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Abstract: Prion diseases are infectious, predominantly fatal neurodegenerative diseases 

characterized by abnormal prion protein (PrP) accumulation and neuronal loss. Studies on experi-

mental animal models and clinical features of human prion diseases have shown unfolded PrP 

accumulation results in endoplasmic reticulum (ER) stress. While ER stress-mediated apoptosis 

is responsible for neuronal loss in prion diseases, ER stress also activates the unfolded protein 

response (UPR) in an effort to restore ER homeostasis. Of the UPR signaling pathways, the 

PERK-eIF2α pathway is implicated in the pathogenesis of prion diseases. The proteasome 

protein degradation system is also activated during the UPR. Increasing evidence indicates that 

proteasome and autophagy activities are affected in prion diseases. These findings suggest that 

ER stress/UPR contributes to the onset of prion diseases. Hence, strategies that target the ER 

are useful approaches in treating prion diseases. Additionally, immunotherapeutic approaches 

for prion diseases have been developed in recent decades. Single-chain fragment variable 

antibodies targeting the accumulation of PrP are also beneficial in the prevention of abnormal 

PrP propagation. This review discusses pathogenic mechanisms related to the ER and potential 

strategies for treating prion diseases.
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Introduction: pathogenesis and clinical 
manifestations of transmissible spongiform 
encephalopathies
Transmissible spongiform encephalopathies, also well-recognized as prion diseases, 

include Creutzfeldt-Jakob disease (CJD), Gerstmann–Sträussler–Scheinker syndrome 

(GSS), fatal familial insomnia (FFI), and Kuru in humans, scrapie in sheep and goats, 

transmissible mink encephalopathy in minks, chronic wasting disease in deer and 

elk, and bovine spongiform encephalopathy in cattle.1 These diseases are both fatal 

and infectious, and are characterized by similar features of pathogenesis. Common 

features of prion disease pathology are the deposition of abnormal forms of cellular 

prion proteins (PrP), spongiform vacuolation, severe neuronal loss, and astrocytosis 

and microgliosis. PrP itself is widely considered the infectious source.

Normally, newly synthesized PrP undergoes several post-translational modifications 

within the endoplasmic reticulum (ER) and Golgi apparatus to give rise to mature PrP, 

which is localized at the cell surface through a glycosylphosphatidylinositol (GPI) 

anchor.2 PrP also contains a conserved hydrophobic sequence that can be oriented 

in either direction at the lipid bilayer, resulting in another two different transmem-

brane forms designated CtmPrP and NtmPrP. In this case, a centrally positioned, highly 
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conserved hydrophobic region in CtmPrP and NtmPrP acts as 

a transmembrane anchor, and directs the C-terminal and 

N-terminal regions, respectively, into the lumen of the ER.3 

PrP has at least two structural forms, the normal cellular 

form (PrPC) and the misfolded form (PrPSc). The two iso-

forms have identical amino acid sequences, but differ in their 

monomeric conformation and state of aggregation. PrPC is 

a soluble, α-helix-rich protein, while PrPSc is an insoluble 

protein, high in β-sheet structure, and partially resistant to 

proteolytic digestion.1,4–7 PrPSc functions as a template pro-

moting the conversion of PrPC to abnormal PrPSc structural 

forms.8–10 Many studies have shown PrPSc production in 

vitro in the absence of genetic material. In such situations, 

PrPSc is able to self-replicate by facilitating the conversion 

of PrPC to PrPSc.11–14 PrPSc replication starts from the forma-

tion of an ordered nucleus as the seeds and then proceeds to 

polymerization to form aggregates.15 To date, this concept is 

widely accepted. Interestingly, PrPC knockout mice infected 

with an infectious PrP species did not display neurodegenera-

tion, suggesting the loss of PrP was not involved in disease 

pathogenesis.16,17 Some studies indicated that PrPC functions 

as a high-affinity copper-binding protein.18–20 Moreover, PrPC 

regulates N-methyl-D-aspartate receptors, and might be 

involved in pathogenesis of Alzheimer’s disease (AD).21,22 

However, the true function of PrPs is debatable.

Point mutations or insertions in the PrP gene (known as 

the PRNP gene) are responsible for genetic prion diseases 

including familial CJD, GSS, and FFI.23 Such mutations in 

the PRNP gene are likely to cause misfolding and aggregation 

of PrP. Sporadic prion diseases, which include the majority 

of CJD and sporadic fatal insomnia cases, are believed to 

arise from spontaneous misfolding of normal PrPC or from 

rare somatic mutations in the PRNP gene.24

The clinical manifestations of human prion disease vary 

according to disease subtype. For example, GSS is characterized 

by chronic cerebellar ataxia with dementia, and the presence of 

multicentric amyloid plaques, while CJD is associated with sub-

acute dementia and motor abnormalities, and with widespread 

spongiform degeneration in the cerebral cortex, striatum, and 

cerebellum. FFI shows a subacute condition with untreatable 

insomnia, dysautonomia, and severe selective atrophy of the 

anterior ventral and mediodorsal nuclei of the thalamus.25

Role of the ER and quality control 
systems in prion disease
Unfolded protein response
The ER is a specialized organelle in which newly-synthesized 

secreted or membrane proteins are folded and modified. 

ER stress is defined as the accumulation of unfolded and/or 

misfolded proteins in the ER in response to nutrient depri-

vation, perturbation of intracellular calcium homeostasis, 

oxidative stress, or the expression of mutated proteins, for 

example. ER stress activates a regulatory system termed 

the unfolded protein response (UPR) to manage defective 

proteins in the ER.26 The UPR includes three signaling 

pathways: 1) translational attenuation to inhibit the further 

generation of unfolded proteins; 2) facilitating refolding of 

unfolded proteins by the induction of ER molecular chaper-

ones; and 3) activating ER-associated degradation to degrade 

unfolded proteins accumulated in the ER via the ubiquitin 

proteasome system (UPS). If the aforementioned strategies 

fail, the cells enter into ER stress-induced apoptosis. The 

three major transducers of the UPR are PKR-like ER kinase 

(PERK), inositol-requiring enzyme 1 (IRE1), and activating 

transcription factor 6 (ATF6). PERK is an ER transmembrane 

protein kinase which phosphorylates eukaryotic initiation 

factor-2α (eIF2α) to induce translational attenuation.27 

The prolonged suppression of protein synthesis by inactive 

phosphorylated eIF2α (P-eIF2α) is not conducive to cell 

survival, hence the translational process is restored through 

GADD34-mediated dephosphorylation of P-eIF2α.28 IRE1 is 

an ER transmembrane protein containing endoribonuclease 

and cytoplasmic protein kinase domains. Activated IRE1 

catalyzes the unconventional splicing of X-box binding pro-

tein 1 (XBP-1) messenger RNA, which encodes a basic leu-

cine zipper transcription factor. The spliced form of XBP-1 

protein upregulates the synthesis of ER-resident molecular 

chaperones, including GRP78/BiP.29,30 ATF6, a member of 

the CREB/ATF family, is a type II ER transmembrane pro-

tein which mediates transcriptional induction in response 

to ER stress. The membrane-anchored ATF6 is cleaved at 

the transmembrane region in response to ER stress, and the 

processed N-terminus of ATF6 is translocated to the nucleus 

where it promotes the transcription of molecular chaperones, 

such as GRP78/BiP and GRP94.31–33

Recently, ER stress has been implicated in the pathogen-

esis of prion diseases. Elevated levels of ER stress markers, 

including GRP78/BiP, GRP94, and GRP58, were observed 

in the cerebral cortex of prion disease patients, and in prion 

disease mouse models.34–36 Purified PrPSc extracted from the 

brain of scrapie-infected mice invoked ER stress and induced 

the release of intracellular Ca2+ from ER stores.37 It is believed 

that alteration of ER Ca2+ homeostasis and subsequent ER 

stress are involved in the progression of prion disease.36,38 

PrPSc-mediated release of Ca2+ from the ER to the cytosol 

induces loss in mitochondrial membrane potential, increases 
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reactive oxygen species levels, and results in apoptosis.38–40 

PrPSc is also responsible for protein accumulation in the 

ER, resulting in ER stress-induced apoptosis.41 During PrP 

infection, ER stress occurs and translocation of nascent PrP 

reduces, then this leads to neurodegeneration.42 In contrast, 

Nunziante et al showed that ER stress or proteasomal dys-

function enhances trafficking of PrP aggregates through the 

secretory pathway and raises accumulation of PrPSc signifi-

cantly in persistently prion-infected cells.43 Thus, trafficking 

of PrP during ER stress in PrP infection is open to dispute.

Proteasome system
Ma et al proposed that UPS might play an important role in 

the pathogenesis of prion disease.44 Proteasomes are large 

multicatalytic, cytoplasmic and nuclear protease complexes 

essential for cell survival. Additionally, the UPS is pre-

dominantly responsible for non-lysosomal protein degra-

dation.45–48 Inhibition of the UPS by proteasome inhibitors 

leads to accumulation of PrPSc-like species in cells. PrPSc 

generated from misfolded PrPC was retro-transported to the 

cytosol and degraded by proteasomes.44 The use of protea-

some inhibitors induced conversion of accumulated PrPC to 

PrPSc-like species, which persisted after removal of inhibitor, 

and led to apoptosis and infection of neighboring cells.44 

Some studies have suggested that functional impairment of 

the UPS is related to Prion disease.49,50 A null mutation in the 

gene encoding Mahogunin, a putative E3 ubiquitin ligase, 

is responsible for spongiform-like neurodegeneration, 

which mimics prion disease histologically.51,52 Moreover, 

E3 ubiquitin ligase Hectd2 was linked with prion disease 

incubation time in mice, and associated with sporadic vari-

ant CJD and Kuru.53

Additionally, three PrP mutations (V203I, E211Q, and 

Q212P) associated with familial prion disease caused PrP 

accumulation in the cytosol in response to proteasome 

inhibition, resulting in aggresome formation.54 Following 

mild proteasome inhibition, PrP-infected neuronal cells suc-

cumbed to apoptosis, forming large PrPSc aggresomes, which 

complexed with HSC70, ubiquitin, proteasome subunits, and 

vimentin.55 Thus, many studies have suggested that UPS is 

impaired in neurodegenerative diseases, however, the precise 

mechanism is still to be elucidated.

Autophagy
Recent evidence has emerged that autophagy plays a key 

role in prion disease. Autophagy is a fundamental bulk 

degradation system for cellular organelles and cytosolic 

proteins. Autophagy is also involved in UPR and is triggered 

by ER stress.56–58 The importance of autophagy has been 

recognized in a number of neurodegenerative diseases includ-

ing prion disease, AD, Parkinson’s disease (PD), and Hunting-

ton’s disease (HD).59,60 Increased number of autophagosomes, 

or autophagic vacuoles (AVs), is a common feature of many 

neurodegenerative diseases. Large AVs were observed in 

neurons of CJD model mice and scrapie-infected hamsters, 

with similar ultrastructural features of autophagy observed 

for both experimental models. Moreover, multivesicular 

bodies and AVs were detected in prion-infected neurons and 

in various forms of human prion disease.61–63 Although colo-

calization of PrPSc with autophagosomes was not observed in 

the brain of scrapie-infected hamster, PrPSc was colocalized 

with autophagosomes in prion-infected cells, which had been 

treated with bafilomycin A, an inhibitor of autolysosome for-

mation.64 Mutant PrP colocalized with autophagosomes in a 

Neuro-2a cell line expressing CJD-associated PrP mutants.65 

Chronic administration of rapamycin, an autophagy-inducing 

agent, to transgenic Tg(PrP-A116V) mice, which model 

genetic prion disease, prevented the deposition of PrPSc and 

significantly delayed disease onset.66 Imatinib treatment of 

prion-infected mice delayed PrPSc invasion of neural cells 

and the onset of clinical disease, by activating lysosomal 

degradation of PrPSc at the initial stage of peripheral infec-

tion.67 Additionally, both lithium and trehalose improved 

PrPSc clearance by induction of autophagy in prion-infected 

cells,68,69 while PrPSc levels increased in cells treated with 

autophagy inhibitors.60,68–70

There is increasing evidence that proteasome inhibition 

induces autophagy, and this provides a complementary 

pathway for proteasome impairment. However, once the 

activated autophagic system reaches saturation, autophagy 

appears to be impaired. Autophagy has been shown to go 

awry in neurodegenerative diseases including AD, PD, 

HD, and amyotrophic lateral sclerosis.71 Therefore, more 

detailed analyses are required to clarify whether a balance 

exists between the proteasome system and autophagy 

in vivo.

Elucidating ER-related cellular and 
biochemical mechanisms that lead 
to neuronal dysfunction
Many studies have demonstrated synaptic dysfunction and 

degeneration, in addition to neuronal loss in prion disease 

mouse models.72–80 PrPC misfolding and its subsequent 

accumulation in the ER is believed to be responsible for 

synaptic failure. Moreno et al discovered a link between 

PrP accumulation in the hippocampus of mice infected 
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with Rocky Mountain Laboratory (RML) prions, and the 

enhanced translational attenuation pathway of the UPR.80 

Sustained translational attenuation by phosphorylation of 

PERK and its target eIF2α, resulted in synaptic failure 

and neuronal loss, whereas enhancement of translational 

recovery in the hippocampi of RML-infected mice was 

neuroprotective. Overexpression of the eIF2α-specific 

phosphatase GADD34 rescued synaptic deficits and neuronal 

loss. Additionally, RNA interference mediated by lentivirally 

expressed short hairpin RNA for PrP reduced PrP levels and 

prevented synaptic degeneration. Conversely, salubrinal, an 

inhibitor of P-eIF2α dephosphorylation, increased P-eIF2α 

levels and aggravated neurodegeneration in prion-infected 

mice. Inhibition of PERK phosphorylation by GSK2606414, 

a selective inhibitor of PERK, also provided a neuroprotec-

tive effect in prion-infected mice.81 Collectively, these results 

suggest the PERK-eIF2α pathway regulates pathogenesis of 

prion diseases.

PrP accumulation caused the ER stress-associated release 

of calcium from the ER, which leads to hyperactivation 

of calcium dependent phosphatase calcineurin (CaN).82 

Activated CaN mediated neurodegeneration in prion-infected 

mice. Interestingly, the administration of CaN inhibitor 

FK506 to prion-infected mice reduced the severity of clinical 

abnormalities and increased life-spans. Thus, PrPSc-mediated 

perturbations to ER calcium homeostasis have implications 

on the pathogenesis of prion diseases.
CtmPrP possesses an uncleaved signal peptide and GPI 

anchor, and its retention in the ER or Golgi apparatus is 

dependent on cell type.83 Recently, Wang et al demonstrated 

recombinant mutant PrP associated with familial CJD 

induced CtmPrP retention in the ER, upregulated the levels of 

GRP78, GRP58, and PERK, and led to ER stress-induced 

apoptosis in SH-SY5Y cells.41

These findings indicate that ER stress and the UPR are 

involved in neuronal dysfunction in prion diseases. Within 

murine models of prion disease, however, there are mice in 

which ER stress or the UPR are not triggered. One such exam-

ple can be found in Tg(PG14) mice that express a mutant 

PrP with a nine-octapeptide repeat insertion associated with 

a genetic prion disease. Neither an increase in UPR-regulated 

gene expression, nor activation of the PERK-eIF2α pathway, 

was observed for Tg(PG14) mice.84 Additionally, CaN activ-

ity was reduced, rather than promoted, in this mouse model.85 

These results suggest that pathogenesis of prion diseases 

is not explained by ER stress alone. Different pathogenic 

mechanisms might account for the observed heterogeneity 

in prion diseases. More extensive analyses are required to 

fully understand neuronal dysfunction and pathogenesis of 

prion diseases.

Discovery of ER-retained 
antibodies that disrupt PrPC 
accumulation in the ER, and novel 
immunotherapeutic strategies
The development of antibodies directed against PrP is one 

approach in the treatment of prion diseases. In the last 

decade, single-chain fragment variable (scFv) antibodies have 

been developed for use in passive immunotherapy.86 scFvs 

are produced by fusing the variable region in heavy (V
H
) 

and light (V
L
) chain fragments of an immunoglobulin G 

connected with an appropriate linker.87 scFvs have several 

advantages over chimeric or humanized antibodies, for 

example, little immunogenicity, no complement fixation, and 

better tissue penetration due to their small size. Moreover, 

scFvs tend to have shorter half-lives. Additionally, because 

scFvs do not require glycosylation, they can be produced 

in a bacterial expression system.88 Antibodies against PrPC 

indirectly facilitate the clearance of PrPSc, inhibit the con-

version of PrPC to PrPSc, and promote degradation of PrPC.89 

To date, at least 20 studies have used scFvs to target PrPs.88 

Many of these scFvs inhibited PrP aggregation and impaired 

PrPSc-associated cellular toxicity. Cardinale et al produced 

ER-retained anti-prion scFv antibodies, which confined PrPC 

to the ER, prevented PrPC translocation to the cell surface, 

and inhibited PrPSc accumulation in PC12 cells.90

The targeting of scFvs to specific sites within cells is 

achieved by in-frame fusion with intracellular trafficking 

sequences to scFvs. To generate ER-retained scFvs, they were 

designed with a signal sequence at the N-terminus and a reten-

tion peptide, KDEL (Lys-Asp-Glu-Leu), at the C-terminus.91 

In the same way, scFvs can be targeted to cytoplasm, nucleus, 

trans-Golgi, and plasma membrane with using specific traf-

ficking sequences and retention signals for each organelle.92 

The delivery of scFvs would be attained by either adeno-

associated viral vectors93 or cell lines expressing scFvs.89,94,95 

Delayed onset of prion disease was observed in a mouse 

model treated with anti-PrPC recombinant adeno-associated 

viral scFvs.93 Also, secreted anti-PrP scFvs produced by cell 

lines prevented PrPSc formation89,94 and significantly extended 

the life-span of scrapie-infected mice.95

Another strategy in the treatment of prion diseases 

would be the use of antibodies targeted against the laminin 

receptor (LRP/LR). The LRP/LR is thought to function as 

a receptor for PrPC and PrPSc,96,97 and it has been shown to 
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play a critical role in the infection process of PrP.98,99 The 

LRP/LR is necessary for internalization of bovine PrPSc in 

human cells,100 and the administration of anti-LRP/LR scFvs 

to scrapie-infected mice reduced peripheral levels of PrPSc, 

even though survival period was not prolonged.101,102

Prospects for targeting the ER,  
and early diagnosis
As detailed above, evidence supporting involvement of ER 

stress in prion disease pathogenesis is increasing (Figure 1). 

Therefore, strategies that target the ER should be explored 

when considering therapeutic approaches to prion diseases. 

Prolonged phosphorylation of PERK and eIF2α resulted in 

synaptic failure and neuronal loss in RML prion-infected 

mice.80 Conversely, the overexpression of GADD34, or the 

inhibition of PrP synthesis by RNA interference, rescued 

these defects. Moreover, the PERK inhibitor GSK2606414 

inhibited clinical symptoms of disease in prion-infected 

mice.81 Hence, strategies that suppress the PERK-eIF2α 

pathway, such as activation of GADD34, would be ben-

eficial in prion disease therapy. Interestingly, salubrinal, 

which activates the PERK-eIF2α pathway of the UPR by 

inhibiting dephosphorylation of eIF2α, exacerbated disease 

presentation.80 Salubrinal reduced α-synuclein accumulation 

in PD models,103–105 prevented amyloid β-induced neuronal 

death,106 reduced protein aggregation caused by N-terminal 

mutant huntingtin,107 and reduced brain damage in a rat model 

of cerebral ischemia/reperfusion injury.108 It is therefore of 

no surprise that salubrinal has been considered a potential 

therapeutic agent for ER stress-related neurodegenerative 

diseases including AD, PD, and HD. As discussed previously, 

however, the use of salubrinal in the prion disease model 

had quite the opposite effect.80 These findings suggest that 

a certain amount of fine-tuning depending on aspects of ER 

stress conditions will be necessary in individual neurodegen-

erative diseases.109 In either case, ER stress is observed for 

prion diseases, and as such, monitoring of ER stress may be 

a useful strategy for the early diagnosis of disease.

During the UPR, ER-associated degradation activation 

results in protein degradation via the UPS. Both proteasome 

system impairment and enhanced autophagy occur during 

prion infection (Figure 1). These findings suggest that strate-

gies targeted to proteasomes and/or autophagy should be also 

considered in the treatment of prion diseases.

In recent years, antibody-based immunotherapy has 

focused on the development of antibodies that could neu-

tralize the toxicity associated with PrP aggregation. Of 

these therapies, scFvs have proved the most promising. 

ER-targeted anti-PrPC scFvs trapped PrPs in the ER, and 

blocked the accumulation of PrPSc.90 Anti-LRP/LR scFvs 

were effective in reducing peripheral PrPSc propagation, but 

failed to prolong survival of scrapie-infected mice.102

Finally, recent experimental studies have provided evi-

dence to indicate dissociation between PrP infectivity and 

neurotoxicity.110,111 To date, it was widely accepted that PrPSc 

was responsible for both infectivity and neurotoxicity, but the 

idea that noninfectious PrP is the true pathogen is gaining 

momentum. Moreover, it has been reported that PrP oligom-

ers show neurotoxicity rather than PrPSc aggregates in vitro 

and in vivo.112,113 Hence, an approach eliminating only PrPSc 

aggregates as a treatment for prion disease may not abrogate 

PrP neurotoxicity. Inclusive of recent concepts, the applica-

tion of a therapeutic agent in treating prion diseases requires 

further analysis, and it should include measures for the safe 

and precise delivery of the agent to the target site.
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