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Abstract: A rapid and continuous decline in wild mammalian species populations has been 

documented in recent decades. Although in situ conservation strategies such as habitat preserva-

tion are usually the best way to preserve biodiversity, other rescue strategies such as germplasm 

cryopreservation are sometimes necessary. Germplasm cryopreservation involves the freezing 

of gametes, embryos, gonadal tissues, or somatic tissues of species threatened with extinction. 

There is substantial diversity in the cryobiological requirements among cell types and tissues of 

each species. Research has focused on adapting techniques developed for the conservation of 

the genetic material of domestic animals for use with wild species about which relatively little 

is known. This review describes and discusses the current and potential use of cryobanking for 

the preservation of cells and tissues of threatened species.
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Introduction
A rapid and continuous decline in wild mammalian species has been documented 

in the last decade, whereby one in every four mammalian species is threatened with 

extinction.1 Although in situ conservation strategies such as habitat preservation are 

usually the best way to preserve biodiversity, other rescue strategies such as germ-

plasm cryopreservation are sometimes necessary to facilitate the natural processes of 

evolution to continue.2 However, this method alone is inefficient when a population is 

severely reduced or when the majority of remaining mammals are located in unpro-

tected areas.3 As a result, there has been a rise in the number of ex situ conservation 

programs involving both in vivo and in vitro preservation, including the establishment 

of germplasm banks.4

Conservation of genetic resources focuses on the cryopreservation of gametes, 

embryos, gonadal tissues, and somatic tissues.2 Germplasm cryopreservation3 repre-

sents a connection between in situ and ex situ conservation programs.2 In the present 

review, we describe and discuss the current and potential uses of cryobanking of 

cells and tissues aimed at the prevention of the extinction of threatened mammalian 

species.

The preservation of female gametes
Female gametes (ova) can be obtained through follicle puncture, ovarian tissue biopsies, 

unilateral or bilateral ovariectomy, or ovary collection immediately after an animal’s 

death, irrespective of its age.5 Ovarian tissue, isolated follicles, and mature or imma-

ture oocytes can all be stored by cryopreservation.6 The option of cryopreserving the 
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ovarian tissue avoids many limitations encountered in mature 

oocyte preservation, such as the low number of mature 

oocytes available in the ovaries, possible deleterious effects 

of its conservation under low temperatures, and the need for 

super-ovulation procedure.7 The major limitation of its use is 

the difficulty in preserving ovarian tissue, given the diversity 

of cell types and tissue components.8

Oocyte preservation is more challenging, not least because 

oocytes tend to be large cells that have a low surface-to-volume 

ratio and a low permeability coefficient, both of which hinder 

the migration of water and cryoprotectants (CPAs) through the 

cell.9 Immature oocytes at the germinal vesicle stage that have 

not yet formed the spindle lack cortical granules and have a 

higher membrane permeability, making them more resistant to 

chilling injury than mature metaphase II oocytes.10 Two meth-

ods have been described for female gametes preservation: slow 

freezing (SF) and vitrification. SF or conventional freezing 

refers to the exposure of the tissues/cells to a low concentration 

of CPA and cooling them slowly in a programmable freezer.11 

CPA concentration and exposure time prior to freezing needs 

to be balanced in order to reach sufficient dehydration; how-

ever, it has to be low enough to avoid cytotoxic damages.12 

Although it is a widespread method, in general, sophisticated 

and expensive programmable freezers are required for the 

cooling procedure, but these freezing devices are not gener-

ally available when endangered animals are found dead on 

the field, making impossible the gamete preservation of wild 

animals in such conditions.7 On the other hand, vitrification is 

considered a cheap method that can be performed under field 

conditions with no need for special equipment, making it a 

good alternative for use in various settings often encountered 

with wildlife species,13 including after animal death.14 This 

method involves the use of high concentrations of CPAs and 

rapid cooling (-20,000°C/min -40,000°C/min) to achieve a 

glass-like highly viscous solution without the formation of 

ice crystals.15 Vitrification promotes a viscosity state to the 

solution, but without water crystallization.16

In recent years, several studies have demonstrated the 

possibility of adapting the techniques developed for cryopre-

serving domestic female genetic material to wild species. The 

chilling of ovarian tissue has been efficiently demonstrated in 

kangaroos (Macropus giganteus17), red deer (Cervus elaphus 

hispanicus18), and collared peccaries (Pecari tajacu19), in 

which ovarian tissue vitrification allowed the maintenance 

of the morphological integrity of more than 70% of the fol-

licles after rewarming.20

Cryopreservation of the gametes of non-human pri-

mates has received a great deal of attention because these 

animals are used as experimental models for humans. In the 

baboon (Papio anubis), ovarian tissue vitrification followed 

by autografting resulted in follicle survival, growth, and 

ovulation (as indicated by the presence of corpora lutea).21 

Similar results have been reported in cynomolgus monkeys 

(Macaca fascicularis) using both vitrification22 and SF fol-

lowed by autografting.23 The birth of offspring from freshly 

grafted ovarian tissue was first described in rhesus monkeys 

(Macaca mulatta).24

Wiedemann et al25 reported the success of the SF 

method followed by the in vitro culture of ovarian tissue in the 

African lion (Panthera leo), Amur leopard (Panthera pardus 

orientalis), black-footed cat (Felis nigripes), oncilla (Leopar-

dus tigrinus), Geoffroy’s cat (Leopardus geoffroyi), Northern 

Chinese leopard (Panthera pardus japonensis), rusty-spotted 

cat (Prionailurus rubiginosus), serval (Leptailurus serval), 

and Sumatran tiger (Panthera tigris sumatrae). On the other 

hand, viable immature oocytes of wolves were obtained using 

the vitrification method.26

Studies carried out on carnivorous marsupials (Sminthopsis 

crassicaudata, Sminthopsis harrisii, Dasyurus viverrinus, 

and Dasyurus hallucatus) demonstrated that follicle viabil-

ity could be maintained for 48 hours during ovarian tissue 

chilling using phosphate-buffered saline (PBS) as the base 

medium. In addition, almost 70% of isolated oocytes either 

survived vitrification27 or the preservation of ovarian frag-

ments after vitrification.28

Conventional freezing of ovarian fragments maintained 

oocyte integrity in agoutis (Dasyprocta aguti29), African 

elephants (Loxodonta africana30), and wombats (Lasiorhinus 

krefftii31–33), while vitrification of ovarian fragments main-

tained oocyte integrity in whales.34

In addition, the resumption of meiosis of isolated imma-

ture oocytes of Asian antelopes (Tetracerus quadricornis) 

after vitrification followed by in vitro maturation has been 

reported.35

The preservation of male gametes
Systematic cryopreservation and storage of male gametes 

from endangered species circumvents the problem of homozy-

gosis in isolated populations by introducing new genetic 

material across populations and facilitates genetic exchanges 

between captive areas/zoos/research centers or countries.36 It 

is possible to cryopreserve semen, epididymal spermatozoa, 

or spermatogonial stem cells that are either isolated or in tes-

ticular tissue.37 Each cell type has specific requirements during 

cryopreservation. Differences in the physical size and shape 

of spermatozoa may influence their susceptibility to thermal 
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shock and resistance to osmotic stress during the freeze–thaw 

process when the stability of the membrane is challenged.38 

Furthermore, epididymal spermatozoa are not exposed to 

the complex secretions of the accessory sex glands, and this 

could alter both the sensitivity to chilling and the resistance 

to freezing of ejaculated spermatozoa.39

Electroejaculation is the most frequently used method 

for semen collection in wild species because it prevents 

manipulation risks during the procedure and requires 

chemical restraint of the animal. Other methods for semen 

collection include the use of internal artificial vaginas or 

vaginal condoms.40 In addition, post-coital sperm recovery 

has proved to be successful method of semen collection in 

marmoset monkeys41 and rhinoceros.42

The protocols used for cryomethods in the preservation 

of sperms of domestic animals have been adapted for use in 

wild species of interest.43 Protocols such as chilling allow 

sperm cell preservation for short periods of time, while 

freezing is used for longer periods. Semen cryopreservation 

is an established technique and differences in efficacy may 

be attributed to particularities of each species.4 In general, 

spermatozoa from most mammalian species have displayed 

good results after SF (-0.5°C/min), recovering at least some 

motility after thawing.44 Tris and TES are among the most 

employed diluents used in semen preservation,45 while 

coconut water has been used in the capuchin monkey,46 the 

agouti,47 and the collared peccary.4 In addition, milk-based 

cryoextenders have also been used to successfully freeze 

the sperm from species such as the Asian elephant (Elephas 

maximus indicus)48 and the Indian rhinoceros (Rhinoceros 

unicornis).49 In searching for an ideal diluent for semen 

cryopreservation, many additives have been tested with the 

aim of fostering increased sperm viability after thawing. 

For example, adding detergent-active-ingredient substances 

(such as sodium dodecyl sulfate [SDS], or Equex) to the 

freezing medium improves the quality, longevity, and fertility 

of the sperm after thawing.50 The use of Equex for semen 

cryopreservation in gray wolves (Canis lupus),51 and alpacas 

(Vicugna pacos)52 improved sperm longevity. The addition 

of antioxidant substances reduces the effects of cold osmotic 

shock and stress due to an imbalance between the reactive 

oxygen species (ROS) and the antioxidants.53 In this regard, 

Thuwanut et al54 evaluated the impact of adding vitamin E, 

Trolox (a vitamin E analog), and glutathione peroxidase 

(GPx) to the thawed spermatozoa of the flat-headed cat 

(Prionailurus planiceps) and concluded that the addition 

of GPx reduced oxidative stress and increased the success 

of cryopreservation.

In relation to CPAs, the use of egg yolk and glycerol has 

been studied in wild species.4,55–57 Glycerol (4%–6%) in the 

CPA allows the recovery of thawed spermatozoa in a diverse 

range of species including felids,55,58 marine mammals,59,60 

Asian elephants (Elephas maximus),61,62 rhinos (Ceratoth-

erium simum, C.s. cottoni),63 leopards (Neofelis nebulosa),64 

bears (Ursus arctos),65 monkeys (rhesus monkeys),66 collared 

peccaries (Pecari tajacu),57 and many other species. Although 

glycerol is used for sperm cryopreservation of a wide range of 

species, some studies point out that there are some restrictions 

in its use due to its cytotoxic effects.67 Glycerol toxicity may 

cause protein denaturation, actin interaction and alterations, 

and direct disruption of the plasma membrane.68 Because 

of this, substances such as dimethylsulfoxide (DMSO) and 

dimethylacetamide have been proposed as important alter-

natives to glycerol for semen cryopreservation in saltwater 

crocodiles (Crocodylus porosus)69 and kangaroos (Macropus 

giganteus).70

Collection of the epididymal spermatozoa directly from the 

cauda of the epididymis and vas deferens is also an option for 

use in wild and captive animals that have high genetic value, and 

for animals killed accidentally.71 This method provides morpho-

logically viable cells that retain the ability to undergo capaci-

tation, bind to the zona pellucida, and fertilize the oocyte.72,73 

Factors such as the size of the epididymis and the diameter 

of the vas deferens influence the choice of technique and its 

success for the recovery of sperm.74 The flotation method is 

performed with the epididymis immersed in a buffered medium. 

Numerous sections in the epididymis cauda are made with a 

blade, followed by recumbency for some minutes. Then the 

sperm will migrate to the medium and can be recovered after 

removing the tissue pieces.75 This is the procedure of choice 

for small animals such as deer and squirrels, given the small 

size of the epididymis,76–78 but it has also been used for large 

animals (camels, antelopes, European bisons, and Cantabrian 

brown bears).75,79–81 Retrograde flushing is another method 

of sperm collection that involves the injection of a buffered 

medium inside the vas deferens using a syringe. The pressure 

pushes the sperm toward an incision in the cauda epididymis, 

generally near the junction with the corpus, where the gametes 

are recovered.82 It allows samples to be obtained with a lower 

level of contamination by blood cells.83 Sperm cells derived 

from this technique have been efficiently cryopreserved in red 

deer,84 African buffalos,85 and agoutis.47

Cryopreservation of testicular tissues is a potential 

means of preserving male genetic material in endangered 

animals that die unexpectedly.86 This technique enables the 

preservation of cell integrity and the endocrine functions of 
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the testes,87 allowing the preservation and posterior use of 

spermatozoa88 and/or spermatogonial stem cells.64 Recent 

developments in autografting and xenografting testes 

demonstrate the potential value of cryopreserving gonadal 

tissues.89,90 Nevertheless, a major obstacle limiting the 

application of this technology is the low efficiency of sperm 

production in many species.91

A number of CPAs have been used to protect testicular 

tissues against cryoinjury in order to improve the quality 

of spermatozoa recovered after testicle cryopreservation. 

Such CPAs include both penetrating and nonpenetrating 

CPAs such as sucrose, trehalose, glycerol, ethylene glycol 

(EG), 1,2-propanediol (PrOH), and DMSO. Nevertheless, 

the efficacy of these CPAs depends on several factors such 

as CPA concentration, cooling rate, and the species being 

studied.92

SF is the conventional method used to cryopreserve 

testicular biopsies. Advantage is taken of the regulatory 

properties of extracellular ice formation to dehydrate cells 

during cooling and avoids toxicity to cells by exposing them 

to lower concentrations of CPAs while slowly decreasing the 

temperature. However, this method is time inefficient and 

requires expensive programmable freezers.93 Vitrification 

is another cryopreservation strategy adopted to preserve 

testicular biopsies. Vitrification is a fast and convenient 

method that involves a solidification process without crystal-

lization that avoids the biologically damaging effects associ-

ated with ice crystal formation by using higher concentrations 

of CPAs and ultrafast cooling rates.93,94

Regardless of the method used, testicular tissue cryo-

preservation is a promising way to preserve male germ-

plasm and has been successfully used in domestic species 

(porcine,95 mouse,93 cat,92 bovine96), wild species (Antilope 

cervicapra,97 monkeys,98 Felis chaus, Panthera leo, Panthera 

pardus, Rusa timorensis, Muntiacus feae, Sumatran serow, 

Capricornis sumatraensis54), and human.99 Recently, Borges 

et al100 performed cryopreservation of testicular tissue of 

the collared peccary (Peccary tajacu) using a solid surface 

vitrification method with CPAs (EG, dimethylformamide 

[DMF] or DMSO, at 3 M or 6 M concentration). It was 

observed that EG preserved the nuclei and epithelium of 

the testicular cells.

Embryos and somatic cells
Advances in cell biotechnology have increased the inter-

est in the creation of cell banks as sources of different cell 

types, but this requires knowledge of cell-type specific 

cryopreservation. Cryobanking of cells and tissues is an 

important and useful approach both for human applica-

tions and for the conservation of endangered mammalian 

species.101 Additionally, the cryopreservation of embryos and 

somatic cells offers several important logistic and economic 

advantages, including the preservation of embryos in excess 

of the number of available recipients, and national and inter-

national movement of embryos.102

Some valuable embryo biotechnologies have been devel-

oped for mustelids. Amstislavsky et al103 used SF to obtain 

important results in the intraspecies and interspecies embryo 

transfer of endangered animals. Taylor et al104 published 

results demonstrating the successful use of a novel micro-

injection system in the cryopreservation of llama embryos 

and confirmed pregnancy by ultrasound.

Embryos of the African lion (Panthera leo) resulting from 

intracytoplasmic sperm injection using frozen–thawed sperma-

tozoa obtained by percutaneous epididymal sperm aspiration 

and mature oocytes were cryopreserved and subsequently 

transferred.105 Cryopreservation by conventional SF and vit-

rification in South American camelids (alpacas and llamas) 

yielded promising results using conventional methods.102,106 

The authors found no differences in trophoblastic vesicle sur-

vival after 24 hours among control groups and those exposed 

to EG or propylene glycol.

Lattanzi et al107 tested the viability of llama hatched 

blastocysts using vitrification and SF and observed re-

expansion of vitrified and slow-frozen embryos of 54% and 

57%, respectively. Similarly, Von Baer and Del Campo108 

tested the effect of vitrification by open pull straw (OPS) on 

the morphology and survival of llama hatched blastocysts 

and found that re-expansion of embryos after thawing was 

acceptable, but no pregnancies were obtained. Transmission 

electron microscopy (TEM) revealed a high lipid content in 

the cytoplasm of llama embryos and may contribute to low 

survival after vitrification.

Recent advances in gamete and embryo biotechnolo-

gies are demonstrating the utility of using somatic cells 

to obtain induced pluripotency. Induced pluripotent stem 

(iPS) cells derived from fibroblasts is a new approach 

to potentially obtain gametes from somatic cells, since 

iPS cells could be later differentiated into the required 

cell type.109 Production of iPS cells from fetal fibroblasts 

was first reported in the mouse.110 Concerning highly 

endangered species, pluripotency has also been induced 

in somatic cells from a primate, the drill (Mandrillus 

leucophaeus), from the nearly extinct white rhinoceros 

(Ceratotherium simum cottoni),111 as well as from the snow 

leopard (Panthera uncia).112
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A pioneering study by Caamano et al113 reported that a 

single basic protocol can provide a method for obtaining, 

culturing, and cryopreserving skin fibroblasts from a wide 

range of wild animals. In that study, skin biopsies were taken 

of the brown bear (Ursus arctos), and from carcasses of 

accidentally killed individuals from the following species: 

gray wolf (Canis lupus), red fox (Vulpes vulpes), Eurasian 

badger (Meles meles), fallow deer (Dama dama), Pyrenean 

chamois (Rupicapra pyrenaica), Western roe deer (Capreolus 

capreolus), and wild boar (Sus scrofa). It was possible to 

obtain, culture, freeze, and thaw skin fibroblasts successfully 

from all the species studied.

Recently, León-Quinto et al109 evaluated the cryosensitiv-

ity of fetal skin cells in comparison with adult cells from the 

critically endangered Iberian lynx. Responses to cryoinjury 

were analyzed in both thawed cell types by means of cell 

viability and functionality, using freezing media including the 

permeating CPA (DMSO), either alone or along with the non-

permeating CPA sucrose. Data showed a difference between 

fetal and adult skin cells concerning their cryopreservation 

sensitivity and requirements, as well as their recovery time 

after thawing, with survival rates of 54%±4% in thawed fetal 

cells (vs 89%±6% for thawed adult cells).

Cryopreservation of adult cartilage cells, fetal cartilage 

cells, and lung tissue has produced promising results and 

could be very important in biodiversity conservation by 

biobanking. However, studies on wild animals are scarce 

and our knowledge is currently limited to domestic animals 

and marine mammals.114–116

Final considerations
Both in situ and ex situ conservation strategies can ben-

efit from reproductive biotechniques such as artificial 

insemination, gamete micromanipulation, cell and tissue 

cryopreservation, in vitro culture, and grafting. In addi-

tion, these techniques can also be used to obtain data on 

the reproductive physiology of wild species. For example, 

in vitro culture or grafting of gonadal or somatic tissues of 

threatened species is a great option for their conservation. 

Germplasm banks can be complemented with the preserva-

tion of cell types such as embryos and blood and skin that 

can be used for the application of other biotechniques in 

order to preserve species.

There is still very little information on the physiology of 

wild species, and this is a problem because these data are 

needed for the improvement and applicability of reproductive 

techniques for these species. Nevertheless, the techniques 

reported here are very encouraging and hold great promise 

for the development of new methods to aid in biodiversity 

conservation in the future. A practical example for the use 

of cryopreservation to safeguard animal genetic resource is 

the Frozen Ark, which is supported by the Natural  History 

Museum, the Zoological Society of London, and the  Institute 

of Genetics at the University of Nottingham (UK); and the 

Global Genome Initiative (Smithsonian Institution, Washing-

ton, DC, USA). These institutions established a consortium 

of major zoos, aquaria, museums, and research institutions 

in many countries around the world, aiming to ensure genetic 

sources preservation.
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