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Abstract: Anxiety and stress disorders are among the most prevalent neuropsychiatric disorders. 

In recent years, multiple studies have examined brain regions and networks involved in anxiety 

symptomatology in an effort to better understand the mechanisms involved and to develop more 

effective treatments. However, much remains unknown regarding the specific abnormalities 

and interactions between networks of regions underlying anxiety disorder presentations. We 

examined recent neuroimaging literature that aims to identify neural mechanisms underlying 

anxiety, searching for patterns of neural dysfunction that might be specific to different anxiety 

disorder categories. Across different anxiety and stress disorders, patterns of hyperactivation 

in emotion-generating regions and hypoactivation in prefrontal/regulatory regions are com-

mon in the literature. Interestingly, evidence of differential patterns is also emerging, such that 

within a spectrum of disorders ranging from more fear-based to more anxiety-based, greater 

involvement of emotion-generating regions is reported in panic disorder and specific phobia, 

and greater involvement of prefrontal regions is reported in generalized anxiety disorder and 

posttraumatic stress disorder. We summarize the pertinent literature and suggest areas for 

continued investigation.

Keywords: fear, anxiety, neuroimaging

Introduction
Anxiety and stress disorders are among the most prevalent categories of mental ill-

nesses, with a median onset at age 11 years and a lifetime prevalence of 28%.1 When 

left untreated, anxiety symptoms persist and are associated with significant impairments 

in functioning, poor quality of life, and a huge economic burden.2–4 Anxiety disorders 

are of particular importance in the context of recent and ongoing world conflicts, as 

environmental factors can have a strong impact on anxiety and stress disorder develop-

ment, particularly posttraumatic stress disorder (PTSD).5 Given the high prevalence 

rates, negative effects on many aspects of functioning, and environmental factors 

associated with trauma and stress, it is imperative that we continue to improve our 

understanding of the mechanisms underlying anxiety disorder presentations in an 

effort to improve existing treatments.

Although anxiety disorders have been extensively studied, the literature examining 

underlying neural mechanisms remains scarce, with relatively little evidence identifying 

specific deficits for various anxiety disorders. Despite the lack of concrete knowledge 

regarding the specific mechanisms underlying anxiety, both pharmacologic (selective 

serotonin reuptake inhibitors) and psychotherapeutic (cognitive behavioral therapy) 

treatments for anxiety management have been developed. These treatments are effec-

tive for many patients suffering from anxiety, but the exact mechanisms of action are 

not well known. Moreover, many patients do not have access to or do not experience 
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complete symptom relief with the existing evidence-based 

treatments. It is thus imperative that we continue striving 

for an improved understanding of the specific neural deficits 

underlying anxiety disorder presentations and the mecha-

nisms of action by which effective treatments reduce anxiety 

symptomatology. The widely accepted categorization of 

anxiety disorders is based solely on behavioral and subjective 

experiences. However, it is possible that the neural mecha-

nisms underlying anxiety symptomatology overlap across a 

number of discretely defined disorders. In fact, arguments are 

emerging that anxiety disorders may fall along a continuum 

ranging from specific fear-based reactivity to more diffuse 

and prolonged stress or apprehension. Identifying mecha-

nisms will allow for more accurate diagnostic categories, 

improved ability to predict individual treatment response, and 

will provide specific targets for new and improved treatments 

aimed at correcting aberrant neuronal functioning.

Clinical categorization of anxiety 
disorders
According to the Diagnostic and Statistical Manual of Men-

tal Disorders, 5th Edition,5 anxiety and stress disorders are 

characterized by an excessive fear response and/or worry 

that interferes with functioning or causes significant distress. 

This class of disorders includes panic disorder (PD), specific 

phobia (SP), social anxiety disorder (SAD), PTSD, and gen-

eralized anxiety disorder (GAD).

Panic disorder
PD is characterized by sudden panic attacks, often occurring 

unexpectedly, followed by a month or more of worrying 

about having another attack or the consequence of the attack 

(eg, heart attack, stroke). Common symptoms during a panic 

attack include racing heart, shortness of breath, tightness in 

chest, paresthesia, gastrointestinal distress, sweating, hot/cold 

flashes, fear of dying, and fear of losing control. PD suffer-

ers often develop agoraphobia, avoiding places or situations 

where they think they might have a panic attack.

Specific phobia
SP is characterized by excessive fear triggered by a specific 

object or situation. SP falls into four subtypes, including 

animal, natural environment (eg, heights, storms), blood-

injection-injury, and other (choking, vomiting, illness, cos-

tumed characters, etc). The excessive fear brought on by the 

phobic object or situation leads to intense distress, anxious 

anticipation, panic attacks, and/or avoidance of the feared 

object or situation.

Social anxiety disorder
SAD is characterized by persistent fear of social or perfor-

mance situations resulting from the possibility of negative 

judgment, embarrassment, or humiliation. Cognitive distor-

tions and self-monitoring in social situations, involving 

hyperawareness of internal cues and behaviors, are often 

associated with SAD. Feared social situations are avoided 

or tolerated with dread.

Posttraumatic stress disorder
PTSD can develop after exposure to serious injury, death, 

or a potential threat to the physical integrity of self or oth-

ers. Symptom clusters include intrusive reexperiencing 

symptoms (memories of trauma, nightmares, flashbacks); 

avoidance of trauma-related thoughts, memories, contexts 

or cues; negative mood and cognition; and hyperarousal/ 

hypervigilance.

Generalized anxiety disorder
The core symptom in GAD is excessive and continuous 

worry, anxiety, and apprehensive expectation in multiple 

contexts. The ambiguity and diversity of the sources of stress 

and anxiety distinguishes this disorder from cue-related 

anxiety disorders such as PD, SP, SAD, and PTSD. There 

is a cognitive component to GAD that is characterized by 

worrisome thoughts and cognitive errors.

Fear versus anxiety
An important but controversial distinction in the anxiety and 

stress disorder literature is between the constructs of fear 

and anxiety. Fear and anxiety have considerable overlap 

with respect to subjective, behavioral, physiological, and 

neurological characteristics. However, some key differ-

ences separate the two. Fear is typically defined as a phasic 

and abrupt fight-or-flight response accompanied by intense 

arousal in response to an immediate and identifiable threat. 

Alternatively, anxiety is often defined by a more prolonged 

state of tension, worry, and apprehension regarding uncertain, 

and potentially negative, future events.6 Although fear and 

anxiety serve important evolutionary functions to keep us 

safe, fear allows us to combat or avoid immediate threats or 

danger, whereas anxiety increases vigilance and improves 

our ability to identify uncertain or potential threats. Still, 

anxiety disorders can develop when anxiety or fear respond-

ing is excessive or occurs in the absence of true threat, either 

immediate or future.

Although fear and anxiety both play a role in all anxiety 

disorder presentations, some argue that anxiety and stress 
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disorders can be placed along a fear–anxiety continuum, with 

PD and phobias classified as fear-based disorders and PTSD 

and GAD as primarily anxiety-based disorders.5 In fact, evi-

dence from rodent models of fear and anxiety suggests that 

different neural mechanisms may underlie fear and anxiety 

states. For example, amygdala lesions block fear responding 

to predictable and identifiable threat but do not affect pro-

longed anxiety states in response to uncertain future threat. 

In contrast, lesions of the bed nucleus of the stria terminalis 

diminish anxiety states while leaving phasic fear responses 

intact.7 A study examining physiological responses to threat in 

humans demonstrated a gradient of fear reactivity across the 

anxiety disorder spectrum, with exaggerated fear reactivity in 

SP, diminished fear reactivity in GAD and PTSD, and inter-

mediate levels of fear reactivity in the other anxiety disorders.8 

These findings support the notion that fear and anxiety might 

be somewhat distinct processes, playing different roles across 

the spectrum of anxiety and stress disorders.

To identify neural circuits underlying fear and anxiety 

symptomatology, specific experimental paradigms have 

been developed.9 Both rodent and human studies of fear 

typically employ a fear conditioning paradigm, which pairs 

an aversive stimulus (eg, electric shock) with a neutral 

stimulus (eg, a blue light), resulting in the neutral stimulus 

becoming a signal of imminent threat. This experimental 

manipulation permits dissociation of brain circuits that imbue 

“fear” from those involved in the processing of the same 

or identical stimuli without fear content. A number of key 

structures have been identified that generate and modulate 

fear responses to the conditioned threat signal. Specifically, 

thalamus integrates sensory input from the primary sensory 

cortices and sends output to the amygdala. The amygdala 

and dorsal anterior cingulate cortex (dACC) process aver-

sive signals and send output to the hypothalamus, basal 

ganglia, and brainstem to produce defensive behaviors.10,11 

The hippocampus is responsible for encoding contextual 

information associated with the threat cue.11 In this way, the 

hippocampus has been implicated in the extinction of fear, 

playing a role in down-regulating amygdala response in safe 

contexts. The medial prefrontal cortex (mPFC) provides top-

down regulatory control of fear responding, receiving input 

from the hippocampus and thalamus and projecting to the 

amygdala to modulate fear behavior on the basis of complex 

environmental information.10 Overall, these findings support 

involvement of thalamus, amygdala, dACC, hypothalamus, 

hippocampus, and mPFC in fear circuitry.12 These regions 

work in concert to both generate and modulate fear responses 

to imminent and identifiable threat.

Similarly, both rodent and human studies have been used 

to identify regions involved in anxiety. Typically, these stud-

ies involve unpredictable presentation of an aversive stimulus, 

leading to the development of vigilance, tension, anticipation, 

and worry. Many of the same regions making up the fear cir-

cuitry also underlie anxiety. Some overlapping regions impli-

cated in both fear and anxiety circuitry include the thalamus, 

amygdala, and dACC.13 In addition, the insula14,15 is implicated 

in vigilance during unpredictable threat, highlighting its role 

in anxiety circuitry. The bed nucleus of the stria terminalis 

receives input from the hippocampus, amygdala, and mPFC 

and mediates anxiety-related behaviors.16 Emotion regulation 

regions common to both fear and anxiety include the mPFC 

and hippocampus. One key difference is the involvement of 

additional regions in anxiety involved in emotion regulation 

and attention modulation, including rostral anterior cingulate 

cortex (rACC) and dorsolateral PFC.12,17

Three reviews recently summarized structural and func-

tional abnormalities in brain circuitry across the anxiety and 

stress disorders.13,18,19 Functional imaging tasks used to probe 

neurocircuitry of anxiety disorders mostly include symptom 

provocation through presentation of disorder-related visual 

or auditory cues, emotional faces, or fear conditioning. 

Connectivity analyses examine the co-activation of differ-

ent brain regions in response to the above-mentioned tasks. 

The purpose of the current work was to review the recent 

literature and summarize knowledge gained since 2010. 

We used PubMed to search the literature published from 

January 2010 until August 2014, with key terms similar to 

and including combinations of the following: anxiety, social 

anxiety disorder, social phobia, panic disorder, specific 

phobia, posttraumatic stress disorder, generalized anxiety 

disorder, fMRI (functional magnetic resonance imaging), 

MRI, PET (positron emission tomography), DTI (diffusion 

tensor imaging), and neuroimaging. Articles were included 

if they examined brain structure or function in anxiety on 

the basis of information presented in the abstract section. 

On the basis of the articles reviewed, we present a breakdown 

of the structural and functional abnormalities identified for 

various anxiety disorders, as well as results pertaining to 

connectivity between brain regions (see Table 1 for summary 

of articles reviewed). Our main aims were to synthesize the 

current literature to identify the neural networks underlying 

anxiety disorder presentations and to determine whether 

brain structure, function, and connectivity findings point to 

similar or independent neural networks across anxiety and 

stress disorders. We expected to find a consistent pattern of 

hyperactivation of brain areas underlying fear  generation 
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(amygdala, insula, dACC) in more fear-related anxiety 

disorders (PD, SP) and the same pattern coupled with deficits 

in emotion modulation areas (mPFC and rACC) in disorders 

with more prominent anxiety and cognitive components 

(GAD, PTSD, SAD).

Sensory processing regions
According to rodent models and human imaging studies, a 

number of regions responsible for taking in and processing 

sensory information, such as the occipital cortex, fusiform 

gyrus, and thalamus, have been implicated in anxiety disorder 

neurocircuitry.11,20 The main finding reported is increased 

activation in these regions in response to threatening stimuli 

in anxious patients compared to healthy controls.

Occipital cortex and fusiform gyrus
The occipital cortex, a region responsible for processing 

visual stimuli, is more active in response to threatening 

images in anxious patients, particularly those with SAD, 

compared with controls. In patients with SAD, greater acti-

vation in occipitotemporal regions predicted D-cycloserine 

treatment response, with greater pretreatment activation 

associated with a greater decrease in symptoms posttreat-

ment.21 The fusiform gyrus contains neurons specific to 

face perception, known as the fusiform face area,22 which 

is more active in response to threat faces in SAD compared 

with healthy controls.23

Thalamus
The thalamus is implicated in sensory integration, and 

functional imaging studies revealed increased activation 

in the thalamus in response to phobic-related and threat 

stimuli in patients with SAD,24,25 blood-injection-injury 

phobia,26 dental phobia,27 spider phobia,28 snake phobia,29 

and PTSD.30 Contrary to these findings, one study reported 

that dental phobics did not demonstrate increased activation 

in thalamus to phobic images.29 Activation in the thalamus 

was correlated with the degree of anxiety and disgust in 

blood-injury-injection phobia,26 as well as autonomic arousal 

in snake phobia, but not in dental phobia.29 Treatment with 

paroxetine reduced activation in thalamus compared with 

placebo treatment in response to a recorded performance 

task in SAD.31

Emotion generating/processing 
regions
Ample evidence from basic and human imaging studies 

suggests that regions such as the striatum,32 amygdala,10,33,34 

insula,11,14,15 and dACC35 play a large role in identifying fear 

stimuli and generating fear responses. These areas often 

have structural abnormalities and are hyperactive in anxiety 

compared to controls. Extensive prior evidence13 suggests 

hyperactivation in the amygdala across all anxiety disorders. 

Hyperactivation was also reported in insula in SP, SAD, 

PTSD, and GAD, whereas activation differences were less 

consistent in PD. Hyperactivation in dACC was reported 

in SP and PTSD, with mixed findings in PD and SAD and 

limited evidence in GAD.

Striatum
Less activation in ventral striatum has been reported in SAD 

while anticipating giving a speech, with greater levels of 

anticipatory anxiety predicting less activation.36 Although 

striatal activation is typically modulated in response to 

social cooperation, this was not observed in SAD, suggesting 

abnormalities in reward circuitry related to the initiation and 

maintenance of social relationships.37

Amygdala
Studies examining structural differences in the amygdala 

in anxiety patients compared with healthy controls find 

decreased amygdala volume and density in PD,38–40 SP,41 

and PTSD,42 with symptom severity predictive of smaller 

amygdala volume.41 In contrast, some studies reported 

larger amygdala volume in anxiety, specifically GAD43 and 

PTSD.44 The picture for SAD is more complex, with reports 

of reduced amygdala volume,45 no differences in amygdala 

volume,46 and larger amygdala volume47 in SAD compared 

with controls.

Recent functional imaging studies report amygdala 

hyperactivation in response to threatening stimuli in PD,39 

SP,28,48,49 SAD,24,36,50–52 and PTSD53,54 compared with healthy 

controls. The degree of amygdala activation was positively 

correlated with symptom severity in SP48 and SAD.50 More-

over, treatment with medication and psychotherapy often 

results in decreased amygdala hyperactivation to threat 

from pre- to posttreatment in SP,48 SAD,55–58 and PTSD.59 

Patterns of amygdala activation in GAD are more complex, 

with studies reporting increased60,61 or no difference62 in 

activation in GAD compared with healthy controls. Null 

and opposing findings suggesting no difference or decreased 

amygdala activation in anxiety compared with controls 

have also been reported in PD,63,64 SP,49 and SAD,65 with 

some evidence that medication treatment (paroxetine) 

increases amygdala activation in SAD compared with 

healthy controls.31

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Therapeutics and Clinical Risk Management 2015:11submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

120

Duval et al

insula
Structural imaging results revealed conflicting reports of 

increased volume in SAD,66 no difference in SP,67 and decreased 

volume in SAD46 and PTSD68–70 compared with controls.

Recent functional imaging studies revealed insula hyper-

activation to threat in patients with SP,27–29,71 SAD,36,50,52,65,72,73 

and PTSD30,54,74–77 compared with controls. The degree of 

insula hyperactivation was positively correlated with symp-

tom severity in SAD.72 Both medication and psychotherapy 

have been shown to decrease insula hyperactivation from pre- 

to posttreatment in SAD.31,58,78 In contrast, one study found 

that patients with dental phobia did not show hyperactivation 

in insula during exposure to phobic stimuli compared with 

healthy controls.29

Dorsal anterior cingulate cortex
Literature suggests decreased dACC gray matter and white 

matter volume in PD,40 SP,79 and PTSD80–82 compared with 

healthy controls. In contrast, some studies have reported 

increased volume in dACC in SAD66 and GAD.43 

Functional imaging studies reported dACC hyperac-

tivation to threat in SP,26–29,71 SAD,24,50,83 and PTSD.30,84–86 

Increased dACC activation was correlated with greater 

autonomic arousal29 and subjective anxiety levels26,71 in SP. 

Cognitive behavioral therapy was found to decrease ACC 

activation in SP,71 and pretreatment ACC activation pre-

dicted positive treatment response in patients with GAD.61 

Despite relatively consistent findings of hyperactivation in 

dACC, some idiosyncrasies exist in the literature. In contrast 

to other types of phobia, patients with dental phobia26 and 

blood-injection-injury phobia29 did not exhibit increased 

ACC activation to phobic stimuli relative to healthy controls, 

suggesting dACC may not be involved in threat processing 

in some anxiety symptom presentations. Moreover, one 

study reported that dACC was less active to threat in SAD 

compared with healthy controls.87

Emotion modulation regions
Regions involved in regulating threat responding are particu-

larly important in anxiety, as they can decrease activation in 

threat-processing regions such as the amygdala, insula, and 

dACC. These have been identified using basic science models 

and human imaging studies. The mPFC, hippocampus, 

dorsolateral prefrontal cortex (dlPFC), and rACC have 

been implicated in modulating fear responding. Although 

the mPFC10,33,34,88 and rACC89 are primarily involved in 

modulating emotion, the dlPFC89 has been implicated in both 

emotion modulation and attention control. The hippocampus 

is primarily involved in encoding contextual information 

and modulating fear responding within the context of threat 

and safety signals.11 As such, these regions underlie differ-

ent functions that may work in concert to modulate threat 

response. Evidence reported before the scope of the current 

review13 suggests hyperactivation in the hippocampus in PD 

and PTSD but little evidence for hippocampus involvement 

in other anxiety disorders. Hypoactivation in the mPFC has 

been reported in PTSD and GAD, with less consistent results 

seen in PD, SP, and SAD. Evidence for dlPFC and rACC is 

less consistent and less studied, with both hyper- and hypo-

activation reported in PD, SP, SAD, and PTSD.

Medial prefrontal cortex
Structural imaging studies report differences in mPFC, with 

increased volume in SAD,90 decreased volume in PTSD,77,80 

and no difference in GAD,91 with decreased volume associ-

ated with greater symptom severity in PTSD.92,93

Functional imaging studies, including two recent meta-

analyses and a literature review,30,76,94 primarily report 

decreased mPFC activation in PTSD compared with healthy 

controls. Some other studies of PTSD patients reported 

increased mPFC activation in response to fearful faces.74,75,95 

Similar findings are reported in SAD, with both increased96 

and decreased97 mPFC activation in response to threat and 

social tasks. Results are somewhat more consistent in GAD, 

with the majority reporting decreased mPFC activation.62,98–100 

It has been suggested that hyperactivation and hypoactiva-

tion in mPFC may be associated with different symptom 

profiles.101 It is also possible that although hypoactivation 

indicates a deficit in emotion regulation, hyperactivation indi-

cates an overcompensatory response in an effort to decrease 

excessive fear responding. Regardless of these discrepancies, 

the treatment literature is quite consistent, suggesting that 

both pharmacotherapy and psychotherapy produce increases 

in mPFC activation in SAD57,58,102,103 and PTSD,59 which is 

related to symptom improvements.

Hippocampus
Although the hippocampus is often considered part of the 

limbic system responsible for fear generation, the majority 

of evidence in rodent and human models examining hip-

pocampal function suggests its primary role is in context 

learning and fear modulation in the presence of safety and 

threat contexts.11 Structural imaging studies of the hip-

pocampus suggest decreased volume and density in PD,38,40 

SAD,45,104,90, GAD,106 and PTSD.42,69,80,105 There is also evi-

dence for increased hippocampal volume after treatment with 
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 selective serotonin reuptake inhibitors in PTSD.107 However, 

findings are somewhat mixed, with studies also reporting no 

differences46 and larger47,108 hippocampal volume in SAD 

compared with healthy controls.

Functional imaging studies report increased hippocampal 

activation to threat in SP,49 SAD,24 and PTSD30,75,95 compared 

with healthy controls. Increased hippocampal activation was 

related to defensive reactivity in response to threat stimuli 

in SP.49 Differences in hippocampus activation in PTSD 

during memory tasks53,109,110 and emotional activation tasks54 

have been less consistent, with both increased and decreased 

activation reported.

Other modulatory regions
Evidence exists suggesting that other regions, including 

the dlPFC and subgenual/rACC, play a role in emotion 

modulation.89 Structural imaging studies report increased 

dlPFC volume and thickness in SP,111 with larger volume 

predicting more severe symptoms and arousal levels.

Functional imaging studies report dlPFC hyperactivation 

to threat in SP111 compared with controls. In addition, dlPFC 

mediated the influence of SAD on laughter perception, which 

was related to symptom severity.112 Hypoactivation in rACC 

has been reported in SAD,65 PTSD,94,113 and GAD.62,100,114 

However, treatment with computerized attention training58 

and paroxetine31 reduced activation in subgenual ACC in 

SAD.

Connectivity between regions
More recent studies have begun to focus on connectivity 

between brain regions in anxiety patients. Results over-

whelmingly suggest decreased connectivity between emo-

tion processing (amygdala, insula) and emotion modulation 

(mPFC, rACC) regions. This finding is consistent both during 

rest and while performing a variety of cognitive and emo-

tional tasks and is often interpreted as a deficit in regulating 

fear responding. Studies examining the structural connectiv-

ity between medial-frontal and basal-limbic areas, including 

the amygdala, measured via volume of the uncinated fascicu-

lus, revealed smaller volume in the left uncinated fasciculus 

in patients with SAD than in controls. This finding suggests 

communication deficits between emotion-generating and 

emotion-modulation regions in SAD.115

Functional connectivity analyses reveal less connectiv-

ity between amygdala and mPFC in SAD,116 PTSD,94 and 

GAD.117–120 There is also evidence for reduced connectivity 

between the amygdala and ventrolateral prefrontal cortex 

(vlPFC) in GAD,60,121 and the amygdala and subgenual/rACC 

in SAD122 and GAD.98,114,117 Connectivity improves after treat-

ment for GAD60,123 and SAD.116 Some conflicting findings do 

exist, however, with reports of increased connectivity between 

dorsomedial prefrontal cortex (dmPFC) and amygdala103 and 

between mPFC and amygdala124 in patients with SAD com-

pared with controls. 

Differences in connectivity within emotion-processing 

regions are also reported in anxiety compared with controls 

in a small number of studies, with the majority reporting 

decreased connectivity. Specifically, reports show decreased 

connectivity between insula and dACC in SAD73 and between 

amygdala and insula in GAD.120,125 However, increased 

connectivity between amygdala and insula was reported in 

PTSD.126

More global differences in connectivity have been 

observed in SAD, with differences in gray matter volume 

across the whole brain127 and deficits in global brain networks 

including the default mode network and the central-executive 

network compared with healthy controls.104 Deficits in con-

nectivity were also observed in and between regions involved 

in general arousal and attention.25

Discussion
This review of recent literature suggests the presence of 

both common and distinct neural circuits involved in anxiety 

disorders. It partially supports the idea of a spectrum, with 

more cue-related and fear-based disorders (PD, SP) on one 

end and anxiety-based disorders (GAD, SAD, and PTSD) 

on the other. In general, all disorders involved deficits in 

both emotion-generating regions and modulatory regions, 

suggesting fear and anxiety both play key roles across the 

anxiety spectrum. What differentiates disorders appears to 

be the degree of dispersion of functional changes across the 

brain. Although PD and SP are characterized by deficits 

primarily in emotion-generating regions, SAD is character-

ized by deficits in a number of additional regions involved in 

sensory processing and attentional control, GAD findings are 

the least consistent in the emotion-generating circuit and most 

consistent in the frontal emotion regulatory circuit, while 

PTSD had a relatively consistent pattern in both circuits.

Common neurocircuitry
Changes in amygdala, ACC, and hippocampus are implicated 

across all anxiety disorders by multiple studies. Structural 

imaging studies report overall mixed results, with reports 

of both increased and decreased regional volumes in anxi-

ety patients. Functional neuroimaging findings are more 

consistent, however, with the majority of studies reporting 
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hyperactive amygdala response to threat across anxiety 

disorders. The hippocampus is reported as hyperactive 

across multiple anxiety disorders; however, what aspect of 

hippocampal function this hyperactivity reflects is less clear. 

Although hyperactivation in hippocampus seems to paral-

lel hyperactivation observed in amygdala, the prototypic 

emotion-generating structure, basic rodent and human models 

of anxiety suggest the hippocampus is primarily a regulatory 

region. It is possible that the hippocampus is involved in 

multiple processes related to both fear generation and modu-

lation, consistent with the view of “neural reuse,” arguing that 

brain regions can be used for multiple functions.128

ACC activation varied as a function of subregions: dorsal, 

rostral, and subgenual. In general, it seems that across anxiety 

disorders, activation in dACC is increased in response to 

threat, whereas subgenual/rACC activation patterns are less 

consistent, although hypoactivation was the most common 

finding in SAD, PTSD, and GAD. Although differences 

in activation patterns may depend on the task and stimuli 

used, the different functions of ACC subregions and the 

connectivity of these subregions to other brain structures 

likely contribute to these findings. Specifically, although 

dACC appears to be involved in threat processing and fear 

generation, subgenual/rACC is primarily involved in emo-

tion modulation.

Connectivity analysis suggests a common mechanism for 

relationships between PFC and limbic structures across anxi-

ety disorders. Specifically, decreased connectivity between 

emotion-generating areas (amygdala, insula) and cortical 

regulatory regions (mPFC, rACC) have been consistently 

found across anxiety disorders. Connectivity was inversely 

related to symptom severity, and in a number of studies 

employing pre-post design, it increased after anxiety treat-

ment. Overall, these findings point to a potential deficit in fear 

regulation circuitry in anxiety consisting of hyperactivation 

of emotion-generating regions coupled with dysfunction in 

emotion-regulation regions. This suggests the possibility of 

a shared network underlying the spectrum of anxiety and 

stress disorders.

Distinct neurocircuits
Activation patterns in amygdala and hippocampus were 

less consistent in GAD. In contrast, hypoactivation in the 

subgenual/rACC and mPFC are more consistent in this dis-

order. The primary clinical presentation of GAD is constant 

and unfocused worries about ambiguous and potentially 

negative future outcomes, rather than a focus on a specific 

threat. This cognitive component of GAD, including distorted 

beliefs and ruminations, may explain consistent deficits in 

emotion regulatory areas. In other words, GAD may be 

more “anxiety related” than “fear related,” where impaired 

function of the prefrontal cortical areas has a “permissive” 

role in increased anxiety. In SAD, the changes in neural 

activation patterns also appeared more distributed (beyond 

the set of limbic and prefrontal regions discussed earlier) 

compared with other anxiety disorders. SAD studies report 

increased activation in the fusiform face area and occipital 

cortex, indicating enhanced stimulus processing associated 

with anxiety. The increased hypersensitivity to social cues 

and self-reference typical in SAD could account for differ-

ences in these brain regions that may be less relevant in other 

anxiety disorders.

More consistent reports of hypoactivation in mPFC 

regions in disorders that are closer to the anxiety than to the 

fear end of the spectrum (ie, GAD, SAD, and PTSD) may 

relate to the cognitive processes and diffuse anxiety states 

associated with these disorders, leading to more anxiety-

like cognitions and ruminations. Decreased activation in 

mPFC was observed consistently in PTSD and GAD, with 

mixed findings in SAD. In contrast, dlPFC hyperactivation 

to threat was observed in SP, and this region also appears to 

regulate responses to an ambiguous cue (laughter) in SAD. 

Hypoactivation in emotion regulation regions such as mPFC 

is typically interpreted as a deficit in ability to appropriately 

inhibit threat responding in anxiety. However, a number of 

studies also report hyperactivation in mPFC in anxiety. One 

possible explanation for hyperactivation is that these regions 

are overcompensating in an effort to down-regulate activity 

in amygdala and other emotion-generating regions. We may 

also be observing a time delay with respect to when these 

regulatory regions are coming online in anxious compared 

with healthy controls, resulting in activation differences. In 

other words, although the main changes observed in fear-

related anxiety disorders such as SP or PD may reflect hyper-

reactivity of the emotion-generating system to threat/feared 

cues, distorted anxiety-related cognitions may play a larger 

role in GAD, SAD, and PTSD.

The existing literature examining structural and functional 

deficits in fear and anxiety circuitry is quickly growing, and 

just in the last 5 years, a considerable amount of knowledge 

regarding common and distinct patterns of neural function 

across the anxiety and stress disorder spectrum has been 

gained. However, much remains to be learned about specific 

differences in brain function across both emotion-generating 

and emotion-regulating regions. Future studies should focus 

on striving for consistency in paradigms used and patient 
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populations studied to improve our ability to compare and 

contrast findings across experiments. It is also imperative to 

continue investigating connectivity between brain regions 

across the spectrum of anxiety and stress disorders to fully 

identify neural circuitry underlying symptom presentations, 

rather than simple activation patterns. It is clear that threat 

processing and emotion regulation circuits interact with one 

another, making more global and interactive analyses key in 

understanding these complex processes. Additional treatment 

studies are also indicated in an effort to better understand 

how pharmacologic and psychotherapeutic approaches can 

be used and modified to best target and correct aberrant brain 

function underlying anxiety.
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