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Abstract: Autophagy is an important and highly conserved catabolic process with roles in 

development, homeostasis, and cellular stress responses. It describes various distinct pathways 

for the delivery of cytoplasmic materials (including misfolded protein aggregates and some 

organelles) to the lysosome for degradation and component recycling. The best understood form 

of autophagy (macroautophagy) describes the de novo assembly, maturation, and trafficking of 

a unique double membrane-bound organelle – the autophagosomes – that sequesters cytoplas-

mic materials and ultimately merges with the lysosomal compartment to form a degradative 

autolysosome. To rapidly assemble such a structure in response to stimuli, cells express a family 

of dedicated autophagy-related (ATG) gene products that act sequentially to control membrane 

events leading first to the nucleation of an isolation membrane or phagophore, followed by 

phagophore expansion, and sealing to form an autophagosome that traffics to – and ultimately 

fuses with – the lysosome. These molecules are activated in response to upstream signaling 

pathways (notably, the mechanistic target of rapamycin [mTOR] pathway), and comprise protein 

and lipid kinases, putative membrane coats, and unique ubiquitin-like conjugation systems. In 

concert, a barrage of accessory proteins involved in various membrane trafficking pathways 

focused on the endosomal compartment are co-opted at the assembly site to facilitate autopha-

gosome biogenesis. Understanding the integrated pathways that coordinate autophagosome 

assembly at the molecular level will be crucial if we are to realize the potential for autophagy 

manipulation in future disease therapies.

Keywords: autophagy, ATG proteins, lysosome, phagophore, omegasome, autolysosome, 

membrane trafficking, ULK1, mTOR, PI(3) kinase, PI3P, LIR motif

Introduction: an overview of autophagy
The term autophagy was coined from ancient Greek, meaning to “self-eat”. It describes 

several distinct catabolic recycling pathways through which cytoplasmic material is 

degraded in the lysosome, with the resulting macromolecular building blocks liberated 

for re-use in the cytoplasm.1 The most widely studied autophagy pathways involve the 

formation of double-membrane bound vesicles (autophagosomes) that encapsulate 

cytoplasm and organelles for trafficking to the lysosome (accurately described as 

“macroautophagy”), but there are other routes for delivery of cytoplasmic material into 

this degradative compartment; these are known as “microautophagy” and “chaperone-

mediated autophagy” (CMA). In microautophagy, the lysosomal membrane invaginates 

to engulf small portions of cytoplasm containing proteins that are often specifically 

targeted by Hsc70, as well as a small part of the bulk cytoplasm.2,3 CMA describes a 

process by which the same chaperone, Hsc70, targets proteins directly (via a consensus 
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KFERQ sequence) for degradation by directly importing 

them through the lysosomal Lamp2A receptor.4

This review focuses on mammalian macroautophagy, 

which we will hereafter refer to simply as “autophagy”. 

During this process the canonical double membrane-bound 

autophagosomes form at nucleation sites known as an iso-

lation membranes or phagophores (Figure 1 for the basic 

 terminology). Importantly, autophagy can be further clas-

sified into basal and inducible forms, with basal autophagy 

serving a housekeeping role, whereas inducible autophagy 

accounts for the engulfment of bulk cytoplasm in times 

of stress (eg, during nutrient deprivation). To add to the 

complexity, both basal and inducible forms can contribute 

to the sequestration and degradation of selective cellular 

components. Indeed, there is probably an element of selec-

tivity in all types of autophagy.5 Thus, the terms “selective” 

and “selective and exclusive” autophagy have recently been 

introduced to more accurately classify the process.6

Autophagy in homeostasis and disease
Autophagy primarily functions as a stress response pathway 

that liberates amino acids and other cellular building blocks 

in times of paucity.7 It was first described in the 1960s,8 

but has only been studied beyond a purely descriptive level 

much more recently,9 leading on from the extensive knowl-

edge gained on the key molecular players through genetic 

screens in yeast.10,11 Autophagy was long regarded as an 

alternative cell death pathway (type II cell death), but more 

recently autophagy has come to be viewed as being much 

more of a cellular survival mechanism.12 That said there are 

multiple molecular links between the pathways of apoptosis 

and autophagy (eg, Marino et al)13 meaning that in some 

circumstances the regulation of these apparently opposing 

cellular responses cannot be regarded separately.

Most cells maintain a low level of basal autophagy 

whose role is probably to clear damaged and damaging 

proteins that would otherwise accumulate as a consequence 

of normal cell function.14 Such a role is highlighted by 

studies on calorie restriction, a trigger that has been shown 

to extend lifespan in a range of organisms,15 most likely 

through restricting the buildup of toxic cellular waste. In 

accordance with these important roles in maintaining nor-

mal cellular function, autophagy has been implicated in a 

wide range of diseases. These include infectious diseases, 

where autophagy is required to clear invading pathogens 

and contributes to the acquired immune response, as well 

as degenerative diseases (eg, neurodegenerative conditions; 

heart disease; diabetes), and cancer. Jiang and Mizushima16 

have provided an excellent general overview of autophagy 

in disease, while a number of other recent reviews detail 

the roles of autophagy in immunity and specific types of 

diseases.16–18 Autophagy impairment affects neurons in par-

ticular – presumably because the extended lifespan and poor 

renewability of this highly specialized cell type makes them 

especially susceptible to accumulating toxicity, and the links 

between autophagy and neurodegenerative disease is expertly 

covered elsewhere.19,20 The role of autophagy in cancer is 

somewhat more complex.21,22 On the one hand, cells toward 

the center of an expanding solid tumor are likely to rely on 

autophagy to maintain a pool of cellular building blocks as 

nutrients and oxygen become restricted.23 Here, a mechanistic 

block in autophagy might result in a tumor being unable to 

sustain itself, thereby making autophagy a potential thera-

peutic target. On the other hand, as autophagy is important 

for keeping damaging materials in the cell to a minimum, its 

downregulation might contribute to tumorigenesis through 

the buildup of genotoxic stress.22

Selective autophagy
There are several known types of selective autophagy that 

play roles in cellular homeostasis and responses to infec-

tious challenge. Xenophagy describes the process through 

which invading microorganisms are specifically targeted 

for degradation via recognition and engulfment by the 

autophagy machinery.24 This type of autophagy is important 

in the immune response to some pathogens.18 Aggrephagy 

is responsible for the sequestration and degradation of 

aggregated proteins too large to be accommodated in the 

proteasome.25 Notably, a number of human diseases have been 

linked to the inefficient clearance of aggregate-prone proteins, 

A

Nucleation Phagophore Autophagosome AutolysosomeLysosome

B C D E

Figure 1 Terminology used to describe the stages of autophagosome assembly 
during (macro)autophagy.
Notes: (A) Nucleation: the first autophagy proteins begin to assemble at a 
membrane site that will subsequently mature to become and/or template a 
single autophagosome. (B) The isolation membrane or phagophore develops: 
this cytoplasmic sequestering structure is effectively an incomplete/unsealed 
autophagosome which grows, is shaped, and ultimately seals to form a 3D structure 
with double membrane (thereby engulfing parts of the cytoplasm and/or cargo) that 
is the completed autophagosome (C). The autophagosome is a motile transport 
vacuole that leaves the site of nucleation/assembly (which in mammalian cells is 
rapidly dismantled) and traffics to the lysosome (D), where it fuses to form an 
autolysosome (E). Here, macromolecules are degraded into their constitutive 
building blocks by acidic hydrolases that are released back into the cytoplasm via 
specific retrograde pumps (E).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biochemistry 2015:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

41

Autophagosome biogenesis and maturation

for which treatment could entail the appropriate stimulation 

of autophagy (eg, Sarkar and Rubinsztein).26 Damaged, sur-

plus, or redundant organelles are also specifically marked for 

autophagic degradation; an excellent example of this being 

the mitophagy pathway for mitochondrial degradation.27 

Mitophagy is a highly selective process by which only the 

damaged or redundant parts of the mitochondrial network 

are specifically exiled before being sequestered into autopha-

gosomes by the actions of a variety of adapter molecules 

that recruit the autophagy machinery.28 This process is seen 

during normal cellular homeostasis, and is also upregulated 

during erythroid terminal differentiation (eg, Betin et al).29 

The importance of regulated mitochondrial clearance by 

mitophagy is evident in Parkinson’s disease, where early onset 

(hereditary) forms are often associated with loss-of-function 

mutations in mitophagy-linked proteins, including PINK1 

(PTEN-induced putative kinase 1) and Parkin.28 Cell-based 

in vitro studies have provided a molecular explanation for the 

cooperative actions of PINK1 and Parkin during mitophagy, 

in which PINK1 interrogates mitochondria for energetic 

functionality through a pathway of constitutive import and 

degradation. This pathway is abrogated in damaged mito-

chondria, leading to the targeted recruitment of Parkin and 

subsequent Parkin-mediated ubiquitylation of mitochondrial 

surface proteins.30 Key to efficient mitophagy is the regulated 

exile of damaged organelles from the network coordinated 

by the mitochondrial membrane fission machinery, and in 

conditions where mitochondrial dynamics are suppressed 

mitophagy is strongly blocked.31–33 Other organelles can 

be targeted for autophagic degradation when damaged; for 

example, parts of the endoplasmic reticulum are seques-

tered into autophagosomes under endoplasmic reticulum 

stress conditions (reticulophagy),34 while a pathway for the 

selective autophagic degradation of peroxisomes (known as 

pexophagy) also exists.35 Further details on the molecular 

regulation of selective autophagy can be found in a number 

of excellent recent reviews (eg, Lamark and Johansen,25 

Svenning and Johansen36).

The molecular mechanisms 
controlling starvation-induced 
autophagy
There are more than 30 proteins directly involved in autophagy, 

playing differing roles at the various stages of autophagosome 

assembly, maturation, and trafficking. Most of these key 

molecular regulators were first identified in yeast, and the pro-

teins identified in the original screens10,11,37 are now collectively 

referred to as ATG (AuTophaGy-related) genes.38

For simplicity, the process of autophagosome biogenesis 

can be divided into a number of sub-stages: nucleation; 

elongation of the phagophore; closure of the phagophore to 

form an autophagosome; trafficking to the lysosome; and 

fusion of the outer autophagosomal membrane with the 

lysosome to deliver cargo39 (Figure 1). All of these events 

involve complex, tightly localized and coordinated molecular 

signaling, recruitment, and trafficking steps, and the ATG 

proteins that drive these sequential processes are classed 

into functional groups corresponding to these substages 

of autophagy. Correspondingly, the sequential and largely 

hierarchical recruitment of these autophagy proteins to the 

site of autophagosome assembly has been well characterized 

in yeast (where a single assembly site, the pre-autophago-

somal structure or “PAS” exists) and in mammals (where 

multiple assembly sites arise simultaneously and apparently 

stochastically throughout the cytoplasm). Several recent 

studies paint a more complex picture of the recruitment and 

actions of autophagy proteins at assembly sites, with the 

stability of “early” players positively reinforced by down-

stream factors whose recruitment critically depends on the 

former40–43  (Figure 2). The majority of autophagy proteins 

dissociate from the site of autophagosome assembly just 

prior to completion of the intact autophagosome (with [green 

fluorescent protein] GFP-labeled ATG5 structures remaining 

for no longer than 3–4 minutes during starvation-induced 

autophagy in human cells in vitro; our unpublished observa-

tions;40,42–44), and it is likely that the coordinated removal of 

certain proteins and protein complexes is equally important 

for efficient, productive autophagosome assembly.

The nucleation stage: autophagy 
induction/nutrient sensing
Cellular responses to nutrient availability
In nutrient replete conditions, mTOR (mechanistic target 

of rapamycin) is held in a constitutively active state, and 

coordinates cell growth and proliferation, while inhibiting 

autophagy. Nutrient deprivation, particularly amino acid 

starvation, inactivates mTOR, which releases the brake on 

autophagy leading to rapid assembly of autophagosomes.45 

Information about nutrient levels in the cell is decoded by 

mTOR via the Rag (Ras-related small GTP-binding protein) 

GTPase family,46 which in their GTP bound state (favored in 

the presence of amino acids) facilitate the translocation of 

mTOR to cellular locations enriched for the mTOR activator, 

Rheb (Ras homology enriched brain),47 while simultaneously 

acting as part of a regulatory platform.48 Energetic stress can 

be sensed by an increase in adenosine monophosphate (AMP) 
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through AMPK (AMP kinase). One of the consequences of 

nutrient limitation is a drop in cellular ATP levels (or more 

accurately, a change in the ATP:AMP ratio). This causes acti-

vation of AMPK, which inhibits mTor directly or indirectly 

by causing downstream inhibition of Rheb. AMPK can also 

directly activate ULK1 (uncoordinated 51-like kinase 1; 

the mammalian homologue of yeast ATG1 [see “ULK1 

autophagy protein kinase complex” section]) in response to 

low ATP levels,49,50 further amplifying the autophagy response 

and providing an additional level of control.

Another way in which mTor can be inactivated in response 

to environmental change is through the inhibition of upstream 

regulatory inputs. For example, insulin or growth factor 

stimulation results in the activation of the PKB (protein 

kinase B)/Akt pathway, one downstream consequence of 

which is Rheb activation.51 This means that in the absence 

of growth factors and/or insulin, a further obstruction to 

autophagy activation is removed. Furthermore, in glucose 

rich conditions, the cAMP (cyclic AMP)-dependent protein 

kinase A (PKA) signaling pathway suppresses autophagy. 

When glucose levels are limiting, elevated cAMP levels lead 

to inactivation of the Ras-PKA pathway, which is predicted 

to trigger ATG1 phosphorylation/activation (at least in yeast), 

meaning that the Ras-PKA pathway acts in concert with 

mTor to block autophagy under nutrient rich conditions.51,52 

Additionally, LC3 (microtubule-associated protein 1 Light 

Chain 3), which is a relatively “late” autophagy protein 

(Figure 2 and following sections), has been shown to be a 

direct target of PKA in mammalian cells.53 This indicates that 

the PKA pathway has the potential to regulate autophagy at 
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Figure 2 Protein complexes acting during starvation-induced autophagosome assembly.
Notes: (A) mTorC1 and its accessory partners. (B) The ULK1 complex and its constitutive components. (C) The autophagy Pi(3) kinase complexes with autophagy 
activating and inhibiting actions. The core complex is shown in orange and red. (D) The conjugation apparatus that acts to form the ATG5-12 complex. (E) ATG proteins 
required for LC3 lipidation (a process that requires ATG5-12-16 targeting to the site of autophagosome nucleation).
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multiple levels, although it was noted that none of the other 

mammalian ATG8-related proteins (nor, indeed, yeast ATG8) 

possesses this PKA consensus sequence.53

The mTor complex 1 (mTorC1)
mTor forms two distinct complexes in mammalian cells – 

mTorC1 and mTorC2 – with only mTorC1 having nutrient 

sensing capabilities.54 The mTorC1 complex consists of 

mTor, mLST8 (mammalian lethal with SEC13 protein 8; also 

referred to as G protein beta subunit-like [GβL]), and Raptor 

(regulatory associated protein of mTOR)54 (Figure 2A). 

Raptor is believed to be the subunit that controls the targeted 

localization of mTorC1 to signaling hubs, but the function of 

mLST8 is not known.47 Under basal conditions, mTorC1 is 

associated with, and suppresses ULK1 and ATG13 activity 

by phosphorylation.55–57 This means that amino acid restric-

tion results in the activation of ULK1 and ATG13 – two key 

players acting during early autophagy initiation that will be 

described in greater detail below.

The ULK1 autophagy protein kinase complex
In their activated states – and in concert with FIP200 – 

ATG101, the autophagy kinase ULK1 and its partner ATG13 

form the ULK1-complex55–58 (Figure 2B). The ULK1 com-

plex is the molecular machinery that defines the nucleation 

stage of autophagic induction (Figure 2B). Its assembly 

results in the recruitment of the class III phosphoinositol-3 

kinase (PI(3)K) complex (see “The autophagy PI(3)K/

VPS34 complex” section) – also known as the vacuolar 

protein sorting 34 (VPS34) complex – and this is required 

for downstream events in the autophagosome assembly 

pathway59,60 (Figure 2B). ULK1 complex activity is mecha-

nistically linked to the recruitment and activation of the 

autophagic VPS34 complex, because Beclin1 (one of its core 

components [see “The autophagy PI(3)K/VPS34 complex” 

section ]) is a substrate for ULK1 kinase-mediated phospho-

rylation, and this regulatory switch initiates the assembly 

of the VPS34 complex.61 Intriguingly, ULK1 is also capable 

of inactivating mTor, exemplifying a positive feedback loop 

in the autophagy pathway62 (Figure 3). ATG13 is thought to 

be required to support the interaction between ULK1 and 

FIP200 in mammalian cells,57 as well as the association 

between ATG101 and ULK1,58 and it may also be directly 

phosphorylated by mTor. FIP200 is believed to be the mam-

malian counterpart of yeast ATG17,63 a protein considered 

to act as a scaffolding factor for the ULK1 complex, as 

well as potentially inducing local membrane curvature.64 

In addition to ULK1 activating downstream autophagy 
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Figure 3 Positive reinforcement of the hierarchical recruitment of autophagy 
proteins during autophagosome assembly.
Notes: (A) early stages of autophagosome assembly. (B) Positive membrane curvature 
at the autophagosome assembly site. (C) ATG14L has affinity for curved membranes. 
(D) The vPS34 Pi(3)kinase complex triggers localized Pi3P formation. (E) This platform 
of Pi3P stabilizes the ULK1 complex at the phagophore through a Pi3)-binding region 
in ULK1. (F) The ATG5/12/16 complex is recruited to Pi3P positive phagophores 
and wiPi2b. (G) ATG3 binds to and lipidates LC3 at curved membranes. (H) LC3 
stabilizes/recruits the ULK1 complex due to a LiR motif in ULK1.

effector proteins, the ULK1 complex serves as a scaffold 

for ATG9 vesicles,65 indicating that its function may be more 

important later relative to its time of assembly. Indeed, the 

yeast ATG1 complex is thought to sense membrane cur-

vature, and thus its ATG17-dependent localization to the 

phagophore assembly site would be further stabilized by 

membrane reshaping.64 Interestingly, there is evidence that 

ATG1 binds directly to ATG8 (LC3), and this has been shown 

to be required for complete activation of the ATG1 kinase 

complex66 (Figure 3). Additionally, the ULK1 complex is 

stabilized by the presence of the phosphoinositide lipid PI3P 

(see “PI3P recruits effector proteins: WIPI2, ATGS5/12/16” 

section), which indicates that positive reinforcement between 

autophagy proteins is critical for optimal autophagy; a lack 
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of PI3P results in a reduction of ULK1 lifespan on the 

autophagosome initiation site43 (Figure 3).

The ULK1 complex is also regulated by Rab proteins.67 

Rabs are small Ras-like GTPases that define membrane 

compartment identity to aid the specificity of membrane 

trafficking, and potentially facilitate vesicle docking.68 Rab 

proteins bind GTP, and usually it is only the GTP bound 

form that is involved in vesicle/target recognition. Rabs 

can be activated through specific GEFs (guanine nucle-

otide exchange factors) and inactivated by GAPs (GTPase 

activating proteins). Every Rab GAP that has been identified 

thus far contains a TBC (Tre2/Bub2/Cdc16) domain, which 

dictates the Rab GAP nomenclature. In a screen for TBC 

domain containing proteins, Longatti and Tooze67 identified 

the RabGAP TBC1D14 as a negative regulator of autophago-

some formation. The authors went on to validate Rab11 – the 

Rab regulated by TBC1D14 – as an important mediator of 

early autophagy events. Rabs have also been found to play 

distinct roles during later stages of autophagosome biogenesis 

and maturation as will be detailed later.

It is worth noting that at least five potential mammalian 

ATG1 homologs have been identified thus far, some of which 

have been implicated in autophagy under specific settings. 

ULK1 was the first to be shown to play a role in autophagy, 

and it remains the most widely studied.69,70 In addition to 

its regulation by phosphorylation ULK1, may also be post-

translationally regulated by ubiquitination and acetylation,70 

adding further complexity to autophagosome assembly 

control pathways.

elongation, shaping, and sealing  
the phagophore
The autophagy Pi(3)K/vPS34 complex
Inositol lipids and their phosphorylated derivatives, including 

PI3P, are important mediators of intracellular signaling, with 

different phosphorylated PIs marking varied membranous 

compartments; examples include PI(4)P and PI(4,5)P
2
 that 

decorate the Golgi apparatus,71 and PI3P which be found 

on early endosomes and the nascent autophagosome. The 

term “omegasome” has been coined to describe the PI3P 

membrane patch that is generated on or close to the ER (see 

“PI3P recruits effector proteins: WIPI2, ATGS5/12/16” 

section) during mammalian autophagy initiation.72 The 

marking of membranous compartments by differing PIs to 

some extent defines the compartment, because the presence 

of a specific PI – in concert with the actions of additional 

targeting/ stabilization factors – dictates the proteins that are 

recruited, and hence the associated biological activity that 

is focused on that cytosol-facing patch of membrane.73 As 

will become clear in the following sections, this scenario 

certainly holds true for the autophagy system.

In higher eukaryotes, three VPS34 complexes are present: 

I, II, and III. Complexes I and III regulate autophagy in a 

negative and positive fashion, respectively, while the class 

II complex functions in the endosomal network with no 

direct involvement in autophagy. The class I VPS34 com-

plex is a plasma membrane-associated component of the 

insulin-signaling pathway that controls mTor activity, and 

thus indirectly and negatively regulating autophagy.54,74 The 

core of the autophagic class III VPS34 complex is composed 

of the catalytic VPS34 subunit, with p150 (VPS15 in yeast), 

and Beclin1 (VPS30/ATG6 in yeast).75,76 VPS15 is found 

on all VPS34 complexes in yeast, and is thought to anchor 

the VPS34 complex to the membrane through N-terminal 

myristoylation, and positively modulate the activity of VPS34 

through an unknown mechanism.70,77 Beclin1 is considered 

to be the primary regulatory subunit of the class III VPS34 

complex, with which both positive and negative modulators 

bind to determine its context-specific roles during autophagy 

(Figure 2C). The best-characterized VPS34 class III complex 

contains ATG14L/Barkor, a peripheral ER protein that con-

centrates into puncta at early autophagosome initiation sites 

in response to stimuli.76 It is believed to have the capability 

to sense and maintain the membrane curvature, and prefer-

entially binds membranes enriched for PI3P.76 However, and 

as would be predicted from its involvement with the VPS34 

complex, ATG14L concentrates at the nascent autophago-

some before PI3P is formed,75 implying that, like with ULK1, 

ATG14L may be stabilized at the nascent autophagosome by 

the generation of PI3P (Figure 3).

A second VPS34 class III complex that positively regu-

lates autophagy contains UVRAG (UV-irradiation-resistance-

associated gene) in the place of ATG14L.78 Endophilin B1 

(also known as Bif1 [Bax-interacting factor 1]) associates 

indirectly with Beclin1 via UVRAG, and in common with 

ATG14L, Endophilin B1 is thought to sense and induce 

membrane curvature.79 Unlike the ATG14L-containing com-

plex, the UVRAG class III VPS34 complex also contributes 

to autophagosome maturation, although this idea remains 

controversial.70 Furthermore, an inhibitory class III VPS34 

complex can assemble from the core elements VPS34, p150, 

and Beclin1, with UVRAG and “Rubicon” (RUN domain 

protein as Beclin1 interacting and cysteine-rich containing).80 

This complex is thought to prevent both autophagy induction 

and maturation, and probably plays a role in the endosomal 

compartment.81
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An additional protein that is necessary for the assembly/

translocation of the VPS34 complex III is Ambra1  (Activating 

Molecule in Beclin1-regulated autophagy).82 Under normal 

conditions, Ambra1 sequesters the VPS34 complex to 

microtubules via binding to cytoplasmic dynein, but this 

interaction is disrupted upon starvation allowing Beclin1 

to translocate to the ER.60 This putative regulatory system 

for AMBRA1-mediated autophagy control has been thrown 

into doubt following the recent demonstration that Ambra1 

facilitates the association between ULK1 and TRAF6 (tumor 

necrosis factor receptor associated factor 6), an E3 ligase, 

with the ensuing ubiquitination activating ULK1.83 The exact 

regulation of Ambra1 remains controversial, with different 

studies also reporting conflicting data with regard to the 

phosphorylation status of Ambra1.60,83

PI3P generation is vital for autophagy, but in mammalian 

cells MTMR3 (myotubularin related protein 3; hereafter 

referred to as Jumpy) – a member of the myotubularin lipid 

phosphatase family – has been shown to be needed for pro-

ductive autophagosome assembly by acting as an important 

limiter of localized PI3P production.84 In support of this 

theory, yeast Ymr1 (myotubularin-related 1) – the only yeast 

myotubularin ortholog – has been shown to be needed for 

the completion of the nascent autophagosome.85 It is pos-

sible that PI3P needs to be asymmetrically distributed at 

the isolation membrane for the purposes of autophagosome 

assembly. In yeast the inside membrane of the autopha-

gosome is enriched for PI3P,86 which could be achieved 

via targeted myotubularin-mediated  dephosphorylation. 

Curiously, though, this asymmetric distribution pattern is 

reversed in mammals.86

Pi3P recruits effector proteins: wiPi2, ATG5/12/16
The localized formation of PI3P is an essential step for 

autophagosome assembly, because when this step is inhib-

ited by drugs such as wortmannin, autophagy is blocked.87,88 

One purpose of the generation of PI3P by the VPS34 class 

III complex is to recruit a number of effector proteins that 

translate the local PI3P signal into downstream membrane 

remodeling and autophagosome formation steps; however, 

until recently, a molecular outline of this process was missing. 

An essential PI3P effector protein family for autophagy is the 

WIPI (WD-repeat protein interacting with phosphoinositides) 

family, which in mammals comprises WIPI1–4 – the mamma-

lian functional homologs of yeast ATG18.89–91 Importantly, in 

mammalian cells, WIPI2b has recently been shown to recruit 

ATG16L1,92 which in turn recruits the ATG5-12 conjugate 

to form the ATG5/12/16L1 complex.93

The ATG5/12/16 complex is needed for ATG8 lipidation 

(see “Roles and regulation of ATG8 family members in 

autophagy” section), and is thought to act as a scaffold for 

the expanding autophagosome, which, in conjunction with 

ATG8, probably facilitates its growth.94,95 ATG5 is required for 

targeting ATG5-12 to the autophagosome formation site, and 

ATG5 can indeed arrive independently of ATG12; however, 

the presence of ATG12 is required for subsequent steps.96 In 

mammalian cells, the ATG5/12/16L1 complex localizes to 

the isolation membrane via ATG16L1. Indeed, if ATG16L1 

is mislocalized to the plasma membrane for example, LC3 

is lipidated at and incorporates into this compartment.93 

ATG16L1 binds directly to FIP200 and this interaction has 

been shown to be required for ATG16L1 localization to the 

phagophore.97 Additionally, ATG16 shows a preference for 

PI3P containing liposomes in vitro.95 In combination with 

the study of Dooley et al,92 this may indicate that there are 

several parallel processes by which ATG16L1 localizes to 

the nascent autophagosome.

ATG16L1 is found in pre-autophagosomal vesicles 

that derive from the plasma membrane, traffic through the 

endocytic compartment, and undergo homotypic fusion 

prior to their integration into the expanding phagophore.98–100 

Furthermore, ATG16L1 is believed to be a Rab effector for 

Rab33A/B, possibly explaining how the autophagy proteins 

are initiated to arrive at the nascent  autophagosome.101 

Interestingly, the Rab33 GAP, RUTBC1 (RUN And TBC1 

Domain Containing 1), has also been identified as an 

autophagy modulator.102

Ubiquitin-like conjugation systems in autophagy: 
ATG5-12 and LC3-Pe
In addition to the aforementioned complexes that regulate 

distinct, temporal membrane-associated events during early 

autophagosome assembly, there are two ubiquitin-like con-

jugation systems that are essential for autophagy (Figure 2D 

and E). The first conjugation reaction involves the covalent 

attachment of ATG5 to ATG12, and the second reaction con-

sists of ATG8 family members being conjugated to PE  (phos

phatidylethanolamine)103–105 – a reversible membrane anchor 

that is required for function of ATG8 in autophagy.104,106–109 

Neither ATG8 nor ATG12 display sequence homology with 

ubiquitin, yet each of their crystal structures reveals obvi-

ous ubiquitin-like folding.110 The respective conjugation 

reactions employ separate E2-like enzymes – ATG10 for 

ATG5 conjugation to ATG12, ATG3 for the lipidation of 

ATG8 – but ATG12 and ATG8 share ATG7 as their com-

mon E1-like enzyme. In fact, ATG7 binds to either ATG8 or 
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ATG12 in a mutually exclusive manner.111 One interesting 

difference between these two conjugation systems is that 

ATG5-12 appears to be constitutively conjugated, whereas the 

covalent attachment of ATG8 to PE is upregulated following 

autophagy stimulation.105,112 Importantly, the product of the 

“upstream” conjugation reaction – the ATG5-12 complex – 

acts as an E3-like ligase (in association with ATG16) to aid 

the covalent attachment of ATG8 to PE, which means that 

the ATG5/12/16 complex acts to speed up the transfer of 

ATG8 from ATG3 to PE without conveying any additional 

specificity.113

Membrane vesicle trafficking:  
ATG9 and ATG16
ATG9 acts immediately downstream of FIP200 in the 

autophagosome assembly pathway. It localizes to poorly char-

acterized membrane reserves near the trans-Golgi network 

(TGN) or the mitochondria in nonstarvation conditions, upon 

which it translocates to the autophagosome formation site 

during starvation.114–116 This transport step requires actin in 

yeast,117 and is dependent on myosin II in Drosophila;118,119 

however it is unclear how transport of ATG9 is regulated in 

mammalian cells. At the yeast phagophore assembly site, an 

estimated number of three roughly 30 nm ATG9-containing 

vesicles fuse to form the phagophore,114 in a process that is 

dependent on ATG1 and ATG13 for retrieval of ATG9 from 

the phagophore assembly site.120 ATG9 is not found on the 

autophagosome itself – most likely ATG9 interacts with the 

phagophore only briefly in a “kiss and run” fusion event, 

perhaps to donate membrane.121 Thus ATG9 cycling forms a 

separate membrane trafficking event – both the anterograde 

and retrograde movement of ATG9 are required for efficient 

autophagy.120 Intriguingly, ATG9 has also been found to be a 

direct target for ATG1 in yeast, with ATG9 phosphorylation 

critical for the recruitment of ATG2 and ATG18 (the yeast 

equivalents of mammalian WIPI proteins) to the assembling 

autophagosome.122 This again shows that there is positive 

reinforcement within the recruitment hierarchy of autophagy 

proteins. Interestingly, ATG9 feeds into the MAPK pathway 

via p38 interacting protein (p38IP), which is regulated by 

p38α MAPK: p38IP binds to ATG9 and is required for 

starvation-induced ATG9 trafficking.123

Autophagosome biogenesis requires the actions of 

SNARE proteins (soluble N-ethylmaleimide-sensitive fusion 

protein attachment receptors). SNAREs function to aid the 

docking and ultimately the fusion of transport vesicles with 

target organelles. In order to do this, SNAREs assemble 

specific binding pairs – one on each of the compartments 

that are to fuse – which means that only vesicles with the 

correct cognate SNARE will dock with the desired target 

compartment. One of the SNARE-requiring fusion steps is 

thought to be the homotypic fusion of ATG9 vesicles to create 

a tubule that turns into the phagophore, another being during 

ATG9 cycling.99,124 In addition to ATG9 trafficking to the 

forming autophagosome in membranous vesicles, ATG16L1 

has more recently been identified to arrive at the forming 

autophagosome from the plasma membrane on vesicular 

carriers.125 In fact, even though ATG16L1 and ATG9 display 

distinct trafficking pathways, they coincide in the recycling 

endosome from where they are proposed to traffic together 

to autophagosomes.125 Interestingly, autophagosome precur-

sor maturation has also been shown to require ATG16L1 

vesicle fusion, which is also demonstrably dependent on 

SNAREs.99

Roles and regulation of ATG8 family  
members in autophagy
Yeast have a single ATG8 gene, whereas the situation in 

mammalian cells is more complicated, with human cells 

expressing at least eight ATG8 paralogs separated into 

LC3 and GABARAP (gamma aminobutyric acid receptor 

associated protein) subfamilies. In the LC3 family there 

are LC3A, LC3B, LC3B2, and LC3C, while the GABA-

RAP family comprises GABARAP, GABARAP-L1/GEC1/

ATG8L, GABARAP-L2/GATE-16, and GABARA-L3. 

All ATG8 family proteins share structural similarities with 

ubiquitin,126 and all are cleaved shortly after synthesis to 

reveal a conserved C-terminal glycine (G120 for LC3B and 

G116 for all the GABARAP family members).104,106,127,128 

This exposed glycine is later covalently linked to PE (see 

“Ubiquitin-like conjugate systems in autophagy: ATG5-12 

and LC3-PE” section) as an essential step in autophago-

some assembly. The ATG8 family – particularly LC3B in 

mammals – is widely used as a marker for the forming 

and completed autophagosome.129 It is the only autophagy 

protein that remains attached to the autophagosome follow-

ing its completion, and has multiple proposed roles during 

autophagosome formation and maturation. LC3 was initially 

identified as a microtubule binding protein, and LC3B and 

GABARAPs display microtubule-binding capabilities at their 

N-termini.130–133 Despite this, no direct microtubule binding 

functions have yet been found to mediate autophagy.

ATG8 has membrane tethering and hemifusion proper-

ties in vitro,134 suggesting that it, and possibly also some 

members of the expanded family of mammalian ATG8s, may 

directly facilitate the fusion of the phagophore to form the 
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completed autophagosome; however, it has been noted that 

ATG8-mediated hemifusion does not occur in liposomes con-

taining physiological concentrations of PE.124 The findings of 

Nakatogawa et al134 have been confirmed to some extent in 

experiments using certain mammalian ATG8 family mem-

bers, both in a cell free system and in cells, where the deletion 

of the N-termini of GATE-16 and LC3 – responsible for the 

membrane fusion capabilities of the ATG8 family – resulted 

in the accumulation of immature phagophores and/or a fail-

ure in sealing liposomes.135 Interestingly, the amino acids 

that mediate membrane fusion are not conserved between 

LC3 and GATE-16, with positive amino acids responsible 

for fusion in LC3 and neutral amino acids in GATE-16.135 

Furthermore, in mammalian cells the fusion activity of LC3 

is dispensable for fusion of autophagic vacuoles with early or 

late endosomes,136 meaning that it is unlikely that this capabil-

ity of LC3 is required for autophagosome maturation.

In yeast, ATG8 protein concentration is one factor that has 

been found to influence autophagosome size, but this has no 

apparent effect on steady state autophagosome numbers or 

their rate of assembly.137 The density of ATG8 on the convex 

surface of the yeast phagophore corresponds with the density 

expected for a coat protein leading to the proposal that ATG8 

acts as a coat adaptor in concert with the ATG12-ATG5 

complex.138 This finding has been supported by an in vitro 

study by Kaufmann et al94 suggesting that ATG8 is part of 

a coat complex during autophagosome formation, which is 

subsequently disassembled by ATG4 deconjugase activity. 

ATG8 also serves a further scaffolding role of recruiting the 

ATG1 (ULK1) complex to the forming autophagosome,139 

this both positively reinforces autophagosome formation 

(Figure 3) and may support ULK1 targeting of proteins at 

precise locations on the forming autophagosome. LC3 has 

been shown to be required for autophagosome expansion, 

whereas GATE16/GABARAP is involved in autophagosome 

sealing.140 This important study highlights how regulated and 

sequential employment of different ATG8 family members in 

mammalian cells has the potential to fine-tune the autophago-

some assembly pathway to meet diverse cellular needs.

LC3 binds readily to the cargo adaptor p62 (sequestosome1 or 

SQSTM1).5 This means that as mentioned above “non selective” 

forms of autophagy have an element of specificity, since p62 

binds tightly to ubiquitinated protein targets. In mammalian 

cells, the various ATG8 family members show differing 

affinities for p62; LC3 efficiently incorporates p62 into 

autophagosomes, whereas GABARAP lacks this capability.141 

Importantly, p62 is not the only autophagy-associated cargo 

adaptor; neighbor of BRCA1 gene 1 (NBR1), which acts as 

a cargo receptor during selective autophagy,142 also  interacts 

directly with the main members of the ATG8 family.143 

 Conversely, Nix – a mitophagy cargo adapter  protein – binds 

preferentially to GABARAP family members.144 Interest-

ingly, an extensive autophagy network analysis identified 

67 ATG8 family interactors, and 31 of these were found to 

be specific for a single subtype of the ATG8 family.143 Once 

again, this shows how selective utilization of different classes 

of mammalian ATG8 proteins can have a profound effect on 

autophagosome cargo, providing further functional flexibility 

in the autophagic response.

The LiR motif as an important interacting  
module in autophagy that confers selectivity  
to the autophagy response
Many cargo adaptor and other proteins that bind to the ATG8 

family contain the consensus sequence WXXI/L, which is 

known as the LIR (LC3-interacting region) motif.36,145 In most 

cases, LIR motifs facilitate cargo receptor binding to ATG8 

family members, and are therefore important for cargo incor-

poration into the nascent autophagosome – examples include 

p62 and NBR1; however, LIR motifs have been identified 

in ULK1 and ATG12, and these facilitate targeting and/or 

stabilization of the autophagy machinery at the autophago-

some assembly site.66,94 Competition for LIR binding between 

cargo and the autophagosome assembly machinery has been 

demonstrated in vitro, revealing a plausible molecular mecha-

nism for the different functions of ATG8 on the inside and 

outside of the autophagosome (in cargo recognition and as 

a putative coat, respectively).94

Within the known LIR motifs, there are different classes 

with differential binding affinities for ATG8 family members. 

In the case of the LIR motif in NBR1, the binding sequence 

is YXXI, and exchanging the tyrosine at P1 to tryptophan 

increases the LC3 binding affinity of this motif, implying 

that additional factors might facilitate/strengthen this par-

ticular interaction.146 The atypical LIR motif identified in 

ATG12 includes residues Phe185 and Ile111 which are 

well separated in the primary sequence.94 Consequently, this 

LIR motif is tertiary structure-dependent; that is to say, it is 

formed in 3D space by precise folding of the polypeptide 

chain.94 Importantly, the LIR motif described for the cargo 

adaptor NDP52 is also atypical, in that it does not conform 

to the WXXI/L consensus, but nevertheless it binds readily 

to mammalian LC3C due to compensatory alterations in 

the aromatic pocket of its cognate ATG8 family member.147 

Perhaps most significantly, switching the native isoleucine at 

position 133 in the NDP52 LIR for tryptophan dramatically 
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increased its affinity for LC3C (into the nanomolar range), 

but simultaneously destroyed its specificity for LC3C.147

Based on these findings, it can be assumed that other 

noncanonical LIR domain-containing proteins exist in diverse 

cargo proteins, meaning that sequence analysis approaches 

that rely on classical properties in the primary structure 

alone (eg, iLIR; http://repeat.biol.ucy.ac.cy/iLIR/) will fail 

to identify these. To add to this complexity, LC3 binding to 

LIRs may be occluded and/or stimulated by posttranslational 

modifications; for example, the LIR motif of the mitophagy 

adaptor, FUNDC1 (FUN14 Domain Containing 1), contains 

a phosphorylation-competent tyrosine, and dephosphoryla-

tion at this site during hypoxia is required to activate LC3 

binding.148 Interestingly, FUNDC1 mitophagy activity is 

also regulated by phosphorylation/dephosphorylation at a 

two further sites, S13 and S17, by CK2/PGAM5 and ULK1 

respectively,149,150 meaning that there are likely to be multiple 

regulatory influences on LIR motif activity.

Further roles for ATG8 family members 
during autophagosome maturation
LC3 plays key roles on the outside as well as the inside 

of the autophagosome. By acting as a Rab GAP adaptor, 

LC3 integrates autophagosomes into the global membrane 

trafficking network, enabling them to be sorted to and fuse 

with the correct endomembrane components.151 Here, the 

Rab GAP TBC1D5 was found to bind competitively to 

retromer components on the recycling endosome and to 

LC3. GABARAP is believed to act as a scaffold to mediate 

signal transduction through the RabGAP, TBC1D25 (also 

known as ornithine aminotransferase-like 1 or Oatl1),152 and 

TBC1D25 is required for fusion of the autophagosome with 

the lysosome.152 It has GAP activity toward Rab33, and active 

Rab33 is thought to recruit the ATG5/12/16 complex to the 

phagophore. This could mean that Rab33 is inactivated as 

soon as GABARAP is recruited to the phagophore. As the 

ATG8 family members have been shown to play different 

roles in autophagosome biogenesis, and TBC1D25 prefer-

entially binds GABARAP,152 it is possible that the regulated 

removal of other ATG8 family members (eg, LC3B) from 

the outside of the autophagosome is required for optimal 

TBC1D25 binding to the mature autophagosome. It may 

also be that Rab33 needs to be deactivated by GATE16 to 

complete a phagophore, as GATE16 is required for autopha-

gosomal sealing; thus Rab33 inactivation could be a prelude 

to autophagosome completion. Rab7 has been shown to be 

required in conjunction with LC3 and FYCO1 (FYVE and 

coiled-coil domain containing 1) to form an adaptor protein 

complex, essential for plus end directed, kinesin-mediated 

microtubule transport.153 Subsequently Rab7 is required 

for autophagosome-endosome/MVB (multivesicular body) 

fusion and a depletion of Rab7 leads to an accumulation of 

autophagosomes.154 This also means that at least some ATG8 

is required on the outside of the autophagosome to mediate 

autophagosome trafficking.

Roles and regulation of the ATG4  
endopeptidase family
ATG4 is a cysteine endopeptidase that is essential for control-

ling ATG8 processing during autophagy. It serves two distinct 

roles, priming and delipidation.128 Initially, ATG4 cleaves 

newly synthesized ATG8 – which is produced in an immature 

pro-form – to reveal a C-terminal glycine (the priming step). 

The exposed glycine is subsequently conjugated to PE at the 

expanding isolation membrane, meaning that the priming 

step is indispensable for autophagy.128,155 The second role of 

ATG4 is to deconjugate membrane-bound ATG8 in order 

for ATG8 to disassociate from the membrane (the delipida-

tion step).107,128 ATG8 delipidation has been shown to be 

required for the completion of autophagosome assembly in 

yeast,137,156,157 although it is not yet known whether this holds 

true in mammalian cells.

Akin to the situation regarding mammalian ATG8 diver-

gence, ATG4 is represented by four paralogs in mammalian 

cells; namely ATG4A, ATG4B, ATG4C, and ATG4D. These 

are collectively known as the ATG4 cysteine endopepti-

dase family, or the autophagins.158 The structure of ATG4 

resembles that of the papain family of proteases, despite 

low sequence homology.159,160 Each of these ATG4 family 

members displays subtly differing substrate affinities for the 

various mammalian ATG8 family members, thus potentially 

allow fine-tuning of the autophagy response with respect 

to autophagosome form and content in mammalian cells. 

ATG4B displays the broadest substrate specificity,161–164 while 

ATG4A is selective for GATE16,165 and ATG4D shows activ-

ity exclusively against GABARAP-L1 in vitro.161,163

To add an additional level of regulatory complexity, 

ATG4B (but not other ATG4 family members is down-

regulated by RNF5 (Ring Finger Protein 5), an E3 ubiquitin 

protein ligase on membranous compartments.166 Reduced 

RNF5 levels leads to an increase in ATG4B, and subsequently 

lipidated LC3-II levels, but does not result in a change in the 

levels of the GABARAPs. Another example of ATG4 regula-

tion was demonstrated by Scherz-Shouval et al167 who showed 

that reactive oxygen species inhibit ATG4A and ATG4B, by 

modifying an essential cysteine located close to the catalytic 
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site triad of these family members. The authors hypothesized 

that ATG4s are active in a reducing environment; autophagy 

induction releases a burst of the oxidizing agent hydrogen 

peroxide, which inhibits ATG4A/B locally until the newly 

formed autophagosome leaves the oxidizing environment. 

At this point, ATG4 becomes active again and delipidates 

the appropriate ATG8 family member before the autopha-

gosome fuses with the lysosome.167 Atg4C and Atg4D both 

have a caspase cleavage site, and immediately downstream, 

a mitochondrial-targeting sequence, suggesting that apoptotic 

cleavage triggers mitochondrial import.168

in vivo studies of ATG4 deletion in mouse
The apparent specificity of ATG4 endopeptidases for ATG8 

family members reported in vitro is not supported by genetic 

deletion studies in mouse, which generally reveal a milder 

effect on autophagy than might be expected.169–171 This is 

perhaps due to adaptive redundancy in the developing mouse, 

nevertheless the ATG4B and ATG4C knockout models have 

provided clues as to the individual roles of these family 

members in vivo. The ATG4C knockout mouse is viable and 

fertile, showing only an increased susceptibility to fibrosar-

coma, decreased locomotor activity after prolonged starva-

tion, and a mild decrease in autophagic activity measured 

by LC3B lipidation in the cells of the diaphragm.170 Thus, 

ATG4C is dispensable under normal conditions, but under 

stress conditions such as prolonged starvation or in the pres-

ence of carcinogens, a protective role is revealed. The ATG4B 

knockout mouse, despite showing a pronounced defect in 

ATG8 family member lipidation throughout its tissues, also 

has a mild phenotype with a loss of equilibrioception due 

to the abnormal formation of otoconia (organic calcium 

carbonate crystals) in the inner ear.169 It is noteworthy that 

some tissues showed partial lipidation of LC3B, meaning 

that another factor may functionally compensate for ATG4B 

under certain conditions.169 When the ATG4B knockout 

mouse was further studied, abnormal spheroid-like bodies 

were found in the neuropil of the deep cerebellar nuclei.171 

These abnormal structures were interpreted as lesions, and 

this translated into slightly poorer performance on a rotarod, 

giving a second physiological explanation to the impaired 

locomotion of the mutant mice.171 Additionally, homozygous 

ATG4B-/- mice were born at slightly lower incidence than 

Mendelian genetics would predict, possibly indicating an 

issue in fetal development upon ATG4B deletion.171

Many questions remain about the control of autophago-

some assembly and function by ATG4 family members. There 

is clear evidence that ATG8 priming and delipidation are 

needed for efficient autophagosome formation, maturation, 

and vacuolar delivery in yeast,10,107,128,156,172,173 but the picture 

is much less clear in mammalian cells. It has been shown 

that overexpression of wild-type and dominant-negative 

mutant (C74A) ATG4B arrests autophagosome formation at 

the ATG8 lipidation step,174 and apparently at the lysosomal 

fusion stage in human erythroid cells,29 but more sophisti-

cated tools will be needed to decipher contribution of the 

delipidation of ATG8 family members during phagophore 

closure, autophagosome maturation and trafficking, and 

lysosomal fusion.

Other factors implicated in the control  
of autophagosome assembly
VMP1 (Vacuole Membrane Protein 1) is a transmembrane, 

Beclin1-binding protein that has been shown to be required for 

autophagy.175 VMP1 localizes to the ER and generates punctate 

structures upstream of the VPS34 complex upon autophagy 

stimulation,175 although other work has described constitutive 

ER-associated VMP1 puncta that do not colocalize with early 

autophagy markers (ULK1).175 VMP1 competes with BCL-2 

for binding to Beclin1, suggesting that it may release Beclin1 at 

local ER-associated sites.175 VMP1 silencing blocks autophagic 

flux, and causes an accumulation of abnormally large early 

autophagy structures (positive for ULK1, WIPI1, DFCP1), 

suggesting that it might act downstream of the assembly site 

initiation stage.175 In this respect, it is noteworthy that VMP1 

silencing did not increase steady state ATG16L1 puncta num-

bers,175 arguing that its action is restricted to the PI3P generation 

step, perhaps to coordinate the turnover of PI3P.

As mentioned above, Rab33B/A is required to localize 

ATG16 to the phagophore,101 but there are additional Rabs 

that are believed to function in autophagy, at least in yeast. 

Ypt1 (yeast protein two 1), and its GEF, TRAPP III (transport 

protein particle III) – also a multi-protein tethering complex – 

are needed for autophagy, although with the exact stage 

and mechanisms of action unknown.176,177 Notably, studies 

of selective autophagy have implied that Ypt1 recruitment 

occurs downstream of ATG9.178

Autophagosome maturation
Fully formed autophagosomes travel along the microtubule 

network toward the lysosome, fusing en route with early 

endosomes and late endosomes/MVBs, to form a hybrid 

structure termed an amphisome.179–181 The autophagosome/

amphisome acidifies as it matures, either due to the pH 

of the structures it fuses with and/or through the actions 

of proton pumps. Indeed, the autophagosome is known 
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to attain a proton pump on its outer membrane, as well 

as lysosomal LAMP2 (lysosomal associated membrane 

protein 2), well before the formation of a bone fide autolyso-

some.179,182,183 Despite autophagosomes having been shown 

to fuse to a similar extent with early and late endosomes in 

vitro,136 these different steps appear to use distinct fusion 

machineries.

Autophagosomes fuse with endosomes and/or MvBs 
to form amphisomes
Rab11 has been shown to be required for the fusion of 

autophagosomes to MVBs in K562 cells.184 Rab11 has how-

ever also been shown to be required for autophagosome for-

mation,102 meaning that Rab11 may serve two separate roles 

during assembly and maturation. The Rab GAP TBC1D5 has 

also been potentially implicated during autophagosome matu-

ration. It binds both LC3 and the endosome competitively, 

and has two distinct LIR motifs.151 This means that TBC1D5 

may form an important bridge between the endosome and 

the autophagosome, potentially aiding the tethering of these 

two compartments.

A second function for UVRAG – this time independent 

of Beclin1, and thus the VPS34 complex in general – is in 

binding to the endosomal tether C-VPS, to mediate fusion 

of autophagosomes with endosomes and/or lysosomes.185 

Interestingly, it is an entirely different subdomain on UVRAG 

that binds Beclin1 when in conjunction with the VPS34 

complex, than when binding C-VPS; thus Beclin1 and 

C-VPS do not compete for access to UVRAG.185 UVRAG 

is probably involved in regulating/mediating fusion within 

the endosomal network, independently of autophagy.185 The 

C-VPS complex is the core of either the HOPS (homotypic 

fusion and vacuole protein sorting) or the CORVET (class C 

core vacuole/ endosome tethering) complex involved in endo-

some-endosome or endosome-lysosome fusion.186 A SNARE 

implicated in the autophagosome-endosome fusion stage is 

VAMP3 (vesicle associated membrane  protein 3)/ cellubrevin. 

VAMP3 has been shown to be required for the fusion of 

autophagosomes with MVBs in erythroid maturation.187 

Here, it is worth noting that VAMP3 has also been shown 

to be required for homotypic fusion of ATG9 and ATG16L1 

containing pre-autophagic membrane structures during 

autophagosome initiation.99

Autophagosome fusion with the lysosome
Fusion of autophagosomal structures with the lysosomal com-

partment depends upon defined membrane identity, as dictated 

by the phosphoinositide PI(3,5)P
2
. This phosphoinositide 

is required for endomembrane acidif ication, and for 

autophagosome maturation in mammalian cells,188 but whether 

it plays a direct role in autophagy has yet to be confirmed.74 

Other phosphoinositides and lipids have been identified as 

having autophagy roles in a variety of studies, and these are 

summarized well elsewhere.74 Rab24 has been implicated 

in autophagy because its position changes drastically upon 

starvation, to colocalize with autophagic vacuoles.189 Rab24 

is thought to influence autophagosome-lysosome fusion with 

the aid of the drs tumor suppressor.190 Rab7 is implicated in 

autophagosome/lysosome fusion,154 possibly in conjunction 

with HOPS complex GEF activity.191–193

The ESCRT (endosomal sorting complex required for 

transport) machinery has also been implicated during late 

stages of autophagosomal maturation. ESCRT is required 

for autophagosome-lysosome fusion in human cells and in 

Drosophila.194–196 The ESCRT complex was originally iden-

tified through its involvement in MVB biogenesis and the 

sorting of ubiquitinated proteins to MVBs and lysosomes.197 

It is possible that the ESCRT machinery is directly involved 

in autophagosome maturation, but the data also support a 

situation where autophagy requires functional MVBs.

Proteins acting at the lysosomal membrane have also 

been implicated in autophagosome maturation; LAMP1 and 

LAMP2 deficient mouse embryonic fibroblasts (MEFs) have 

been shown to accumulate immature and mature autophago-

somes.198,199 Surprisingly, lysosomal protease activity in these 

cells appeared to be normal, but the lysosomes showed some 

structural abnormalities.198,199 This led to the hypothesis that 

LAMPs may be involved in autophagosome-lysosome fusion, 

although it is very difficult to tell whether this is a specific 

effect of inhibition of fusion, or merely due to attenuated 

lysosomal function.198,199 Impaired phagosome fusion with 

lysosomes in LAMP1 and LAMP2 double knockout MEFs 

has been shown to be due to an inability of phagosomes to 

move toward the lysosome.200 This means that the same could 

hold true for autophagosome-lysosome fusion; an absence 

of LAMP1/2 would mean a defect in trafficking, and thus a 

coincidental fusion defect rather than a mechanistic one.

The autophagosome-lysosome fusion event itself is likely 

to be governed by SNARE proteins. In yeast there are reports 

of a number of SNAREs being implicated,201 for example 

syntaxin 17.202 Upon starvation, syntaxin 17 translocates to 

fully formed autophagosomes, where it mediates fusion of 

the autophagosome with the lysosome through its partner 

SNAREs, SNAP-29 (soluble N-ethylmaleimide-sensitive fac-

tor attachment protein 29) and VAMP8.202 Indeed, both Vtib1b 

(vesicle transport through interaction with the t-SNAREs 
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homologue 1B) and VAMP8 have been shown independently 

to be required for autophagosome-lysosome fusion,203,204 and 

TI-VAMP/VAMP7 has been implicated in amphisome-lyso-

some fusion.187 Mechanistically, syntaxin 17 has been shown 

to directly interact with the HOPS complex, providing HOPS 

with a second potential role in autophagosome maturation.205 

That differing SNAREs are required for different steps in the 

autophagosome maturation process indicates a high level of 

regulation. It is worth noting that these same SNAREs have 

been identified as a requirement for the maturation of the 

autophagosome precursors.99 Lastly, and perhaps surprisingly, 

the ATG5-12 conjugate has also been implicated in autopha-

gosome lysosome fusion; TECPR1 (Tectonin Beta-Propeller 

Repeat Containing 1), which localizes to autolysosomes, is 

suggested to bind to PI3P and to ATG5-12 in a manner that 

excludes ATG16, to mediate tethering and fusion.206

Membrane sources for the 
autophagosome
There are two models for the source of the membrane in the 

early autophagosome: one is the maturation model and the 

other is the assembly model. The maturation model proposes 

that the membranes forming the early autophagosome are 

derived from the ER.207 The assembly model states that the 

membranes needed for autophagosome assembly either stem 

from a separate, dedicated pool, or are synthesized de novo 

at the assembly site.208 These two models are not mutually 

exclusive, and most probably autophagy utilizes both. In addi-

tion to the two hypotheses regarding membrane origins, there 

are two theories on the involvement of the ER in autophago-

some biogenesis. One of them states that the ER is merely 

a scaffold on which the autophagosome forms, whereas the 

other claims that the autophagosome is contiguous with, and 

therefore an extension of the ER.

The eR as a cradle for autophagosome 
biogenesis
Using a reporter protein that binds selectively to PI3P 

(double FYVE-containing protein 1; DFCP1) Axe et al72 

demonstrated that PI3P defines a subdomain of the ER that 

is formed upon autophagy induction. They showed that 

this domain forms a cup-like structure, the center of which 

progressively recruits LC3, implying that the autophago-

some forms in a cradle of ER membrane.72 The early stages 

of autophagosome formation have also been described by 

electron microscopy tomography. Independent studies found 

that autophagosomes are synthesized upon the ER, and pro-

vided evidence that the nascent autophagosome is cradled 

between two ER cisternae.209,210 These high-resolution 

studies suggested that there might be a physical connec-

tion between the autophagic isolation membrane and the 

ER. This would imply that the ER is both a scaffold for 

autophagosome formation, and a possible donor of mem-

branes. Whilst compelling, it must be pointed out that these 

observations were based on EM tomography reconstruc-

tions, which are necessarily subjective. Interestingly, 70% 

of autophagosomes have been shown to contain a portion of 

ER membrane, implying that during the formation process 

the inner ER scaffold might become enclosed by the nascent 

autophagosome.209 It is also interesting to note that the iso-

lation membrane often appears unusually electron dense 

when visualized by electron microscopy following aldehyde 

fixation, implying that the double membranes might be in 

very close proximity (at least in fixed samples), which hints 

at a mechanism for lumenal and membrane protein exclu-

sion from the expanding isolation membrane. At present 

very little is known about how the ER is reorganized to 

accommodate the nascent phagophore, and a molecular 

explanation is needed.

Membranes of diverse organelles 
contribute to the forming 
autophagosome
Aside from the ER, many other organelles have been impli-

cated in membrane delivery to the expanding autophagosome. 

Determining the origin of the autophagosomal membrane is 

problematic, though, because the autophagosomal membrane 

appears to be devoid of ancillary markers.211 Early autophagy 

markers (ATG2, ATG18, and ATG9) have often been observed 

in close proximity to ER exit sites (ERES) in yeast.212 The 

involvement of ERES in autophagosome formation has been 

confirmed by a proteomics study, which showed that phago-

phores and ERES were physically and functionally linked.213 

The authors speculated that in yeast, autophagosome biogen-

esis is linked to the generation of a COPII compartment that is 

similar to the ERGIC (ER-Golgi intermediate compartment) 

in mammals, which agrees with a separate study showing 

involvement of the ERGIC in autophagosome assembly.213,214 

Another finding that backs up the requirement for the ERGIC 

in mammals or the ERES in yeast is that specific COPII com-

ponents are required for autophagy.215 The aforementioned 

study showed that the ERGIC compartment is needed for 

LC3 lipidation.214  Pharmacological disruption of the ERGIC 

prevented efficient generation of ATG14 puncta,214 suggest-

ing that a functional ERGIC may be required for very early 

initiation stages of autophagosome biogenesis (specification 
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of the assembly site itself). If membrane contributions to the 

phagophore from the ERGIC were a limiting factor, then 

one might have expected to record an accumulation and not 

a depletion of ATG14 puncta. Finally, ATG9 has been pro-

posed to traffic from, or at least through the Golgi and the 

ERGIC, leading to the hypothesis that Golgi membranes con-

tribute to the expanding autophagosome.103,216 Golgi-derived 

membranes have further been proposed to contribute to the 

phagophore, as Golgi derived lectins localize to the expanding 

rims of the phagophore.211

Mitochondria have been suggested to contribute lipids 

directly to the forming autophagosome.217 This could be 

either through direct lipid exchange or by a more complex 

autophagy-specific remodeling event. More recently, the 

MAM (mitochondrial-associated membrane at the ER) 

has been identified as a possible site of the autophagosome 

initiation.218 Here, important autophagosome assembly mol-

ecules including Beclin1 and ATG14L have been shown to 

concentrate,218 and the implications for this with respect to 

autophagy and ER-to-mitochondrial calcium homeostasis 

are covered elsewhere.219

The endosomal system is increasingly being implicated 

as a major contributor to the process of autophagosome 

assembly. A need for a functional early endosomal system 

for autophagosome progression has been widely shown 

(eg, (184)). The recycling endosome may contribute mem-

brane to the autophagosome, as ULK1 has been shown to 

initially relocalize to the recycling endosome upon starva-

tion.67,102 This study is supported in part by evidence that 

endosomal sorting nexin 18 is required for autophagy through 

its role in tubulating the endosome as a prelude to membrane 

delivery to the autophagosome.220 Additionally, both ATG9 

and ATG16L1 have been shown to cycle through the recy-

cling endosome, potentially acquiring membrane en route to 

contribute to the autophagosome expansion.100,125 In a similar 

fashion, the plasma membrane has been suggested to donate 

membrane to the autophagosome via ATG16L1 vesicles.98,221 

Furthermore, ATG9 has more recently been shown to also 

localize to the plasma membrane prior to moving to the 

recycling endosome, which means that ATG9 could also bring 

part of the plasma membrane with it. Although internalized 

separately, ATG9 and ATG16L1 coalesce within the same 

endocytic subcompartment upon starvation.125 Lipid droplets 

have been shown to donate lipid to the nascent autophagosome 

by proximity.222 Further to this, the mobilization of lipids with 

the aid of a lipase was shown to be required for autophagy. 

Dupont et al222 identified PNPLA5 (patatin-like phospho-

lipase domain containing 5) as such a lipase. Finally, the 

plasma membrane has been proposed to act as a reservoir for 

autophagy proteins that become anchored to connexin 43.223 

Upon starvation, connexin 43 is degraded releasing ATG16L1 

to amplify the autophagy response.223 As autophagy is such 

a crucial facet of cellular stress response pathways, it is 

likely that additional regulatory pathways that converge with 

autophagy will be revealed in the coming years.
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