production probably via activation of 

the NPR-C receptor.138,139 Due to the vasoactive properties 

of natriuretic peptides, it has been recently postulated that 

these substances can induce headache.140 Future studies are, 

however, needed to determine the vasoactive properties of the 

natriuretic peptides on cerebral vessels and their potential role 

in migraine. Several lines of evidence show that vasodilation of 

cranial (meningeal) and extracranial arteries is not necessary 

to directly provoke migraine pain as reviewed.61

In rodent TG and DRG, the NPR-A receptor has been 

reported to be expressed only by sensory neurons. In 

mouse TG, NPR-A is present at membrane level in almost 

all (.95%) neurons, and application of exogenous BNP 

rapidly evokes a large increase in cGMP level, a canonical 

effector of BNP,133 and phosphorylation of AKT, a kinase 

downstream of NPR-A activation.141 Such a strong and 

widespread activity of NPR-A receptors outlines a major 

role of this system in controlling neuronal excitability. In 

fact, although application of exogenous BNP does not change 
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Figure 1 idealized scheme depicting modulation by CGRP or BNP of P2X3 and TRPv1 receptors of trigeminal sensory neurons.
Notes: extracellular CGRP binds to its receptor complex comprising, in addition to the CGRP-binding site, the accessory proteins RAMP and CRL. Once this receptor is 
activated, it catalyzes the synthesis of cAMP that, in turn, activates PKA to phosphorylate the intracellular domain of the ATP-sensitive P2X3 receptor with subsequent gain 
of function and facilitation of trigeminal pain signaling. In addition, CGRP receptor activity stimulates P2X3 gene expression to promote synthesis and trafficking of these 
receptors. No apparent effect by CGRP on TRPv1 receptors is reported. extracellular BNP binds to its receptor NPR-A, which catalyzes the synthesis of cGMP that, in turn, 
stimulates phosphorylation of AKT, thereby activating this kinase. Even though the multiple intracellular targets for AKT are not fully known, it is proposed to downregulate 
(probably via a complex intracellular cascade) the activity of TRPv1 as well as P2X3 receptors with an ultimately inhibitory role of the receptor activity. K+ channels crucial 
for stabilizing membrane potential and controlling firing of action potentials are also shown. Positive and negative signs indicate activation and inhibition, respectively.
Abbreviations: AC, adenylate cyclase; BNP, brain natriuretic peptide; Ca2+, calcium channels; CGRP, calcitonin gene-related peptide; CRL, calcitonin receptor-like receptor; 
K+, potassium channels; NPR-A, natriuretic peptide receptor A; PKA, protein kinase A; PKG, protein kinase G; RAMP, receptor activity-modifying protein; TRPV, transient 
receptor potential vanilloid.
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P2X3 receptor activity, the same protocol depresses TRPV1-

mediated currents in TG.142 Furthermore, anantin, a selective 

NPR-A antagonist, slowly and greatly enhances P2X3 recep-

tor function, implying that ambient BNP produced a constitu-

tive downregulation of P2X3 receptors, which could not be 

further intensified by exogenous BNP.142 These data indicate 

the role of this endogenous peptide as a negative regulator of 

trigeminal sensory neuron excitability to nociceptive stimuli 

and should prompt future clinical studies to explore the role 

of NPR-A receptors in migraine. Further studies are required 

to clarify how BNP and CGRP may interact in migraine pain: 

an idealized scheme of the potential regulation by CGRP and 

BNP of TG neuronal function is illustrated in Figure 1.

Conclusion
Somatosensory cortical maps show that the trigeminal territory 

is large and very sensitive to nociceptive stimuli. Thus, to pre-

vent unwanted pain generation with associated allodynia and 

hyperalgesia as observed in chronic pain syndromes, potent 

intrinsic regulators should exist to counteract the sensitization 

elicited by neuropeptides like CGRP. While current interest in 

novel treatments for migraine is centered on the goal of block-

ing either CGRP or its receptors, future studies are necessary to 

find out whether boosting intrinsic negative regulators that may 

comprise K+ channels, endocannabinoids, or neuromodulatory 

peptides might be a viable approach to treat migraine.

Acknowledgments
This work was supported by the EU FP7 grant EuroHeadPain 

(#602633) and by the EU Crossborder Cooperation 

Programme Italy-Slovenia 2007–2013 (European Regional 

Development Fund and national funds; MINA).

Disclosure
The authors declare no conflict of interest.

References
1. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. 

Science. 2000;288(5472):1765–1769.
2. Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability 

(YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010:  
a systematic analysis for the Global Burden of Disease Study 2010. 
Lancet. 2012;380(9859):2163–2196.

3. Stovner LJ, Hagen K. Prevalence, burden, and cost of headache disorders. 
Curr Opin Neurol. 2006;19(3):281–285.

4. Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B, 
CDBE2010 study group; European Brain Council. The economic cost 
of brain disorders in Europe. Eur J Neurol. 2012;19(1):155–162.

5. Leonardi M, Steiner TJ, Scher AT, Lipton RB. The global burden of 
migraine: measuring disability in headache disorders with WHO’s 
 classification of functioning, disability and health (ICF). J Headache 
Pain. 2005;6(6):429–440.

 6. Lipton RB, Bigal ME, Rush SR, et al. Migraine practice patterns among 
neurologists. Neurology. 2004;62(11):1926–1931.

 7. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. 
 Neurobiology of migraine. Neuroscience. 2009;161(2):327–341.

 8. Olesen J, Burstein R, Ashina M, Tfelt-Hansen P. Origin of pain 
in migraine: evidence for peripheral sensitisation. Lancet Neurol. 
2009;8(7):679–690.

 9. Levy D. Migraine pain and nociceptor activation – where do we stand? 
Headache. 2010;50(5):909–916.

 10. Strassman AM, Raymond SA, Burstein R. Sensitization of  meningeal 
sensory neurons and the origin of headaches. Nature. 1996;384(6609): 
560–564.

 11. Levy D, Strassman AM. Distinct sensitizing effects of the cAMP-PKA 
second messenger cascade on rat dural mechanonociceptors. J Physiol. 
2002;538(pt 2):483–493.

 12. Davis KD, Meyer RA, Campbell JN. Chemosensitivity and sensitiza-
tion of nociceptive afferents that innervate the hairy skin of monkey.  
J Neurophysiol. 1993;69(4):1071–1081.

 13. Blau JN, Dexter SL. The site of pain origin during migraine attacks. 
Cephalalgia. 1981;1(3):143–147.

 14. Rasmussen BK, Jensen R, Olesen J. A population-based analysis of the 
diagnostic criteria of the international headache society. Cephalalgia. 
1991;11(3):129–134.

 15. Viana F. Chemosensory properties of the trigeminal system. ACS Chem 
Neurosci. 2011;2(1):38–50.

 16. Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide 
(CGRP) and migraine current understanding and state of development. 
Headache. 2013;53(8):1230–1244.

 17. Russell FA, King R, Smillie S-J, Kodji X, Brain SD. Calcitonin 
gene-related peptide: physiology and pathophysiology. Physiol Rev. 
2014;94(4):1099–1142.

 18. Akiyama T, Carstens E. Neural processing of itch. Neuroscience. 
2013;250:697–714.

 19. Mishra SK, Hoon MA. The cells and circuitry for itch responses in 
mice. Science. 2013;340(6135):968–971.

 20. Yan J, Dussor G. Ion channels and migraine. Headache. 2014;54(4): 
619–639.

 21. Guo A, Vulchanova L, Wang J, Li X, Elde R.  Immunocytochemical 
localization of the vanilloid receptor 1 (VR1): relationship to 
 neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur J 
Neurosci. 1999;11(3):946–958.

 22. Simonetti M, Fabbro A, D’Arco M, et al. Comparison of P2X and 
TRPV1 receptors in ganglia or primary culture of trigeminal neurons 
and their modulation by NGF or serotonin. Mol Pain. 2006;2:11.

 23. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ.  
Acid-sensing ion channel 1: a novel therapeutic target for migraine with 
aura. Ann Neurol. 2012;72(4):559–563.

 24. Benemei S, De Cesaris F, Fusi C, Rossi E, Lupi C, Geppetti P. TRPA1 
and other TRP channels in migraine. J Headache Pain. 2013;14:71.

 25. Kelman L. The triggers or precipitants of the acute migraine attack. 
Cephalalgia. 2007;27(5):394–402.

 26. Nassini R, Materazzi S, Vriens J, et al. The “headache tree” via 
 umbellulone and TRPA1 activates the trigeminovascular system. Brain. 
2012;135(pt 2):376–390.

 27. Wantke F, Focke M, Hemmer W, et al. Exposure to formaldehyde and 
phenol during an anatomy dissecting course: sensitizing potency of 
formaldehyde in medical students. Allergy. 2000;55(1):84–87.

 28. Irlbacher K, Meyer B-U. Nasally triggered headache. Neurology. 2002; 
58(2):294.

 29. Huang D, Li S, Dhaka A, Story GM, Cao Y-Q. Expression of the 
transient receptor potential channels TRPV1, TRPA1 and TRPM8 in 
mouse trigeminal primary afferent neurons innervating the dura. Mol 
Pain. 2012;8:66.

 30. Kunkler PE, Ballard CJ, Pellman JJ, Zhang L, Oxford GS, Hurley JH.  
Intraganglionic signaling as a novel nasal-meningeal pathway 
for TRPA1-dependent trigeminovascular activation by inhaled 
 environmental irritants. PLoS One. 2014;9(7):e103086.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Receptor, Ligand and Channel Research 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

39

Neuropeptide modulation of trigeminal pain

 31. Wei X, Edelmayer RM, Yan J, Dussor G. Activation of TRPV4 on dural 
afferents produces headache-related behavior in a preclinical rat model. 
Cephalalgia. 2011;31(16):1595–1600.

 32. Chen Y, Kanju P, Fang Q, et al. TRPV4 is necessary for trigeminal 
irritant pain and functions as a cellular formalin receptor. Pain. Epub 
2014 Oct 2.

 33. Mälkiä A, Morenilla-Palao C, Viana F. The emerging pharmacology 
of TRPM8 channels: hidden therapeutic potential underneath a cold 
surface. Curr Pharm Biotechnol. 2011;12(1):54–67.

 34. Chasman DI, Schürks M, Anttila V, et al. Genome-wide association 
study reveals three susceptibility loci for common migraine in the 
general population. Nat Genet. 2011;43(7):695–698.

 35. Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and 
pain sensation in mice lacking the capsaicin receptor. Science. 2000; 
288(5464):306–313.

 36. Davis JB, Gray J, Gunthorpe MJ, et al. Vanilloid receptor-1 is essential for 
inflammatory thermal hyperalgesia. Nature. 2000;405(6783): 183–187.

 37. Gavva NR, Tamir R, Qu Y, et al. AMG 9810 [(E)-3-(4-t-butylphenyl)-
N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel  vanilloid 
receptor 1 (TRPV1) antagonist with antihyperalgesic properties.  
J Pharmacol Exp Ther. 2005;313(1):474–484.

 38. Russo EB. Clinical endocannabinoid deficiency (CECD): can this con-
cept explain therapeutic benefits of cannabis in migraine, fibromyalgia, 
irritable bowel syndrome and other treatment-resistant conditions? 
Neuro Endocrinol Lett. 2008;29(2):192–200.

 39. Sarchielli P, Pini LA, Coppola F, et al. Endocannabinoids 
in chronic migraine: CSF f indings suggest a system failure. 
Neuropsychopharmacology. 2007;32(6):1384–1390.

 40. Akerman S, Kaube H, Goadsby PJ. Anandamide acts as a vasodilator 
of dural blood vessels in vivo by activating TRPV1 receptors. Br J 
Pharmacol. 2004;142(8):1354–1360.

 41. Akerman S, Kaube H, Goadsby PJ. Anandamide is able to inhibit 
trigeminal neurons using an in vivo model of trigeminovascular-
mediated nociception. J Pharmacol Exp Ther. 2004;309(1):56–63.

 42. Piomelli D. More surprises lying ahead. The endocannabinoids keep 
us guessing. Neuropharmacology. 2014;76(pt B):228–234.

 43. Burnstock G. The role of adenosine triphosphate in migraine. Biomed 
Pharmacother. 1989;43(10):727–736.

 44. Vulchanova L, Riedl MS, Shuster SJ, et al. Immunohistochemical study 
of the P2X2 and P2X3 receptor subunits in rat and monkey sensory 
neurons and their central terminals. Neuropharmacology. 1997;36(9): 
1229–1242.

 45. Llewellyn-Smith IJ, Burnstock G. Ultrastructural localization of 
P2X3 receptors in rat sensory neurons. Neuroreport. 1998;9(11): 
2545–2550.

 46. Burnstock G. Purinergic receptors and pain. Curr Pharm Des. 2009; 
15(15):1717–1735.

 47. Fabbretti E, Nistri A. Regulation of P2X3 receptor structure and 
 function. CNS Neurol Disord Drug Targets. 2012;11(6):687–698.

 48. Saloman JL, Chung M-K, Ro JY. P2X3 and TRPV1 functionally interact 
and mediate sensitization of trigeminal sensory neurons. Neuroscience. 
2013;232:226–238.

 49. Yang Z, Cao Y, Wang Y, et al. Behavioural responses and expression 
of P2X3 receptor in trigeminal ganglion after experimental tooth 
 movement in rats. Arch Oral Biol. 2009;54(1):63–70.

 50. Oliveira MCG, Parada CA, Veiga MCFA, Rodrigues LR, Barros SP, 
Tambeli CH. Evidence for the involvement of endogenous ATP and 
P2X receptors in TMJ pain. Eur J Pain. 2005;9(1):87–93.

 51. Ford AP. In pursuit of P2X3 antagonists: novel therapeutics for chronic 
pain and afferent sensitization. Purinergic Signal. 2012;8(Suppl 1): 
3–26.

 52. Masterson CG, Durham PL. DHE repression of ATP-mediated 
 sensitization of trigeminal ganglion neurons. Headache. 2010;50(9): 
1424–1439.

 53. Gribkoff VK, Starrett JE, Dworetzky SI. Maxi-K potassium channels: 
form, function, and modulation of a class of endogenous regulators of 
intracellular calcium. Neurosci Rev. 2001;7(2):166–177.

 54. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Inhibition of 
trigeminovascular dural nociceptive afferents by Ca2+-activated K+ 
(MaxiK/BK(Ca)) channel opening. Pain. 2010;151(1):128–136.

 55. Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore 
domain potassium channels. Physiol Rev. 2010;90(2):559–605.

 56. Lafrenière RG, Cader MZ, Poulin JF, et al. A dominant-negative 
mutation in the TRESK potassium channel is linked to familial migraine 
with aura. Nat Med. 2010;16(10):1157–1160.

 57. Andres-Enguix I, Shang L, Stansfeld PJ, et al. Functional analysis 
of missense variants in the TRESK (KCNK18) K channel. Sci Rep. 
2012;2:237.

 58. Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic 
migraine and episodic ataxia type-2 are caused by mutations in the  
Ca2+ channel gene CACNL1A4. Cell. 1996;87(3):543–552.

 59. van denMaagdenberg AM, Pietrobon D, Pizzorusso T, et al. A Cacna1a 
knockin migraine mouse model with increased susceptibility to cortical 
spreading depression. Neuron. 2004;41(5):701–710.

 60. Tottene A, Conti R, Fabbro A, et al. Enhanced excitatory transmission 
at cortical synapses as the basis for facilitated spreading depression in 
Ca(v)2.1 knockin migraine mice. Neuron. 2009;61(5):762–773.

 61. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev 
Physiol. 2013;75:365–391.

 62. Franceschini A, Vilotti S, Ferrari MD, van den Maagdenberg AMJM, 
Nistri A, Fabbretti E. TNFα levels and macrophages expression reflect 
an inflammatory potential of trigeminal ganglia in a mouse model of 
familial hemiplegic migraine. PLoS One. 2013;8(1):e52394.

 63. Ceruti S, Villa G, Fumagalli M, et al. Calcitonin gene-related peptide-
mediated enhancement of purinergic neuron/glia communication by the 
algogenic factor bradykinin in mouse trigeminal ganglia from wild-type 
and R192Q Cav2.1 Knock-in mice: implications for basic mechanisms 
of migraine pain. J Neurosci. 2011;31(10):3638–3649.

 64. Franceschini A, Nair A, Bele T, van den Maagdenberg AM, Nistri A, 
Fabbretti E. Functional crosstalk in culture between macrophages and 
trigeminal sensory neurons of a mouse genetic model of migraine. BMC 
Neurosci. 2012;13:143.

 65. Franceschini A, Hullugundi SK, van den Maagdenberg AMJM, Nistri A,  
Fabbretti E. Effects of LPS on P2X3 receptors of trigeminal sensory 
neurons and macrophages from mice expressing the R192Q Cacna1a 
gene mutation of familial hemiplegic migraine-1. Purinergic Signal. 
2013;9(1):7–13.

 66. Bø SH, Davidsen EM, Gulbrandsen P, et al. Cerebrospinal fluid cytokine 
levels in migraine, tension-type headache and cervicogenic headache. 
Cephalalgia. 2009;29(3):365–372.

 67. Ishizaki K, Takeshima T, Fukuhara Y, et al. Increased plasma trans-
forming growth factor-beta1 in migraine. Headache. 2005;45(9): 
1224–1228.

 68. Tanure MTA, Gomez RS, Hurtado RCL, Teixeira AL, Domingues RB. 
Increased serum levels of brain-derived neurotropic factor during migraine 
attacks: a pilot study. J Headache Pain. 2010;11(5):427–430.

 69. Steen KH, Reeh PW, Anton F, Handwerker HO. Protons selectively 
induce lasting excitation and sensitization to mechanical stimulation 
of nociceptors in rat skin, in vitro. J Neurosci. 1992;12(1):86–95.

 70. Obreja O, Schmelz M, Poole S, Kress M. Interleukin-6 in combination 
with its soluble IL-6 receptor sensitises rat skin nociceptors to heat,  
in vivo. Pain. 2002;96(1–2):57–62.

 71. Sachs D, Cunha FQ, Poole S, Ferreira SH. Tumour necrosis factor-
alpha, interleukin-1beta and interleukin-8 induce persistent mechanical 
nociceptor hypersensitivity. Pain. 2002;96(1–2):89–97.

 72. Olesen J, Thomsen LL, Iversen H. Nitric oxide is a key molecule 
in migraine and other vascular headaches. Trends Pharmacol Sci. 
1994;15(5):149–153.

 73. Belmonte C, Gallar J, Pozo MA, Rebollo I. Excitation by irritant chemi-
cal substances of sensory afferent units in the cat’s cornea. J Physiol. 
1991;437:709–725.

 74. Pozo MA, Gallego R, Gallar J, Belmonte C. Blockade by calcium 
antagonists of chemical excitation and sensitization of polymodal 
nociceptors in the cat’s cornea. J Physiol. 1992;450:179–189.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Receptor, Ligand and Channel Research 2015:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

40

vilotti et al

 75. Olesen J, Diener HC, Husstedt IW, et al; BIBN 4096 BS Clinical Proof 
of Concept Study Group. Calcitonin gene-related peptide receptor 
antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl 
J Med. 2004;350(11):1104–1110.

 76. Terenghi G, Polak JM, Ghatei MA, et al. Distribution and origin 
of calcitonin gene-related peptide (CGRP) immunoreactivity in 
the sensory innervation of the mammalian eye. J Comp Neurol. 
1985;233(4):506–516.

 77. Alevizaki M, Shiraishi A, Rassool FV, Ferrier GJ, MacIntyre I, Legon S.  
The calcitonin-like sequence of the beta CGRP gene. FEBS Lett. 
1986;206(1):47–52.

 78. Noguchi K, Senba E, Morita Y, Sato M, Tohyama M. α-CGRP and 
β-CGRP mRNAs are differentially regulated in the rat spinal cord and 
dorsal root ganglion. Brain Res. 1990;7(4):299–304.

 79. Watkins HA, Rathbone DL, Barwell J, Hay DL, Poyner DR. 
Structure-activity relationships for α-calcitonin gene-related peptide. 
Br J  Pharmacol. 2013;170(7):1308–1322.

 80. Juaneda C, Dumont Y, Quirion R. The molecular pharmacology of 
CGRP and related peptide receptor subtypes. Trends Pharmacol Sci. 
2000;21(11):432–438.

 81. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in 
the extracerebral circulation of humans during migraine headache.  
Ann Neurol. 1990;28(2):183–187.

 82. Ebersberger A, Averbeck B, Messlinger K, Reeh PW. Release of 
 substance P, calcitonin gene-related peptide and prostaglandin E2 from 
rat dura mater encephali following electrical and chemical stimulation 
in vitro. Neuroscience. 1999;89(3):901–907.

 83. Bowen EJ, Schmidt TW, Firm CS, Russo AF, Durham PL. Tumor 
necrosis factor-α stimulation of calcitonin gene-related peptide expres-
sion and secretion from rat trigeminal ganglion neurons. J Neurochem. 
2006;96(1):65–77.

 84. Mason RT, Peterfreund RA, Sawchenko PE, Corrigan AZ, Rivier JE, 
Vale WW. Release of the predicted calcitonin gene-related peptide from cul-
tured rat trigeminal ganglion cells. Nature. 1984;308(5960):653–655.

 85. Messlinger K, Fischer MJM, Lennerz JK. Neuropeptide effects in the 
trigeminal system: pathophysiology and clinical relevance in migraine. 
Keio J Med. 2011;60(3):82–89.

 86. Giniatullin R, Nistri A, Fabbretti E. Molecular mechanisms of 
 sensitization of pain-transducing P2X3 receptors by the migraine 
mediators CGRP and NGF. Mol Neurobiol. 2008;37(1):83–90.

 87. Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: 
intersection of peripheral inflammation and central modulation. Expert 
Rev Mol Med. 2011;13:e36.

 88. Vause CV, Durham PL. CGRP stimulation of iNOS and NO release 
from trigeminal ganglion glial cells involves mitogen-activated protein 
kinase pathways. J Neurochem. 2009;110(3):811–821.

 89. Thalakoti S, Patil VV, Damodaram S, et al. Neuron-glia signaling in 
trigeminal ganglion: implications for migraine pathology. Headache. 
2007;47(7):1008–1023; [discussion 24–25].

 90. Lennerz JK, Rühle V, Ceppa EP, et al. Calcitonin receptor-like receptor 
(CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin 
gene-related peptide (CGRP) immunoreactivity in the rat trigeminovas-
cular system: differences between peripheral and central CGRP receptor 
distribution. J Comp Neurol. 2008;507(3):1277–1299.

 91. Tso AR, Goadsby PJ. New targets for migraine therapy. Curr Treat 
Options Neurol. 2014;16(11):318.

 92. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, 
Olesen J. CGRP may play a causative role in migraine. Cephalalgia. 
2002;22(1):54–61.

 93. Capuano A, De Corato A, Lisi L, Tringali G, Navarra P, Dello Russo 
C. Proinflammatory-activated trigeminal satellite cells promote 
neuronal sensitization: relevance for migraine pathology. Mol Pain. 
2009;5:43.

 94. Fabbretti E, D’Arco M, Fabbro A, Simonetti M, Nistri A, Giniatullin R. 
Delayed upregulation of ATP P2X3 receptors of trigeminal sensory 
neurons by calcitonin gene-related peptide. J Neurosci. 2006;26(23): 
6163–6171.

 95. Greco R, Gasperi V, Maccarrone M, Tassorelli C. The endocannabinoid 
system and migraine. Exp Neurol. 2010;224(1):85–91.

 96. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Endocannabinoids 
in the brainstem modulate dural trigeminovascular nociceptive traffic 
via CB1 and “triptan” receptors: implications in migraine. J Neurosci. 
2013;33(37):14869–14877.

 97. Cady RJ, Glenn JR, Smith KM, Durham PL. Calcitonin gene-
related peptide promotes cellular changes in trigeminal neurons and 
glia implicated in peripheral and central sensitization. Mol Pain. 
2011;7:94.

 98. Simonetti M, Giniatullin R, Fabbretti E. Mechanisms mediating the 
enhanced gene transcription of P2X3 receptor by calcitonin gene-
related peptide in trigeminal sensory neurons. J Biol Chem. 2008; 
283(27):18743–18752.

 99. Fischer M, Wille G, Klien S, et al. Brain-derived neurotrophic 
factor in primary headaches. J Headache Pain. 2012;13(6): 
469–475.

 100. Buldyrev I, Tanner NM, Hsieh H, Dodd EG, Nguyen LT, Balkowiec A.  
Calcitonin gene-related peptide enhances release of native brain-
derived neurotrophic factor from trigeminal ganglion neurons.  
J Neurochem. 2006;99(5):1338–1350.

 101. Nair A, Simonetti M, Birsa N, et al. Familial hemiplegic migraine 
Ca(v)2.1 channel mutation R192Q enhances ATP-gated P2X3 recep-
tor activity of mouse sensory ganglion neurons mediating trigeminal 
pain. Mol Pain. 2010;6:48.

 102. Fioretti B, Catacuzzeno L, Sforna L, et al. Trigeminal ganglion 
neuron subtype-specific alterations of Ca(V)2.1 calcium current 
and  excitability in a Cacna1a mouse model of migraine. J Physiol. 
2011;589(pt 23):5879–5895.

 103. Moore EL, Salvatore CA. Targeting a family B GPCR/RAMP receptor 
complex: CGRP receptor antagonists and migraine. Br J Pharmacol. 
2012;166(1):66–78.

 104. Doods H, Hallermayer G, Wu D, et al. Pharmacological profile of 
BIBN4096BS, the first selective small molecule CGRP antagonist. 
Br J Pharmacol. 2000;129(3):420–423.

 105. Li J, Wang DH. Development of angiotensin II-induced hypertension: 
role of CGRP and its receptor. J Hypertens. 2005;23(1):113–118.

 106. Salvatore CA, Moore EL, Calamari A, et al. Pharmacological proper-
ties of MK-3207, a potent and orally active calcitonin gene-related 
peptide receptor antagonist. J Pharmacol Exp Ther. 2010;333(1): 
152–160.

 107. Diener H-C, Barbanti P, Dahlöf C, Reuter U, Habeck J, Podhorna J.  
BI 44370 TA, an oral CGRP antagonist for the treatment of acute 
migraine attacks: results from a phase II study. Cephalalgia. 2011; 
31(5):573–584.

 108. Luo G, Chen L, Conway CM, et al. Discovery of (5S,6S,9R)-5-
amino-6-(2,3-difluorophenyl)-6,7,8,9-tetrahydro-5H-cyclohepta[b]
pyridin-9-yl 4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)
piperidine-1-carboxylate (BMS-927711): an oral calcitonin gene-
related peptide (CGRP) antagonist in clinical trials for treating 
migraine. J Med Chem. 2012;55(23):10644–10651.

 109. Marcus R, Goadsby PJ, Dodick D, Stock D, Manos G, Fischer TZ. 
BMS-927711 for the acute treatment of migraine: a double-blind, 
randomized, placebo controlled, dose-ranging trial. Cephalalgia. 
2014;34(2):114–125.

 110. Benschop RJ, Collins EC, Darling RJ, et al. Development of a novel 
antibody to calcitonin gene-related peptide for the treatment of osteo-
arthritis-related pain. Osteoarthritis Cartilage. 2014;22(4):578–585.

 111. Dodick DW, Goadsby PJ, Spierings ELH, Scherer JC, Sweeney SP, 
Grayzel DS. Safety and efficacy of LY2951742, a monoclonal antibody 
to calcitonin gene-related peptide, for the prevention of migraine:  
a phase 2, randomised, double-blind, placebo-controlled study. Lancet 
Neurol. 2014;13(9):885–892.

 112. Amgen. A phase 2 study to evaluate the efficacy and safety of AMG 
334 in migraine prevention; 2013. Available from: http://clinicaltrials.
gov/show/NCT01952574 NLM identifier: NCT01952574. Accessed 
August 30, 2013.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://clinicaltrials.gov/show/NCT01952574
http://clinicaltrials.gov/show/NCT01952574


Journal of Receptor, Ligand and Channel Research

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/journal-of-receptor-ligand-and-channel-research-journal

The Journal of Receptor, Ligand and Channel Research is an international, 
peer reviewed, open access, online journal. The journal welcomes labora-
tory and clinical findings in the fields of biological receptors, ligands, chan-
nel and signal transduction research including: receptors and signaling; 
ligands; transporters, pores and channels; binding and activation; receptor 

regulation; role of receptors in diseases and their treatment; molecular basis 
of membrane structure and functions; molecular models of membranes. 
The manuscript management system is completely online and includes a 
very quick and fair peer-review system. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

Journal of Receptor, Ligand and Channel Research 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

41

Neuropeptide modulation of trigeminal pain

 113. Bigal ME, Escandon R, Bronson M, et al. Safety and tolerability of 
LBR-101, a humanized monoclonal antibody that blocks the binding 
of CGRP to its receptor: results of the phase 1 program. Cephalalgia. 
2013;34(7):483–492.

 114. Petersen KA, Birk S, Lassen LH, et al. The CGRP-antagonist, 
BIBN4096BS does not affect cerebral or systemic haemodynamics 
in healthy volunteers. Cephalalgia. 2005;25(2):139–147.

 115. Petersen KA, Lassen LH, Birk S, Lesko L, Olesen J. BIBN4096BS 
antagonizes human alpha-calcitonin gene related peptide-induced 
headache and extracerebral artery dilatation. Clin Pharmacol Ther. 
2005;77(3):202–213.

 116. Arulmani U, Schuijt MP, Heiligers JPC, Willems EW, Villalón CM, 
Saxena PR. Effects of the calcitonin gene-related peptide (CGRP) 
receptor antagonist BIBN4096BS on alpha-CGRP-induced regional 
haemodynamic changes in anaesthetised rats. Basic Clin Pharmacol 
Toxicol. 2004;94(6):291–297.

 117. Negro A, Lionetto L, Simmaco M, Martelletti P. CGRP receptor 
antagonists: an expanding drug class for acute migraine? Expert Opin 
Investig Drugs. 2012;21(6):807–818.

 118. Hewitt DJ, Aurora SK, Dodick DW, et al. Randomized controlled trial 
of the CGRP receptor antagonist MK-3207 in the acute treatment of 
migraine. Cephalalgia. 2011;31(6):712–722.

 119. Hostetler ED, Joshi AD, Sanabria-Bohórquez S, et al. In vivo 
 quantification of calcitonin gene-related peptide receptor occupancy 
by telcagepant in rhesus monkey and human brain using the positron 
emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther. 
2013;347(2):478–486.

 120. Sixt M-L, Messlinger K, Fischer MJM. Calcitonin gene-related peptide 
receptor antagonist olcegepant acts in the spinal trigeminal nucleus. 
Brain. 2009;132(pt 11):3134–3141.

 121. Asghar MS, Hansen AE, Kapijimpanga T, et al. Dilation by CGRP 
of middle meningeal artery and reversal by sumatriptan in normal 
volunteers. Neurology. 2010;75(17):1520–1526.

 122. Asghar MS, Hansen AE, Larsson HBW, Olesen J, Ashina M. Effect 
of CGRP and sumatriptan on the BOLD response in visual cortex.  
J Headache Pain. 2012;13(2):159–166.

 123. Dodick DW, Goadsby PJ, Silberstein SD, et al; ALD403 study 
investigators. Safety and efficacy of ALD403, an antibody to calcitonin 
gene-related peptide, for the prevention of frequent episodic migraine: 
a randomised, double-blind, placebo-controlled, exploratory phase 2 
trial. Lancet Neurol. 2014;13(11):1100–1107.

 124. Leavy O. Therapeutic antibodies: past, present and future. Nat Rev 
Immunol. 2010;10(5):297.

 125. Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-
antigen recognition. Front Immunol. 2013;4:302.

 126. Niebecker R, Kloft C. Safety of therapeutic monoclonal antibodies. 
Curr Drug Saf. 2010;5(4):275–286.

 127. Ho TW, Connor KM, Zhang Y, et al. Randomized controlled trial of 
the CGRP receptor antagonist telcagepant for migraine prevention. 
Neurology. 2014;83(11):958–966.

 128. Loo L, Shepherd AJ, Mickle AD, et al. The C-type natriuretic 
peptide induces thermal hyperalgesia through a noncanonical Gβγ-
dependent modulation of TRPV1 channel. J Neurosci. 2012;32(35): 
11942–11955.

 129. Zhang FX, Liu XJ, Gong LQ, et al. Inhibition of inflammatory pain 
by activating B-type natriuretic peptide signal pathway in nocicep-
tive sensory neurons. J Neurosci Off J Soc Neurosci. 2010;30(32): 
10927–10938.

 130. Heine S, Michalakis S, Kallenborn-Gerhardt W, et al. CNGA3: a target 
of spinal nitric oxide/cGMP signaling and modulator of inflammatory 
pain hypersensitivity. J Neurosci. 2011;31(31):11184–11192.

 131. Schmidtko A, Gao W, König P, et al. cGMP produced by NO-sensitive 
guanylyl cyclase essentially contributes to inflammatory and neuro-
pathic pain by using targets different from cGMP-dependent protein 
kinase I. J Neurosci. 2008;28(34):8568–8576.

 132. Woodard GE, Rosado JA. Natriuretic peptides in vascular physiology 
and pathology. Int Rev Cell Mol Biol. 2008;268:59–93.

 133. Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM. Natriuretic 
peptides: their structures, receptors, physiologic functions and 
 therapeutic applications. Handb Exp Pharmacol. 2009;191:341–366.

 134. Potter LR. Domain analysis of human transmembrane  guanylyl 
cyclase receptors: implications for regulation. Front Biosci. 2005;10: 
1205–1220.

 135. Choudhuri R, Cui L, Yong C, et al. Cortical spreading depression and gene 
regulation: relevance to migraine. Ann Neurol. 2002;51(4): 499–506.

 136. Uzar E, Evliyaoglu O, Yucel Y, et al. Serum cytokine and pro-brain 
natriuretic peptide (BNP) levels in patients with migraine. Eur Rev 
Med Pharmacol Sci. 2011;15(10):1111–1116.

 137. Padayatti PS, Pattanaik P, Ma X, van den Akker F. Structural insights 
into the regulation and the activation mechanism of mammalian 
 guanylyl cyclases. Pharmacol Ther. 2004;104(2):83–99.

 138. Andrade FA, Restini CBA, Grando MD, Ramalho LNZ, Bendhack LM.  
Vascular relaxation induced by C-type natriuretic peptide involves the 
ca2+/NO-synthase/NO pathway. PLoS One. 2014;9(5):e95446.

 139. D’Souza SP, Davis M, Baxter GF. Autocrine and paracrine actions of natri-
uretic peptides in the heart. Pharmacol Ther. 2004;101(2): 113–129.

 140. Guo S, Barringer F, Zois NE, Goetze JP, Ashina M. Natriuretic peptides 
and cerebral hemodynamics. Regul Pept. 2014;192–193:15–23.

 141. Abdelalim EM, Tooyama I. NPR-A regulates self-renewal and 
 pluripotency of embryonic stem cells. Cell Death Dis. 2011;2:e127.

 142. Vilotti S, Marchenkova A, Ntamati N, Nistri A. B-type natriuretic 
peptide-induced delayed modulation of TRPV1 and P2X3 receptors of 
mouse trigeminal sensory neurons. PLoS One. 2013;8(11):e81138.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/journal-of-receptor-ligand-and-channel-research-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


