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Background: Acquired radioresistance of cancer is common after repeated irradiation and 

often leads to treatment failure. This study aimed to examine the effects of nimotuzumab on 

acquired radioresistance in human esophageal carcinoma cells and to investigate its underlying 

mechanisms.

Methods: The radioresistant human esophageal carcinoma cell line KYSE-150R was gen-

erated by using fractionated irradiation. KYSE-150R cells were pretreated with or without 

nimotuzumab before ionizing radiation. Cell growth and colony formation were measured to 

quantitate the effects of radiation. The γ-H2AX foci assay was employed to determine cellular 

DNA-repairing capacity. The phosphorylation of key molecules involved in the epidermal 

growth factor receptor (EGFR) signaling pathway and cellular DNA repair was measured by 

Western blot analysis.

Results: Nimotuzumab enhanced radiation-induced inhibition on cell growth and clonogenic 

survival in KYSE-150R cells. The average number of γ-H2AX foci increased in the irradiated 

cells treated with nimotuzumab. Nimotuzumab inhibited phosphorylation of the EGFR and its 

downstream molecules AKT and ERK. Phosphorylation of the DNA repair-related proteins 

DNA-PKcs, ATM, and RAD51 was also inhibited by nimotuzumab.

Conclusions: These results indicate that nimotuzumab can inhibit key cancer survival 

mechanisms, the EGFR signaling pathway, and DNA repair and thereby reverse acquired 

radioresistance in KYSE-150R cell line.
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Introduction
Esophageal cancer is an aggressive cancer and accounts for the sixth most common 

cause of cancer-related death worldwide. Most patients are diagnosed with an 

advanced-stage disease and have a poor prognosis.1 After a multimodal regimen 

that incorporates surgery, chemotherapy, and radiotherapy (RT), the average 5-year 

overall survival (OS) rate is less than 20%.2 Therefore, a better therapeutic strategy 

is needed to improve OS.

RT is a major treatment for advanced esophageal carcinoma. However, the local 

recurrence rate at the initial site of esophageal cancer is approximately 44%–61% after 

primary definitive chemoradiotherapy.3 Tumor intrinsic and acquired radioresistance are 

two major contributors for treatment failure. In particular, acquired radioresistance often 

occurs after the first irradiation and reirradiation in recurrent esophageal cancer. A recent 

study has shown that repeated RT is feasible and effective for recurrent esophageal 

cancer but can cause severe toxicity.4,5 Acquired radioresistance is a common phenom-

enon during fractionated RT, and the involved mechanisms are not fully understood. 
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Many factors, including genetics, morphology, structure, 

receptor expression, and activity in cancer cells, are believed to 

play important roles for such effects in cancer. Thus, improving 

tumor radiosensitivity and reducing acquired radioresistance 

are two major clinical approaches to improve the treatment 

outcome in primary and recurrent esophageal cancer.

Overexpression of epidermal growth factor receptor 

(EGFR) has been reported in 60%–70% of esophageal 

carcinomas.6 High EGFR expression is correlated with poor 

OS and disease-free survival in esophageal cancer patients.7 

A clinical study has reported that elevated EGFR expres-

sion and activity led to tumor resistance to RT in patients.8 

Preclinical studies have also shown that overactive EGFR 

induced by irradiation could promote tumor cell prolifera-

tion and enhance DNA repair, which might result in tumor 

radioresistance.9,10 Therefore, inhibition of EGFR activity 

and signaling became an effective strategy to increase tumor 

radiosensitivity in RT.

Nimotuzumab is a humanized anti-EGFR monoclonal 

antibody that binds to the extracellular domain of the EGFR 

and inhibits EGF binding and signaling.11 In preclinical stud-

ies, nimotuzumab showed antiproliferative, proapoptotic, 

and antiangiogenic activities in head and neck tumors, which 

overexpress the EGFRs.12 Nimotuzumab has been approved 

for the treatment of head and neck tumors and glioma in 

several countries13,14 and is under clinical trials for pancreatic 

cancer, non-small-cell lung cancer, and esophageal cancer. 

The most exciting part of nimotuzumab use is the lack of 

severe adverse effects.15 For esophageal cancer, nimotu-

zumab has been found to enhance the radiosensitivity of 

the EGFR-expressing esophageal squamous cell carcinoma 

(ESCC) cells in an in vitro study.16 Recent clinical studies 

have demonstrated that nimotuzumab in combination with 

irradiation was safe and tolerable and yielded encouraging 

OS, progression-free survival, and local control in ESCC 

patients.17 However, it is still not clear whether nimotuzumab 

can reverse acquired radioresistance of ESCC. Using a 

radiation-resistant human esophageal carcinoma cell line, 

KYSE-150R, we have studied the capacity of nimotuzumab 

to reverse radiation resistance and involved molecular mecha-

nisms, and demonstrated that nimotuzumab can significantly 

reduce radioresistance in esophageal cancer cells, suggesting 

a potential clinical application in RT for esophageal caner.

Methods and materials
cell culture
Human KYSE-150R cells, which derived from KYSE-150 

cells, were gifts from Dr Shi-xiu Wu.18 Cells were cultured 

in RPMI 1640 supplemented with 10% fetal bovine serum 

(Gibco, Life Technologies, Carlsbad, CA, USA), 100 U/mL 

penicillin, and 100 ug/mL streptomycin. Cells in the loga-

rithmic phase were used for all experiments.

cytotoxicity and proliferation assay
A standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-

zolium bromide (MTT) assay was performed to measure the 

cytotoxicity of nimotuzumab. Cells (4×103 cells per well) were 

cultured in 96-well plates for 24 hours, then incubated with 

different concentrations of nimotuzumab (250–4,000 nM) and 

cisplatin (5–80 μM) for another 72 hours. Relative absorbance 

of MTT was measured to calculate cell growth inhibition.

For proliferation assay, cells (2×104 cells/well) were 

seeded in 24-well plates initially (37°C, 5% CO
2
 incubator 

overnight), then pretreated with nimotuzumab (1,000 nM) 

for 24 hours before irradiation (6 Gy). After irradiation, the 

numbers of living cells were counted daily for 7 days using 

Trypan Blue staining. The growth curve was done using 

GraphPad Prism 5.0 software (GraphPad Software Inc., La 

Jolla, CA, USA).

ionizing radiation
Irradiation was performed using 6 MV X-rays generated by 

a linear accelerator at a dose rate of 2 Gy/min (PRIMUS-M, 

Siemens, Erlangen, Germany). Radiation field was 20×20 cm. 

The source–skin distance was 100 cm.

colony-forming assay
Cells cultured in six-well plates were irradiated with X-rays 

(0–6 Gy) and continuously cultured for another 10–14 days 

to allow colony formation. Cells were washed with cold 

phosphate-buffered saline, fixed with 75% methanol, and 

stained with 0.5% crystal violet in methanol. The colonies 

consisting of 50 cells were counted under a dissecting 

microscope. The surviving fraction was calculated by the 

GraphPad Prism 5.0 software based on the multitarget/

single-hit model (SF=1–[1–e–D/D0]N). The sensitizing 

enhancement ratio (SER) was calculated based on the formula 

SER=D0 (control cells)/D0 (testing cells). D0 represents the 

dose that can reduce cell survival to 37%.

Immunoblotting and immunofluorescence 
staining
Western blotting was performed as described previously.19 

For immunofluorescence staining, cells were cultured on a 

coverslip (12×12 mm) and irradiated (2 Gy). Cells were then 

fixed and stained with anti-γ-H2AX antibody (Ser139) and 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


OncoTargets and Therapy 2015:8 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

511

nimotuzumab abrogates acquired radioresistance

subsequently with a fluorescein isothiocyanate-conjugated 

secondary antibody. Cell nuclei were counterstained with 

4′,6-diamidino-2-phenylindole (Sigma-Aldrich Co., St 

Louis, MO, USA). The slides were observed and photo-

graphed under an LSM710 inverted confocal microscope 

(Zeiss, Oberkochen, Germany). γ-H2AX foci in the nuclei 

were observed and counted. The average number of foci per 

cell is shown in Figure 3.

reagents
Nimotuzumab was provided by Biotech Pharmaceuticals 

Co., Ltd (Beijing, People’s Republic of China). Anti-EGFR,  

antiphospho-EGFR (S1981), antiphospho-AKT (S473), 

and anti-AKT and antiphospho-ERK1/2 and anti-ERK1/2 

antibodies were purchased from Cell Signaling Technol-

ogy, Inc. (Danvers, MA, USA). Antiphospho-γ H2AX 

(Ser139), anti-RAD51, anti-ATM, and antiphospho-ATM 

(Ser1981) and antiglyceraldehyde 3-phosphate dehydro-

genase antibodies were purchased from Epitomics, Inc. 

(Burlingame, CA, USA). As a negative antibody control, 

rabbit immunoglobulin G (IgG) was from Hangzhou 

HuaAn Biotechnology Co. (Hangzhou, People’s Republic 

of China). Antiphospho-DNA-PKcs (T2609) antibody was 

purchased from Abcam (Cambridge, MA, USA).

statistical analysis
All data were presented as mean ± standard deviation. 

Statistical significance (P0.05) was determined by the 

Student’s t-test.

Results
nimotuzumab enhances radiation-
induced proliferation inhibition  
in KYse-150r cells
We first measured the possible toxicity of nimotuzumab and 

found very limited toxicities of nimotuzumab up to 4,000 nM  

for 72 hours of incubation in KYSE-150R cells in an 

MTT assay (Figure 1A). Next, we investigated whether 

nimotuzumab affects cancer cell proliferation in the pres-

ence of irradiation. We treated the cells with or without 

nimotuzumab (1,000 nM) after ionizing radiation (IR)  

(6 Gy) and then compared cell proliferation. We used 

rabbit IgG as a negative antibody control. Our results 

showed that the growth rate of two treatment groups was 

similar within 3 days after IR. However, the cell growth 

was moderately inhibited in the group treated by nimo-

tuzumab as compared with the mock group at day 4 and 

day 5 after IR (P0.05). At day 7 after radiation, cell 

proliferation was significantly inhibited in both groups 

but with a greater inhibition in the nimotuzumab-treated 

group (P0.05) (Figure 1B).

nimotuzumab reverses radioresistance 
in KYse-150r cells
The effects of nimotuzumab on radiosensitivity were 

measured by clonogenic survival assay, and the results are 

shown in Figure 2 and Table 1. In Figure 2, KYSE-150R 

cells are more radioresistant than their parent KYSE-

150 cells. Pretreatment with nimotuzumab significantly 
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Figure 1 effects of nimotuzumab on cell growth in KYse-150r cells.
Notes: (A) The cells were treated with different concentrations of nimotuzumab (250, 500, 1,000, 2,000, and 4,000 nM) for 72 hours. The group was treated with different 
concentrations of cisplatin (5, 10, 20, 40, and 80 μM) as positive controls. The cell viability was measured in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
assay. (B) cell proliferation was determined after irradiation (6 gy) with rabbit igg or nimotuzumab (1,000 nM). rabbit igg serves as a negative antibody control. The data 
are shown as means ± standard deviation from three independent experiments. *P0.05 KYse-150r + igg versus KYse-150r + nimotuzumab.
Abbreviations: igg, immunoglobulin g; ir, ionizing radiation.
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increased radiosensitivity of KYSE-150R cells as com-

pared with IgG treatment. To quantitatively compare their 

radiosensitivity, we calculated the D0 values, the doses that 

can reduce cell survival to 37%. Their D0 values were 3.42 

versus 2.75 before and after treatment with nimotuzumab, 

respectively. The SER was calculated as 1.24. Interestingly, 

we found that nimotuzumab can also increase radiosensitiv-

ity of the parental KYSE-150 cell. However, the radiation-

sensitizing effect of nimotuzumab on KYSE-150 cells is 

weaker than on KYSE-150R cells, comparing SER (1.09 in 

KYSE-150 vs 1.24 in KYSE-150R). Because KYSE-150R 

cells, which were generated by fractionated radia tion, are 

acquired radioresistant cells, we can conclude that nimotu-

zumab treatment may reverse acquired radiation resistance 

of esophageal cancer cells.

nimotuzumab reduces Dna repair after 
irradiation in KYse-150r cells
We further assessed whether nimotuzumab affects cellular 

DNA repair after irradiation using the γ-H2AX foci assay. The 

γ-H2AX foci number reflects unrepaired double-strand breaks 

(DSBs) in an irradiated cell. The average number of γ-H2AX 

foci per cell was counted during 1–48 hours after a 2 Gy irradia-

tion (Figure 3). There was no difference in the average numbers 

of γ-H2AX foci at 4 hours after IR between the KYSE-150R 

cells treated by the combined nimotuzumab/radiation and 

the cells treated with radiation/IgG. However, a significantly 

greater number of γ-H2AX foci were observed between 8 hours 

and 48 hours after IR in the nimotuzumab-treated group as 

compared with the IgG-treated group (P0.05). These results 

indicate that nimotuzumab can inhibit cancer cell DNA repair, 

showing more γ-H2AX foci in KYSE-150R cells.

nimotuzumab inhibits radiation-induced 
activation of egFr signaling pathway 
in KYse-150r cells
To investigate how nimotuzumab enhances cancer cell 

radiosensitivity, we first compared the expression levels and 

the activities of EGFR in KYSE-150 and KYSE-150R cells. 

Although the same expression levels of EGFR were detected 

in both cells, radiation induced a significantly higher level 

of phosphorylation in KYSE-150R cells, as compared with 

the level in KSYE-150 cells (Figure 4A and Supplementary 

Figure S1). Moreover, we monitored the phosphorylation levels 

of EGFR and its downstream signaling molecules, including 

AKT and ERK, after pretreatment with nimotuzumab followed 

by irradiation. Radiation activated EGFR, AKT, and ERK in 

KYSE-150R cells, as expected. Pretreatment with nimotu-

zumab inhibited not only radiation-induced phosphorylation 

of EGFR but phosphorylation of the downstream molecules 

AKT and ERK. The effects of nimotuzumab peaked between 

30 minutes and 2 hours post-IR (6 Gy) (Figure 4B and Supple-

mentary Figure S1). These data demonstrated the inhibitory 

properties of nimotuzumab on the EGFR signaling pathway 

in radioresistant KYSE-150R cells.

nimotuzumab diminishes the radiation-
induced phosphorylation of Dna-PKcs 
and aTM, and downregulates  
the expression levels of raD51  
in KYse-150r cells
DNA DSBs are repaired by two major mechanisms: the 

homologous recombination (HR) and the nonhomologous 
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Figure 2 The dose survival curve of KYse-150r cells.
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violet and counted. The survival curves after ir are shown. Data represent mean 
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Abbreviations: igg, immunoglobulin g; ir, ionizing radiation.

Table 1 The parameters of a multitarget model based on clonogenic 
survival assay

Cell line N D0 Dq SF2 SER

KYse-150r + igg 2.637 3.42 3.32 0.89
KYse-150r + nimo 2.024 2.75 1.94 0.73 1.24

KYse-150 + igg 2.022 2.38 1.68 0.68

KYse-150 + nimo 1.96 2.17 1.46 0.63 1.099

Abbreviations: n, extrapolation number that measures the width of shoulder of 
the survival curve; D0, the dose that reduces cell survival to 37%; Dq, the intercept 
of the extrapolated high dose; sF2, surviving fraction at 2 gy; ser, sensitivity 
enhancement ratio; igg, immunoglobulin g; nimo, nimotuzumab.
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end joining (NHEJ) in mammalian cells. DNA-PKcs and 

ATM coordinately regulate DSB repair through the afore-

mentioned mechanisms. To examine whether nimotuzumab 

interferes with these molecules in DNA repair, KYSE-150R 

cells were treated as described previously. Phosphoryla-

tion of ATM and DNA-PKcs was examined and is shown 

in Figure 5A. The basal levels of autophosphorylation of 

ATM and DNA-PKcs were very low in KYSE-150R cells. 

Radiation induced significant phosphorylation of ATM 

and DNA-PKcs, which peaked at 2 hours after irradiation. 

Pretreatment with nimotuzumab significantly attenuated 

such effects (Figure 5A and Supplementary Figure S2). In 

addition, we measured the expression levels of RAD51, 

a central component of HR. Interestingly, the expression 

levels of RAD51 were increased by radiation but attenuated 

by nimotuzumab in a time-dependent manner (Figure 5B 

and Supplementary Figure S2). These results suggest that 

nimotuzumab may inhibit DNA repair by inhibiting RAD51 

expression.

Discussion
Acquired radioresistance plays a crucial role in RT failure. 

To conquer this clinical obstacle, we studied this clini-

cally important problem in a radiation-resistant cancer cell 

line (KYSE-150R), which was generated by fractionated 

radiation, a commonly used method in cancer RT for its 

advantages in preventing normal tissues. As compared with 

the previous report on the effects of cetuximab, we further 

focused on the EGFR signaling pathway and DNA repair in 

terms of neutralization of the EGFR in esophageal cancer 

cells. Here, we found a differential pattern of the EGFR 

activities in response to irradiation in the radioresistant 

KYSE-150R cells as compared with the radiosensitive 

KYSE-150. Pretreatment with nimotuzumab significantly 

decreased phosphorylation of EGFR and its downstream 

molecules AKT and ERK, the key proteins for cancer sur-

vival. Moreover, pretreatment with nimotuzumab inhibited 

DNA repair after irradiation by modulating the activities of 

DNA-PKcs, ATM, and RAD51.

The radiation-induced activation of EGFR and its down-

stream signaling cascades is linked to radiation protection 

through promoting cell proliferation and DNA repair.10 

It has been reported by Schmidt-Ullrich et al20 in 1994 

that increased expression of EGFR was seen in MCF-7 

cells after repeated radiation exposure. We now report that 

greater levels of EGFR phosphorylation were observed in 

the radioresistant KYSE-150R cells after irradiation. We did 

not find significant changes in the expression levels of EGFR 

in KYSE-150R cells. We believe that chronic and fraction-

ated radiation accounts for such effects. Selective survival of 

radioresistant cells and/or induction of gene mutations may 

ultimately lead to acquired radioresistance.21
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It is known that radiation-induced phosphorylation of the 

EGFR activates the Ras/Raf/ERK (MAPK) and the PI3K-Akt sig-

naling pathways, which can protect cells from radiation-induced 

cell death but promote cell survival and proliferation.9 This is the 

case in KYSE-150R cells. We further found that pretreatment 

with nimotuzumab inhibited EGFR as well as ERK and AKT. 

Taken together, our study confirmed the important role of the 

EGFR signaling pathway in radioresistance of esophageal cancer 

cells. We further demonstrated that acquired radioresistance 

in cancer cells may be reversed by manipulation of the EGFR 

signaling pathway using nimotuzumab.

Radiation kills tumor cells by inducing DNA DSBs, and 

DSBs can be repaired primarily through two major mechanisms 

(HR and NHEJ) in mammalian cells. The important roles of 

DNA-PKcs and ATM in cellular DNA repair have been 

well documented.22 Nimotuzumab inhibited cancer cell 

DNA repair via its inhibition on DNA-PKcs and ATM, and 

thereby enhanced the radiosensitivity of KYSE-150R cells. 

Previous studies have demonstrated that blockade of EGFR 

signaling can inhibit cellular DNA repair. Golding et al23 

found that blocking EGFR signaling impaired the formation 

of both p-(T2609) DNA-PKcs and p-(S1981) ATM foci. 
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Figure 4 nimotuzumab inhibits radiation-induced activation of egFr signaling pathway in KYse-150r cells.
Notes: (A) radiation-induced phosphorylation of egFr in KYse-150 and KYse-150r cells. Total cell lysate was harvested 2 hours after exposure to radiation (6 gy) and 
used to measure the levels of phosphorylated egFr, total egFr, and gaPDh. (B) nimotuzumab suppresses the radiation-induced activation of egFr and its downstream 
signaling molecules in KYse-150r cells. cells were pretreated with nimotuzumab (1,000 nM for 24 hours) and then irradiated. Total cell lysate was harvested at indicated 
time points after irradiation for Western blot analysis. Total egFr, p-egFr, total aKT, p-aKT, total erK, and p-erK were detected in Western blotting. gaPDh served as 
a loading control. The quantitative data for the Western blotting results are shown in “supplementary material”.
Abbreviations: egFr, epidermal growth factor receptor; gaPDh, glyceraldehyde 3-phosphate dehydrogenase; p-egFr, phosphorylated egFr; p-aKT, phosphorylated 
aKT; p-erK, phosphorylated erK; ir, ionizing radiation.
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The translocated EGFR can bind to DNA-PKcs in the nuclei 

after irradiation and regulate DNA-PKcs phosphorylation. 

Cetuximab, another neutralizing antibody against the EGFR, 

can inhibit radiation-induced nuclear translocation of the 

EGFR, block the interaction between the EGFR and DNA-

PKcs, and delay cellular DNA repair.24 In addition, AKT can 

also translocate to the nucleus and interact with DNA-PKcs 

and regulate its activity in irradiated cells.25 A recent report 

revealed that the AKT/DNA-PKcs pathway also contributes 

to acquired radioresistance in tumor cells.26

ATM plays a critical role in regulating HR but not 

NHEJ.27 The EGFR signaling can modulate ATM activity 

through different mechanisms. Golding et al28 found that 

ERK kinases activity was required for ATM phosphoryla-

tion. Blockade of the MEK/ERK signaling compromised 

ATM kinase activity for efficient HR in response to radiation. 

In addition, ATM is required for the correct posttranslational 

modification of Rad51 and protein complex formation fol-

lowing IR.29 Rad51 is important for DSB repair through 

HR,29 and inhibition of Rad51 increases radiosensitivity.30 

Li et al reported that erlotinib, a selective EGFR inhibitor, 

inhibited Rad51 expression.31 Several studies have shown 

that overexpression of Rad51 was commonly seen in esopha-

geal cancer tissues, which was correlated with low efficacy of 

treatment and decreased survival in ESCC patients.32,33 Due 

to their biological function and unique expression pattern, 

our study and others strongly suggest that ATM and Rad51 

are two therapeutic targets to reverse radioresistance and to 

increase radiosensitivity in cancer therapy.

Clinical trials have already shown that nimotuzumab 

is a safe and effective biological agent with minor side 

effects.15 In our in vitro radioresistant KYSE-150R cell 

system, pretreatment with nimotuzumab reversed acquired 

radioresistance and enhanced radiosensitivity in esophageal 

cancer cells by inhibiting the EGFR/Akt/DNA-PKcs signal-

ing pathway and reducing ATM and Rad51 activities. Thus, 

nimotuzumab may be an effective sensitizer for radioresis-

tant malignancies like esophageal cancer. Although further 

investigations are needed to fully clarify the biological 

function of nimotuzumab in esophageal cancer, our study 

Figure 5 nimotuzumab inhibits phosphorylation of Dna repair-related proteins in KYse-150r cells.
Notes: nimotuzumab modulates the key molecules in Dna repair, including Dna-PKcs (A), aTM (A), and raD51 (B). KYse-150r cells were preincubated with 
nimotuzumab (1,000 nM) for 24 hours, followed by irradiation (6 gy), as indicated. Total cell lysate was collected at the indicated time points after irradiation. gaPDh 
served as a loading control. The quantitative data for the Western blotting results are shown in “supplementary material”.
Abbreviations: Dna, deoxyribonucleic acid; gaPDh, glyceraldehyde 3-phosphate dehydrogenase.
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strongly suggests its clinical applications in RT for recurrent 

radioresistant cancer.
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Supplementary materials

Figure S1 The quantitative data for the Western blotting results of Figure 4.
Notes: The quantitative analysis was performed by Quantity One software. The relative densities of the bands were determined and are represented by the rectangular 
columns, compared with the control group (lane 1). The numbers of horizontal ordinate represent the lane numbers from left to right in Figure 4. (A) The quantitative data 
for the western blotting results of Figure 4a. (B–D) The quantitative data for the western blotting results of Figure 4B.
Abbreviations: egFr, epidermal growth factor receptor; p-egFr, phosphorylated egFr; p-aKT, phosphorylated aKT; p-erK, phosphorylated erK.
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Figure S2 The quantitative data for the Western blotting results of Figure 5.
Notes: The quantitative analysis was performed by Quantity One software. The relative densities of the bands were determined and are represented by the rectangular 
columns, compared with the control group (lane 1). The numbers of horizontal ordinate represent the lane numbers from left to right in figure 5. (A, B) The quantitative 
data for the western blotting results of Figure 5a. (C) The quantitative data for the western blotting results of Figure 5B.
Abbreviations: paTM, phosphorylated aTM; gaPDh, glyceraldehyde 3-phosphate dehydrogenase; p-Dna PKcs, phosphorylated Dna PKcs.
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