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Abstract: Type 1 diabetes (T1D) is caused by the autoimmune destruction of the insulin-

producing pancreatic β-cells. People with T1D manage their hyperglycemia using daily insulin 

injections; however, this does not prevent the development of long-term diabetic complications 

such as retinopathy, nephropathy, neuropathy, and various macrovascular disorders. Currently, 

the only “cure” for T1D is pancreas transplantation or islet-cell transplantation; however, this is 

hampered by the limited number of donors and the requirement for life-long  immunosuppression. 

As a result, the need for alternative therapies is vital. One of the strategies employed to correct 

T1D is the use of gene transfer to generate the production of an “artificial” β-cell that is capable 

of secreting insulin in response to fluctuating glucose concentrations that normally occurs in 

people without T1D. The treatment of many diseases using cell and gene therapy is generating 

significant attention in the T1D research community; however, for a cell therapy to enter clinical 

trials, success and safety must first be shown in an appropriate animal model. Animal models 

have been used in diabetes research for over a century, have improved our understanding of the 

pathophysiology of diabetes, and have led to the discovery of useful drugs for the treatment 

of the disease. Currently, the nonobese diabetic mouse is the animal model of choice for the 

study of T1D as it most closely reflects disease development in humans. The aim of this review 

is to evaluate the success of cell and gene therapy to reverse T1D in animal models for future 

clinical application.
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Introduction
Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing 

β-cells of the pancreas.1,2 As a consequence, insulin-responsive tissues cannot take up 

glucose effectively, resulting in hyperglycemia. Currently, people with T1D manage 

their hyperglycemia using daily insulin injections,3 but insulin therapy does not replicate 

the physiological regulation of glycemia and patients tend to develop the long-term 

complications associated with extended periods of hyperglycemia.4,5 In addition, the 

stressful condition of hypoglycemic unawareness, where a person with long-term 

diabetes eventually does not recognize the classic symptoms of their hypoglycemia, 

can become life-threatening.4,6

Currently, pancreas or islet transplantation is the only cure; however, this is ham-

pered by the limited number of pancreas donors and the requirement for life-long 

immunosuppression.7 As a result, alternative therapeutic approaches that overcome 

both the requirement for immunosuppression and recurrent autoimmunity are required. 

 Currently, a number of therapeutic approaches are under investigation including 
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restoration of immune tolerance,8,9 endogenous β-cell 

regeneration,9,10 transplantation of encapsulated artificial 

β-cells,11,12 and the “artificial pancreas”.13,14 In addition, 

gene transfer of pancreatic transcription factors and insulin 

for the production of “artificial” β-cells that are capable of 

synthesizing and secreting insulin in response to metabolic 

signals is a promising alternative. Two common methods of 

generating surrogate β-cells are the dedifferentiation and 

directed transdifferentiation of autologous or allogeneic cells 

ex vivo15–17 followed by transplantation, and the in vivo18–20 

transdifferentiation of target tissue via gene transfer of tran-

scription factors or insulin within viral vectors.

Animal models have been used in T1D research since 

the discovery of insulin by Banting and Best in 192221 for 

studying the pathogenesis of the disease and its complications 

and for the discovery of new treatments. For any diabetes 

research to have clinical applications, potential treatments 

must be performed in animal models to provide proof of the 

principle. The most common animal model for T1D research 

is the nonobese diabetic (NOD) mouse. This review will 

outline the common types of animal models of T1D, the gen-

eration of artificial β-cells as a promising alternative therapy 

for the treatment of T1D, and how animal model research is 

applied to demonstrate the safety and success in reversing 

diabetes, which are important for clinical development.

Animal models of T1D
The use of animal models in diabetes research (Table 1) 

has been extensively pursued. Most studies are performed 

in small animal models such as rodents and mice to provide 

proof of concept for the development of Phase I clinical 

 trials. However, large animal models of diabetes in pigs, 

dogs, and monkeys are becoming increasingly popular due 

to the criticism that rodents do not adequately represent the 

human condition of diabetes.

In the past, one of the most popular methods for induc-

ing diabetes in animals was by complete pancreatectomy.22 

However, this does not correctly represent the clinical mani-

festation of diabetes due to the loss of potential feedback 

mechanisms as a consequence of the absence of pancreatic 

hormone-producing cells, which are still present in people 

with diabetes. As a result, nonsurgical methods of inducing 

a diabetic state in animal models via the administration of 

toxins such as streptozotocin (STZ) and alloxan are now 

routinely used. STZ is a nitrosourea derivative isolated from 

Streptomyces achromogenes,23 with either a single high-dose 

administration or multiple low-dose administrations. A single 

high-dose in mice ranges from 100 mg/kg to 200 mg/kg, with 

complete destruction of β-cells and the development of hyper-

glycemia.24 Alternatively, multiple low-dose administrations, 

ranging from 20 mg/kg/day to 40 mg/kg/day over a 5-day 

period, lead to insulitis in mice.25 Alloxan, which is commonly 

administered in mice at a dose of 50–200 mg/kg, generates 

superoxide free-radicals that destroy β-cells as they do not 

possess any defense mechanisms against the chemical.26,27 

These models are particularly useful for studying the success 

of transplantation of pancreatic tissue or putative artificial 

β-cells, and cytokine-targeted therapies. However, some 

of the limitations of chemically inducing diabetes are the 

possible toxicity to other organs and the potential for β-cell 

regeneration following high-dose STZ administration.28

Currently, the most popular choices of the T1D animal 

model are the spontaneous NOD mouse and the biobreeding 

(BB) rat. These models manifest with autoimmune diabetes 

similar to that observed in humans and currently dominate 

the literature. The NOD mouse was developed at the Shionogi 

Research Laboratories, Osaka, Japan, in 1974.29 NOD mice 

typically develop insulitis at around 3–4 weeks of age, during 

Table 1 Animal models of T1D

Mechanism of 
induction

Model Uses/studies

Chemically  
induced

High-dose STZ Drug discovery 
Models of transplantation 
Preventatives of β-cell 
destruction 
Restoration of 
normoglycemia

Multiple-dose STZ

Alloxan

Spontaneous  
diabetes

NOD mice T1D genetics and 
pathogenesis analyses 
Preventatives of β-cell 
destruction 
immunomodulation 
studies 
Restoration of 
normoglycemia

BB rats
LEw.1AR1/Ztm-iddm  
rat
Keeshond dog
Celebes black ape 
(Macaca nigra)

Breeding/ 
genetically  
selected

AKiTA mice Drug discovery 
Models of transplantation 
Preventatives of β-cell 
destruction

LETL rats
New Zealand white 
rabbit
Chinese hamster

Pancreatectomized westran pigs Restoration of 
normoglycemia 
β-cell regeneration

Dogs

virally induced Coxsackie B virus Role of viruses in the 
induction of T1DEncephalomyocarditis 

virus

Kilham rat virus

Note: This table describes the most commonly used animal models for the study 
of Type 1 diabetes.
Abbreviations: BB, biobreeding; LETL, Long-Evans Tokushima Lean; NOD, 
nonobese diabetic; STZ, streptozotocin; T1D, Type 1 diabetes.
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which the pancreatic islets are infiltrated by CD4+ and CD8+ 

lymphocytes and to a lesser degree by B cells and natural 

killer (NK) cells.30 They develop typical diabetes between 

12 weeks and 30 weeks of age. Due to the parallel in T1D 

clinical manifestation between NOD mice and humans, the 

former have been useful in identifying pathways that lead to 

T1D and are also suitable for testing therapies that modulate 

the autoimmune response.31 More recently, NOD mice are 

being used to study the success of cell therapies to either 

modulate the autoimmune response32–34 or directly control 

hyperglycemia by artificial β-cells.35–37 Nonetheless, some 

major differences do exist, such as the inbred nature of this 

model, allowing the genetic susceptibility to diabetes develop-

ment in NOD mice to be easily traced. This is evidenced by 

the fact that female mice are susceptible whereas males are 

not.38 In humans, susceptibility to the development of T1D 

is governed by a much more complex interaction of genetic 

and environmental stimuli. In addition, there is evidence that 

NOD mice develop lymphopenia, a characteristic not seen in 

the human situation.39 An isolated genetic contamination of 

the NOD mouse outcrossed with a C57BL mouse produced 

an insulitis-resistant and diabetes-free strain named the 

nonobese resistant (NOR) mouse, which is now routinely 

used as a major histocompatibility complex-matched control 

mouse for studies using NOD mice.40 The BB rat, which 

spontaneously develops autoimmune diabetes, was derived 

from outbred Wistar rats in 1974.41 They develop diabetes 

between 8 weeks and 16 weeks of age, and similar to NOD 

mice display insulitis with the infiltration of T cells, B cells, 

macrophages, and NK cells. However, like NOD mice, 

these animals develop lymphopenia and therefore are not 

as routinely used as NOD mice.39,42 Other animal models of 

spontaneous autoimmune diabetes include the LEW.1AR1/

Ztm-iddm rats,43 the Keeshond dog,44 and the Celebes black 

ape (Macaca nigra).45

In addition to these main animal models of T1D, geneti-

cally and virally induced models are available for research 

purposes. The AKITA mouse was derived in Akita, Japan, 

from a C57BL/6NSlc mouse with a spontaneous mutation 

in the insulin 2 gene, which results in a severe insulin-

dependent diabetes beginning at 3–4 weeks of age, and is 

used to study the success of islet transplantation.46 Since the 

implication of viruses in the pathogenesis of T1D, viruses 

have been used to induce diabetes in animal models. These 

include the coxsackie B virus,47 the encephalomyocarditis 

virus,48 and the Kilham rat virus.49 The remainder of this 

review will focus on the use of viral gene transfer to a 

variety of cell types for the production of artificial β-cells 

and assessment of the success of these cell therapies in 

animal models of diabetes via autologous or allogeneic 

transplantation.

Selecting a suitable vector  
for gene transfer
Viruses possess the natural capacity to infect and deliver 

genes to cells and, as a consequence, have been engineered 

to not replicate yet efficiently transduce infected cells with 

genes of interest for a number of purposes. The ability to 

integrate the genes of interest into the genome of a target cell 

allows for long-term expression of the transgene, resulting in 

a sustained therapeutic effect. The engineering of β-cells for 

the treatment of T1D would preferably employ integrating 

viral vectors to provide a sustained therapeutic benefit over 

the life of the patient without the need for multiple admin-

istration of the treatment.

The most commonly used gene delivery vector is the 

retro viral vector, which is derived from disabled murine 

virus.50 Although these vectors are capable of integrating 

into the host genome, a limitation of their use is their risk of 

insertional mutagenesis.51 A study on the use of retroviral vec-

tors for the treatment of severe combined immunodeficiency 

(Scid) resulted in the development of leukemia in four of the 

nine patients, and demonstrated the site-specific preferences 

of integration for retroviruses to be in close proximity to the 

protooncogenes.52,53 The use of retroviral vectors is also lim-

ited by their ability to only transduce dividing cells, posing 

a challenge for the transduction of nondividing cells such as 

the liver. When transducing bone marrow-derived mesenchy-

mal stem cells (BMSCs) with a retroviral vector containing 

the insulin gene under the control of the cytomegalovirus 

(CMV) promoter, it was found that these cells were able to 

secrete insulin, maintain normal blood glucose levels, and 

evade autoimmune destruction upon transplantation in STZ-

diabetic mice for 42 days.54

Adenoviral vectors transduce nondividing cells episomally 

and therefore only provide transient gene expression.50,55 In 

some cases, immune responses against the viral proteins have 

been reported,56,57 and to overcome the immunogenicity of the 

viral capsid proteins, a “gutless” adenovirus was developed.58 

Despite displaying a reduction in immuno genicity, immuno-

suppressants are still required to manage immune responses 

activated following treatment.59 In addition, preexisting 

immunity to adenovirus in humans limits the use of multiple 

administrations of the vector that would be required for sus-

tained therapeutic effects. The ability of adeno-associated viral 

(AAV) vectors to transduce both dividing and nondividing 
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cells makes them a suitable vector of choice for gene transfer. 

However, they have a limited gene cargo capacity of ,5 kb.60 

Due to their site-specific nature of gene integration in target 

cells, AAV insertion sites can be predicted and potentially 

oncogenic consequences avoided. A study using AAV vec-

tors to directly deliver the preproinsulin gene to livers of 

chemically induced STZ mice61 transiently reduced blood 

glucose levels, and supports the utility of AAV for insulin 

gene transfer.

An attractive candidate for gene therapy is lentiviral 

vectors (LVs) because they are capable of transducing both 

nondividing and dividing cells.62 LVs are derived from the 

human immunodeficiency virus (HIV), so biosafety was a 

concern for their application as therapeutics. By introduc-

ing deletions in the long terminal repeat (LTR) promoter, 

the likelihood of generating a replication-competent virus 

was reduced and greater safety for clinical application was 

achieved.63 Within our laboratory, LV is currently the gene 

transfer vector of choice for corrective gene therapy. We 

have successfully used a LV, HMD, which has a murine stem 

cell virus promoter to deliver furin-cleavable insulin (INS-

FUR) to the livers of STZ-diabetic rats,18 NOD mice,19 and 

pancreatectomized Westran pigs.20 In these animal models, 

we observed spontaneous expression of β-cell transcrip-

tion factors, formation of storage granules, and permanent 

reversal of diabetes.

Target cells for T1D gene therapy
Monkey kidney cells and fibroblasts were the first targets of 

somatic cell gene therapy for T1D.64,65 Unfortunately, these 

cells do not possess characteristics similar to those of β-cells, 

and as a result were not able to produce biologically active 

insulin. Despite employing extensive genetic manipulation 

to such cell types, the generation of functional artificial 

β-cells was not achieved. Similarly, targeting of muscle 

cells has been examined sparingly due to their lack of β-cell 

characteristics. However, a study using vascular smooth 

muscle cells transduced with INS-FUR under the control 

of a glucose-regulatable promoter was able to reduce blood 

glucose levels in spontaneously diabetic congenic BB rats for 

a period of 6 weeks, after which exogenous insulin therapy 

was required.66 A more sustained reversal of diabetes was 

achieved in STZ-diabetic mice for .4 months following the 

dual expression of insulin and glucokinase (GK) in muscle.67 

However, it was quickly determined that the ideal target 

cells for the successful generation of functional artificial 

β-cells would be derived from an endodermal origin and 

possess characteristics similar to those of β-cells such as a 

glucose-sensing system, proinsulin-processing enzymes, and 

exocytosis system.68

Pituitary cells possess both proinsulin-processing 

enzymes and secretory granules, and have been modified to 

produce insulin via the transfer of a recombinant plasmid 

containing human preproinsulin cDNA.15 Although these 

cells produced biologically active insulin, they lacked glu-

cose responsiveness and therefore required further genetic 

modification via the transduction of GLUT2 and GK. Follow-

ing the additional modifications, the modified cells became 

glucose-responsive, albeit at subphysiological levels. In 

addition, following transplantation, the insulin function was 

inhibited by the in vivo secretion of adrenocorticotropic-

hormone-stimulated glucocorticoid synthesis, limiting their 

therapeutic efficacy.69

A more promising target for gene transfer are liver cells 

as they are derived from the same endodermal origin as the 

pancreas and possess the key glucose-responsive elements 

(G1REs) GLUT2 and GK.70 Despite lacking proinsulin-

processing enzymes and secretory granules, the induced 

expression of mature insulin is possible via the targeted 

expression of INS-FUR.16,18 Our laboratory has shown that 

the expression of insulin in a liver cell line that had endog-

enous expression of β-cell transcription factors led to pancre-

atic transdifferentiation, formation of secretory granules, and 

a regulated response to glucose with reversal of diabetes.16 

Many studies that have attempted to reproduce this phenom-

enon by simply expressing either insulin or insulin analogs 

in liver without the expression of β-cell transcription factors 

have only reported constitutive release of insulin that is not 

stored or secreted in a regulated fashion.71–73

More recently, mesenchymal stem cells (MSCs) have 

been targeted for gene transfer due to their extensive immu-

nomodulatory capacity and reported ability to evade immune 

rejection.74–77 Most use of MSCs in diabetes reversal in animal 

models has been in the form of native MSC transplanta-

tions aimed at modulating immune responses.78,79 However, 

currently most MSC research is being driven toward the 

generation of artificial β-cells via chemically induced dif-

ferentiation protocols or gene transfer.80 Artificial β-cells can 

be obtained from BMSCs via the use of a high-glucose cul-

ture medium81 or a nicotinamide-enriched medium to induce 

 differentiation.82 Similarly, a three-step differentiation proto-

col has been shown to produce glucose-responsive artificial 

β-cells from BMSCs with high expression levels of Pdx-1, 

insulin, and glucagon.83 BMSCs retrovirally transduced with 

Pdx-1 generated artificial β-cells that reduced blood glucose 

concentrations beginning 12 days post transplantation in 
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STZ-diabetic/Scid mice, and displayed a normal glucose 

tolerance until 6–8 weeks post transplantation.35

Glucose-responsive production  
of insulin
Ultimately, T1D gene therapy aims to create artificial β-cells 

that reproduce the mechanism of insulin secretion that occurs 

normally within β-cells. Normally, insulin is initially trans-

lated as a proinsulin precursor in the endoplasmic reticulum 

(ER); it is then transported from the ER to the Golgi appa-

ratus and crosses the Golgi network before being sorted 

into  clathrin-coated immature insulin secretory granules 

(ISGs).84,85 Various biochemical modifications trigger the 

maturation of ISGs, and following glucose stimulation the 

mature ISGs secrete their insulin content into the extracellular 

space. Although the pancreatic β-cell contains ∼10,000 ISGs, 

only 100–200 ISGs are capable of quickly releasing their 

insulin content in response to increases in cytosolic [Ca2+].84 

This means that there is a “reserve pool” of ISGs which can be 

induced to release insulin, resulting in the minute-to-minute 

regulation of insulin secretion in response to changes in 

blood glucose levels. One of the major hurdles for T1D gene 

therapy is the inability to reproduce the regulated mechanism 

of insulin secretion in pancreatic β-cells.  Consequently, the 

use of glucose-responsive promoters attached to pancreatic 

transcription factors or the insulin gene have been investi-

gated in an attempt to engineer the physiologically regulated 

production of insulin.

Table 2 summarizes a number of studies in which the 

insulin gene has been expressed in various cell types with the 

aim of reversing T1D. Three promoters have been identified 

(L-type pyruvate kinase [LPK], Spot 14, and glucose-6-

phosphate) that regulate the expression of a variety of genes 

in the liver in response to extracellular glucose concentra-

tions.62 These promoters have been used in association with 

the insulin gene for gene transfer in attempts to reproduce 

the glucose-responsive production of insulin that occurs 

in normal β-cells. The G1RE found in the LPK promoter 

has been found to regulate the transcription of proinsulin 

in response to glucose.86,87 In particular, the work by Thule 

et al showed that, by injecting diabetic rats with a construct 

containing three copies of the G1RE from the LPK pro-

moter, an inhibitory element from the insulin-like growth 

factor binding protein (IGFBP)-1 promoter and a modified 

proinsulin gene, normoglycemia was nearly achieved.87,88 

STZ-induced diabetic mice expressing a human proinsulin 

gene under the control of the LPK promoter expressed proin-

sulin mRNA in the liver, with the transcription of proinsulin 

mRNA regulated by diet. However, STZ-induced diabetic 

mice did not increase the expression of insulin mRNA due 

to inhibition of GK by glucagon.89 This was overcome by 

inducing basal levels of expression of transgenic insulin 

with a simian virus 40 (SV40) enhancer that stimulated 

GK expression, which in turn activated expression of 

transgenic insulin via the LPK promoter.86 Promising work 

using a glucose-6-phosphate promoter showed that glucose-

responsive production of insulin could be induced in rat 

hepatoma cells. However, this was limited by low levels of 

insulin production as a consequence of the negative feedback 

by the insulin produced.90

More recently, transcriptional analysis of BMSCs grown 

under varying concentrations of glucose identified a number 

of glucose-responsive promoters, and of particular interest, the 

early growth response-1 (EGR1) promoter which was capable 

of expressing insulin in transduced BMSC in a glucose-

responsive manner.91 Upon implantation of the cells in STZ-

diabetic-induced NOD/Scid mice, the transduced cells were 

capable of restoring normoglycemia, glucose tolerance, and 

body weight in this model. Interestingly, the EGR1 promoter 

was not sensitive to transgenic expression of insulin, because 

it is known that the EGR1 promoter can be activated by both 

glucose and insulin.92 However, as NOD/Scid mice are not 

a model of autoimmune diabetes, such work should ideally 

be performed in immune-competent models of autoimmune 

diabetes, such as NOD mice, that intrinsically develop insulitis 

around 3–4 weeks of age and progress to full-fledged diabetes 

between 12 weeks and 30 weeks.93

Investigating tissue-specific regulation of pancreatic 

hormones or proteins would hopefully reveal the underly-

ing mechanisms governing the expression of those factors. 

As a result, the insulin promoter that is activated by glucose 

has been intensively studied to identify these G1REs in the 

hopes of better recreating the physiological regulation of 

insulin production.94,95 A study by Sander et al discovered a 

strong G1RE (Z element) in the distal region of the human 

insulin promoter,94 elucidating one of the mechanisms that 

provides glucose-sensitive regulation of insulin in primary 

cultured islet cells. More recently, the pancreatic-derived 

factor (PANDER), a newly discovered cytokine-like protein 

that is strictly expressed in the pancreatic islets, was analyzed 

for its glucose-responsive nature of expression.96 It revealed 

that the 5′-untranslated region of the PANDER promoter 

contained the G1REs that drive PANDER expression that 

mimic insulin expression, and that the PANDER promoter 

could potentially be used to drive transgenic insulin expres-

sion in alternative cell targets.
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One of the limitations of transcriptionally regulated 

insulin production in transplanted alternative cell targets is 

their delay in responding with immediate insulin secretion 

when challenged with glucose. As insulin secretion is linked 

to insulin transcription, the minute-to-minute glycemic con-

trol, which occurs in normal β-cells, is not present in these 

engineered target cells. This is due to the absence of secre-

tory granules that store and immediately secrete insulin in 

response to fluctuations in blood glucose concentrations. To 

overcome this limitation, engineering a promoter express-

ing high levels of insulin in response to fluctuating glucose 

concentrations, yet possessing insulin-sensitivity as a feed-

back mechanism, could more closely mimic the normal physi-

ology of insulin secretion. However, the successful adaptation 

of this technology in vivo would require the development of 

granules similar to ISGs to regulate glycemia.

Gene transfer of insulin
Our laboratory has shown that the ability of liver cells to store 

and secrete insulin, and undergo pancreatic differentiation, is 

linked to the induced expression of certain β-cell transcription 

factors. We were the first to show a number of cutting-edge 

Table 2 insulin used for the reversal of T1D in animal models

Insulin  
used

Target  
cell/tissue

Vector used Animal model Outcome References

iNS-FUR Liver (in vivo) pPAX2 (lentivirus) LEw.1AR1/Ztm-
iddm rats

Blood glucose concentrations were normalized  
in the treated animals, no transdifferentiation  
or expression of β-cell transcription factors,  
constitutive insulin expression, and no  
development of insulin secretory granules

71

Liver (in vivo) HMD (lentivirus) NOD mice,  
STZ-rats,  
pancreatectomised  
westran pigs

Spontaneous expression of key β-cell  
transcription factors (Pdx-1, Neurog3, and  
NeuroD1), expression of pancreatic hormones,  
development of insulin secretory granules  
and normal intravenous glucose tolerance,  
permanent reversal of diabetes

18–20

Murine and  
porcine BMSC  
(ex vivo)

pTopo3EGR1chiNS  
(plasmid)

NOD/Scid mice Transduced cells were capable of restoring  
normoglycemia, glucose tolerance, and body  
weight in a dose-responsive manner

91

Liver (in vivo) Ad/(GlRE)3BP-1  
2xfur (adenovirus)

STZ-rats Hepatic production of human insulin produced  
near normal glycemia, and weight gain  
without exogenous insulin, and without lethal  
hypoglycemia

88

vascular smooth  
muscle (in vivo)

Lhi*TFSN  
(retrovirus)

BB rats Major reduction in insulin requirement to as low  
as 25% of pretreatment level for up to 3 months,  
characteristic decline in blood glucose after  
iPGTT; hypoglycemic episodes

66

insulin  
cDNA

GFP-mMSC  
(ex vivo)

MSCv-ins  
(retrovirus)

STZ-C57BL/6J  
mice

Diabetes could be relieved effectively for up  
to 6 weeks by intrahepatic transplantation of  
GFP-mMSC-MSCv-ins stem cells expressing  
human insulin in the liver. Cells were not glucose  
responsive; constitutive release of insulin

54

Huh7 cells  
(ex vivo)

pRcCMv (plasmid) STZ-NOD/Scid  
mice

Developed insulin storage granules and exhibited  
regulated secretion of insulin in response to  
increasing concentrations of glucose. After  
transplantation of Huh7ins into NOD/Scid mice,  
diabetes was reversed

16

Skeletal muscle  
(in vivo)

AAv1-ins+GK  
(adeno-associated  
virus)

STZ-mice Mice restored and maintained normoglycemia in  
fed and fasted conditions for .4 months after  
STZ administration. Mice showed normalization  
of metabolic parameters, glucose tolerance, and  
food and fluid intake

67

Notes: This table describes a number of studies utilising in vivo or ex vivo insulin gene transfer for the reversal of T1D in animal models. it does not list all studies performed 
in these scenarios, nor does it describe any in vitro insulin gene transfer studies.
Abbreviations: BB rats, biobreeding rats; BMSC, bone marrow-derived MSC;  MSC, mesenchymal stem cells; GFP-mMSC, green fluorescent protein murine mesenchymal stem 
cells; INS-FUR, furin-cleavable insulin; Ins, insulin; NOD, nonobese diabetic; STZ, streptozotocin; HMD, human immunodeficiency virus, murine stem cell lentiviral vector; T1D, Type 
2 diabetes; Scid, severe combined immunodeficiency; GK, glucokinase; GIRE, glucose-responsive element; IPGTT, intraperitoneal glucose tolerance test; MSCV, mouse stem cell virus; 
AAvi, adeno-associated viral vector containing insulin and glucokinase.
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developments in this field and, very importantly, have never 

seen the development of exocrine differentiation and tissue 

destruction often seen in studies of liver-directed gene therapy 

where Pdx-1 was used.17,97 This is, in part, due to the alternative 

choice of genes used for the viral delivery to hepatocytes.

In several animal models, we have delivered INS-FUR, 

within the LV human immunodeficiency virus, murine stem 

cell lentiviral vector, to the liver by using a surgical technique 

that isolated the liver from the circulation, allowing the LV 

to settle in the liver without the problem of excessive inacti-

vation from the blood. We permanently reversed diabetes in 

STZ-diabetic rats18 and spontaneously diabetic NOD mice.19 

In both studies, we reported spontaneous expression of key 

β-cell transcription factors (Pdx-1, Neurog3, and NeuroD1), 

which are important in the development of insulin storage 

and regulated insulin expression in pancreatic β-cells.98–101 

Some later stage transcription factors (Pax4 and Nkx2.2) were 

also expressed. Our lentiviral transduction procedure may 

have represented a cellular insult, making progenitor cells 

permissive to a pancreatic developmental shift. Consistent 

with this, expression of Pdx-1, but only at the mRNA level, 

was also observed after treatment with the empty vector 

alone. Expression of insulin was necessary for protein expres-

sion of transcription factors. There was also expression of 

pancreatic hormones and development of ISGs, and normal 

intravenous glucose tolerance tests were observed in the STZ-

diabetic rat and NOD mouse (Figure 1). Furthermore, insulin 

expression was restricted to the liver. In the NOD mouse 

study, there was no evidence of intrahepatic inflammation or 

autoimmune destruction of the insulin-secreting liver tissue. 

By contrast, in our NOD mouse study and a similar study 

by Elsner et al, a simple injection of insulin into the portal 

circulation resulted in unregulated constitutive release of 

insulin, no pancreatic transdifferentiation, and an abnormal 

glucose response.19,71 Pancreatic transdifferentiation of the 

liver has been seen in other situations: following a dose of 

the hepatotoxin carbon tetrachloride102 and when oval cells 

were cultured in high glucose.103,104 We are yet to define the 

mechanism that has resulted in pancreatic differentiation in 

our studies, which is being analyzed at the molecular level 

in our laboratory.

We have also reversed diabetes in a diabetic pig model, 

which was characterized by normal glucose tolerance, 

together with expression of β-cell transcription factors.20 

However, reproducible results were problematic in the large 

animal due to the complexity of the surgical approach. 

 Subsequently, viral delivery of INS-FUR has become a popu-

lar choice for gene therapy, with a number of studies showing 

amelioration of hyperglycemia in rodent models. However, 

abnormal glucose tolerance was observed as a result of a lack 

of pancreatic transdifferentiation and expression of β-cell 

transcription factors.105–108

Studies in our laboratory have also shown that these 

insulin-secreting liver cells are resistant to the detrimental 

effects of β-cell cytotoxins and proinflammatory cytokines 

that play a principle role in the pathogenesis of T1D.109,110 

In other experiments, no infiltrates of immune cells were 

observed in NOD mice engineered to express insulin in 

their livers.19,111 These studies established that liver cells are 

appropriate candidates for the creation of artificial β-cells, 

and also highlighted that dual expression of insulin and β-cell 

transcription factors gave a better outcome than expression 

of either alone. Xu et al studied the retroviral transduction of 

BMSCs with an insulin gene under the control of the CMV 

promoter and their ability to restore normoglycemia in STZ-

diabetic mice.54 It was found that these BMSCs successfully 

expressed insulin and were able to maintain normoglycemia 

for at least 42 days. In addition, the transduced BMSCs were 

able to evade the autoimmune destruction that ordinarily 

targets pancreatic islets.

Gene transfer of β-cell  
transcription factors
During embryonic development, the pancreas is derived 

from the early gut endoderm. Intrinsic and extrinsic factors 
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Figure 1 Plasma glucose levels following an ivGTT in NOD mice treated with 
iNS-FUR in a lentiviral vector (HMD).
Notes: An ivGTT was performed on NOD (12–16 weeks) and NOR mice, as well as 
HMD-treated and HMD/iNS-FUR-treated NOD mice, 5 months after reversal of diabetes. 
(n=5, data were examined by one-way analysis of variance after log transformation of 
data and expressed as the mean ± SEM). Modified from Ren B, O’Brien BA, Byrne MR, 
et al. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene 
therapy. J Gene Med. 2013;15(1):28–41.19 Copyright © 2013 John wiley & Sons, Ltd.
Abbreviations: ivGTT, intravenous glucose tolerance test; iNS-FUR, furin-cleavable 
insulin; HMD, human immunodeficiency virus, murine stem cell lentiviral vector; 
NOD, nonobese diabetic; NOR, nonobese resistant; SEM, standard error of mean.
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direct the formation of the dorsal and ventral pancreatic 

buds, with the buds later rotating and fusing to form the 

early pancreas.112,113 Islet cell differentiation is regulated 

by the expression of β-cell transcription factors (Figure 2) 

during embryogenesis, and during adult life the transcrip-

tion factors regulate the expression of pancreatic hormones. 

 Endodermal formation is linked to expression of the 

Forkhead Box factors FoxA1 and FoxA2, where deletions 

of FoxA2 have been shown to interfere with the formation 

of endoderm in mouse models.114 Pdx-1 is considered 

the “master regulator” of pancreatic development, as it is 

involved in both the early development of the pancreas and 

in the functioning of mature β-cells during adulthood.113,115 

Differentiation of the exocrine and endocrine pancreatic 

partitions occurs rapidly following the fusion of the dorsal 

and ventral buds, with expression of Hes-1 and Neurog3 

in the precursor cells directing the corresponding compart-

mental fates via notch signaling.116 Persistent expression of 

NeuroD1 maintains endocrine cell fate.117 A study using 

homozygous NeuroD1-/- mice showed a decrease in the 

growth of insulin-producing cells.118

Once endocrine cell fate has been established, the tran-

scription factors Pax4 and Pax6 direct the differentiation of 

individual hormone-producing cells.113 Differentiation of 

β-cells is eventually driven by the expression of Nkx2.2 and 

Nkx6.1. Interestingly, expression of Nkx2.2 has been observed 

in α and PP-cells; however, its knockout results in the disrup-

tion of the development of β-cells.119 Taken together, these 

results suggest that Nkx2.2 and Nkx6.1 are imperative for 

β-cell differentiation.

Due to the limitations of pancreas and islet  transplantation, 

the requirement for the generation of an alternative β-cell 

that produces insulin in a regulated manner while evading 

degradation by the immune system is of utmost impor-

tance. Table 3 summarizes a number of studies which have 

expressed beta cell transcription factors for the reversal of 

T1D in animal models. The generation of artificial β-cells 

for the reversal of diabetes through the transfer of pancreatic 

transcription factors has been extensively studied in liver 

tissue due to its common developmental origin with the 

pancreas,68 which makes it readily able to transdifferentiate. 

Ferber et al directly delivered the β-cell transcription factor 

Pdx-1 to liver tissue via a recombinant adenovirus in an 

endeavor to correct hyperglycemia by inducing the expres-

sion of insulin in the liver in vivo.17 The study showed that 

expression of Pdx-1 in the livers of diabetic mice resulted in 

insulin expression and secretion, and as a consequence, the 

maintenance of normal blood glucose levels. However, the 

restoration of normoglycemia was only for 8 days, which is 

considerably short. Furthermore, the development of hepatitis 

in the liver due to exocrine differentiation led to an increased 

likelihood of autoimmune destruction.17,97

Similarly, Kojima et al reported the development of 

exocrine differentiation in the livers of STZ-diabetic mice 

after delivering Pdx-1 with the use of a helper-dependent 

adenovirus.97 This was most likely due to the continuous 

expression of high levels of Pdx-1 as a consequence of the use 

of the ubiquitously expressed elongation factor-1α promoter. 

To date, the process of transdifferentiation from hepatocytes 

to pancreatic tissue via the direct delivery of Pdx-1 has been 

performed on multiple occasions.37,120–123 However, direct 

delivery of Pdx-1 has been pursued in a variety of other 

cell types, including mouse pancreas via the bile duct,124 rat 

intestinal epithelium-derived cells (IEC-6),125 and primary 

HNF6, GATA-4, GATA-6,
HNF4α, HNF1β, Hex, FoxA2,

Hb9, Hlxb9, Pdx-1, Pbx-1,
Sox9

Hes1, Prox1

Ptf1α (p48)

Pax4

Pax6, Brain4,
FoxA1, Arx, MafB

Neurog3, NeuroD1

Nkx2.2, Nkx6.1,
MafA, Lmx1.1

Duct cell

Exocrine
cell

β-cell

γ-cell

α-cell

δ-cell

Figure 2 β-cell transcription factor hierarchy.
Notes: Pancreatic hormone-producing cell differentiation and function is governed by the temporal and spatial expression patterns of the pancreatic transcription factors. 
The differentiation of insulin-producing β-cells is directed by the expression of Pdx-1, Neurog3, Neurod1, Pax4, Nkx2.2, Nkx6.1, and MafA.
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Table 3 β-cell transcription factors used for the reversal of T1D in animal models

Transcription  
factor used

Target  
cell/tissue

Vector used Animal  
model

Outcome Reference

Pdx-1 Liver (in vivo) Recombinant- 
adenovirus

STZ-Balb/c and  
STZ-C57BL/6

Expression of Pdx-1 resulted in an increase in hepatic  
immunoreactive insulin content and an increase of 300%  
in plasma immunoreactive insulin levels, compared with  
that in mice treated with control adenovirus. Hepatic  
immunoreactive insulin induced by Pdx-1 was processed to  
mature mouse insulin 1 and 2 and was biologically active; it  
ameliorated hyperglycemia in diabetic treated mice

17

Liver (in vivo) HDAD STZ-mice Produced hypoglycemia that lasted only about a week,  
exocrine differentiation in the liver resulting in fulminant  
hepatitis

97

Hepatocytes  
(ex vivo)

Lentivirus STZ-Scid mice Transduced cells expressed insulin at both mRNA and  
protein level, and showed glucose-responsive production  
of insulin with expression of a number of β-cell  
transcription factors. Upon transplantation in STZ-Scid  
mice, reduced blood glucose levels for up to 2 months

37

Liver (in vivo) Recombinant- 
adenovirus

STZ-Balb/c  
mice

Hepatic insulin production that reversed diabetes for up  
to 8 months; normal hepatic function. Transdifferentiation  
of liver tissue characterized by persistent expression of  
endogenous β-cell transcription factors

118

Liver (in vivo) AAv and  
plasmid/unrelated  
adenovirus  
cotransfection

STZ-C57BL/6 
mice

AAv-mediated transfer of Pdx-1 did not result in any  
improvement in hyperglycemia in the diabetic mice.  
However, cotransfection of plasmid containing the  
β-cell transcription factor with an unrelated adenovirus  
corrected diabetes for up to 2 months. No deleterious  
effects on liver function

119

Hepatocytes  
(ex vivo)

Recombinant  
adenovirus

STZ-NOD/Scid 
mice

Pdx-1 treated human liver cells expressed and stored  
insulin in defined granules, and secreted the hormone in  
a glucose-regulated manner. when transplanted under  
the renal capsule of diabetic NOD/Scid mice, the cells  
ameliorated hyperglycemia for prolonged periods of time

120

BMSC (ex vivo) Retrovirus STZ-Scid mice Expression of all four islet hormones and transcription  
factors except NeuroD1. Significant insulin content, as well  
as glucose-stimulated insulin release. Cell transplantation  
into STZ-Scid mice resulted in further differentiation,  
including induction of NeuroD1, and reduction of  
hyperglycemia

35

MSC (ex vivo) Recombinant- 
adenovirus

STZ-mice Transduced MSCs expressed multiple islet-cell genes  
including Neurog3, insulin, GK, GLUT2, and glucagon.  
Produced and released insulin/C-peptide in a weak,  
glucose-regulated manner. Upon transplantation into STZ- 
mice, euglycemia was maintained for at least 42 days

129

AMSC (ex vivo) Retrovirus STZ-mice Stable expression of Pdx-1 in AMSCs did not induce the  
pancreatic phenotype in vitro. Upon transplantation, STZ- 
mice showed significantly decreased blood glucose levels  
and increased survival. Transplanted stem cells became  
engrafted in the pancreas, wherein they expressed insulin  
and C-peptide

133

Neurog3 Liver (in vivo) Adeno- 
associated virus  
and plasmid/ 
unrelated  
adenovirus  
cotransfection

STZ-C57BL/6  
mice

AAv-mediated transfer of Neurog3 did not result in  
any improvement in hyperglycemia in the diabetic mice.  
However, co-transfection of plasmid containing the  
β-cell transcription factor with an unrelated adenovirus  
corrected diabetes for up to 2 months. The livers from  
mice treated with Neurog3 and AdvhFiX exhibited cystic  
lesions and enlarged nuclei

121

Liver (in vivo) Recombinant- 
adenovirus

STZ-C57BL/6  
mice

Pdx-1/vP16 expression, together with NeuroD1 or  
Neurog3, markedly induced insulin gene transcription and  
ameliorates glucose tolerance

138

(Continued)
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duct cells.126 Delivery of a combination of pancreatic tran-

scription factors (Pdx-1, Neurog3, and MafA) was successful 

in converting pancreatic exocrine cells in vivo to closely 

resemble β-cells,127 and served as evidence for the use of 

transcription factor combinations. Despite the transduced 

cells showing all the characteristics of normal β-cells, they 

were limited by the low number of successfully converted 

exocrine cells and the fact they did not organize themselves 

into islet structures.

Due to the success of Pdx-1 to induce pancreatic trans-

differentiation and generate artificial β-cells in a number 

of differentiated cell types, there was a logical transition to 

stem cells as targets to exploit their regenerative capabili-

ties and plasticity. Considering that MSCs possess unique 

immune-evading capabilities, their use as targets for gene 

transfer has been pursued with great interest. Pdx-1 has 

been delivered to MSCs from a variety of sources, includ-

ing BMSC,35,128–132 umbilical cord MSC,133 and adipose-

derived MSC36,134,135 with varying success in the generation 

of glucose-responsive artificial β-cells. Embryonic stem 

cells (ESCs) have also been targeted for transfer of Pdx-1, 

with a study by Miyazaki et al showing that a murine ESC 

line (EB3) could be induced to differentiate into artificial 

β-cells. However, due to a lack of expression of pancreatic 

genes in vivo, there was no therapeutic potential.136 As a 

result, this was followed with a number of studies in other 

ESC lines137–139 attempting to improve the generation of 

artificial β-cells that would be suitable candidates for thera-

peutic adaptation.

Considering that Neurog3 has a pivotal role in defining 

the endocrine cell fate and is located lower in the β-cell 

transcription factor hierarchy, it could potentially overcome 

the problem of exocrine differentiation and may be used to 

produce artificial β-cells. However, most studies have 

reported low levels of insulin production after delivery of 

Neurog3.121,126,140–142 A study using adenoviral transfer of 

Neurog3 and betacellulin to oval cells resulted in the pro-

duction of insulin and transdifferentiation;143 however the 

most effective use of Neurog3 delivery was in combination 

with other transcription factors.127 To successfully over-

come the exocrine differentiation induced by the transfer 

of Pdx-1, Kojima et al expressed NeuroD1 and betacel-

lulin in the livers of STZ-treated diabetic mice.97 They 

demonstrated the restoration of normoglycemia in these 

Table 3 (Continued)

Transcription  
factor used

Target  
cell/tissue

Vector used Animal  
model

Outcome Reference

Pancreas  
(in vivo)

Adenovirus Rag1-/-/NOD  
mice

Combination of three transcription factors Neurog3,  
Pdx-1, and MafA reprogrammed differentiated pancreatic  
exocrine cells in adult mice into cells that closely resemble  
β-cells. The induced β-cells were indistinguishable from  
endogenous islet β-cells in size, shape and ultrastructure.  
They expressed genes essential for β-cell function and  
ameliorated hyperglycemia by remodeling local vasculature  
and secreting insulin

125

NeuroD1 Liver (in vivo) HDAD STZ-mice Diabetes was partially reversed by a combination of  
NeuroD1 and betacellulin, without producing hepatitis.  
Treated mice were healthy and normoglycemic for the  
duration of the experiment (.120 days). Detected insulin  
and other islet-specific transcripts, including proinsulin- 
processing enzymes, β-cell transcription factors Neurog3,  
Pax6, Pax4, Nkx2.2, and Nkx6.1. immuno-electron  
microscopy showed typical insulin-containing granules

97

H4iiE cells  
(in vitro +  
in vivo)

Retrovirus STZ-NOD/ 
Scid mice

Following transduction, cells were able to synthesize, store  
and secrete insulin within storage granules. Expressed  
Pdx-1, NeuroD1, Pax6, Nkx2.2, and Nkx6.1, in addition to  
rat insulin 1 and 2, glucagon, somatostatin, proconvertase 1  
and 2 (PC1/2), and pancreatic polypeptide. Upon  
transplantation in NOD/Scid mice, the cells secreted  
insulin in response to increasing concentrations of glucose  
and restored normoglcyemia

141

Notes: This table describes a number of studies utilising in vivo or ex vivo β-cell transcription factor gene transfer for the reversal of T1D in animal models. it does not list 
all studies performed in these scenarios, nor does it describe any in vitro β-cell transcription factor gene transfer studies.
Abbreviations: AAv, adeno-associated virus; AMSC, adipose-derived MSC; BMSC, bone marrow-derived MSC; HDAD, helper-dependent adenovirus; MSC, mesenchymal 
stem cells; T1D, Type 1 diabetes; NOD, nonobese diabetic; STZ, streptozotocin; Scid, severe combined immunodeficiency; GK, glucokinase.
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mice for more than 120 days, along with the expression 

of pancreatic transcription factors Neurog3, Pax6, Pax4, 

Nkx2.2, and Nkx6.1. Most importantly, they did not observe 

any exocrine differentiation or significant hepatotoxicity. 

The ability of NeuroD1 to strongly induce insulin expres-

sion also makes it an ideal alternative for the generation 

of artificial β-cells.126,144

Our laboratory has reported promising results using viral 

delivery of NeuroD1 to a genetically modified rat liver cell 

line (H4IIE) which does not express β-cell transcription 

factors. The H4IIE cells were engineered to express both 

insulin and NeuroD1,145 and following transduction were 

able to synthesize, store, and secrete insulin within storage 

granules. Upon transplantation in NOD/Scid mice, the cells 

secreted insulin in response to increasing concentrations of 

glucose and restored normoglycemia. They also induced the 

expression of Pdx-1, NeuroD1, Pax6, Nkx2.2, and Nkx6.1, 

in addition to rat insulin 1 and 2, glucagon, somatostatin, 

proconvertase 1 and 2 (PC1/2), and pancreatic polypeptide. 

This study provides evidence for the potential use of NeuroD1 

in gene therapy protocols to induce safe differentiation.

Pax4 is necessary for defining β-cell fate and could be 

used for the generation of artificial β-cells. A study by Liew 

et al showed that overexpression of Pax4 in human ESCs 

enhances their ability to form putative β-cells.146 This was 

supported by a study that showed that insulin-producing cells 

generated via the overexpression of Pax4 in mouse ESCs and 

selected for nestin expression were capable of maintaining 

normal blood glucose levels for 14 days.147 The use of ESCs 

as targets for gene therapy is, however, limited by their pro-

pensity for teratoma formation, which limits their potential 

for clinical application.148,149

Since knockouts of Nkx6.1 in mice have shown a dis-

ruption in the development of β-cells, the use of the β-cell-

specific transcription factor makes it a good candidate for 

gene transfer applications. It has been demonstrated that 

ectopic expression of Nkx6.1 alone is not a strong inducer 

of upper-hierarchy β-cell transcription factor expression, and 

that only upon coexpression with Pdx-1 was it capable of sub-

stantial insulin expression and glucose-responsive secretion 

of insulin.150 The lack of expression of the full hierarchy of 

β-cell transcription factors makes Nkx6.1 a mediocre choice 

for the generation of artificial β-cells for analysis in animal 

models of diabetes.

Conclusion
Reversal of T1D via gene transfer in animal models has had 

varying success to date. The choice of the model to assess 

the success of any potential therapy is of significant impor-

tance, as the future clinical application of T1D therapies in 

humans should be primarily assessed in a model of diabetes 

which closely resembles the human situation. Currently, the 

NOD mouse model is the most widely studied and shows 

similar pathophysiology to human diabetes. With the devel-

opment of improved molecular techniques such as general-

ized  knock-outs, tissue-specific knockouts, and knock-ins, 

it should be possible to generate a large number of new 

animal models for specific diabetes research. Considering 

the autoimmune nature of diabetes, overcoming recurrent 

auto immunity toward engineered cell therapies is one of the 

major hurdles facing this area of research. In addition, mim-

icking the tightly regulated control of glucose concentrations 

which occurs within normal β-cells is a phenomenon that 

has yet to be exquisitely adapted in current cell therapies. In 

this review, we have suggested that gene transfer of β-cell 

transcription factors and insulin show considerable prom-

ise in overcoming these challenges. Looking to the future, 

if a cell therapy is to be brought to the clinic, we believe 

that the targeting of an allogeneic tissue source capable of 

circumventing the autoimmune response for the generation 

of artificial β-cells shows most promise in overcoming the 

current challenges limiting cell and gene therapies for the 

treatment of T1D.
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