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Abstract: The TRAMP complex assists the nuclear exosome to degrade a broad range of 

ribonucleic acid (RNA) substrates by increasing both exoribonucleolytic activity and substrate 

specificity. However, how the interactions between the TRAMP subunits and the components 

of the nuclear exosome regulate their functions in RNA degradation and substrate specificity 

remain unclear. This review aims to provide a summary of the recent findings on the role of 

the TRAMP complex in nuclear RNA degradation. The new insights from recent structural 

biological studies are discussed.
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Introduction
TRAMP complex is one of the most well-characterized nuclear exosome cofactors, 

which enhances the activity and substrate specificity of the exosome.1 In Saccharomyces 

cerevisiae, TRAMP complex is a heterotrimeric complex consisting of a poly(A) poly-

merase (either Trf4p or Trf5p); a zinc-knuckle ribonucleic acid (RNA)-binding protein 

(either Air1p or Air2p); and an RNA helicase Mtr4p.2,3 The main function of TRAMP 

is to assist the nuclear exosome to degrade a large variety of RNA substrates, such as 

hypomodified initiator tRNA
i
Met, abnormally processed ribonucleic RNAs (rRNAs),4–6 

cryptic unstable transcripts (CUTs),7–10 long noncoding RNAs (lncRNAs),11 micro-

RNAs (miRNAs),12,13 and normal by-products of RNA metabolism such as spliced-out 

introns,14,15 and to be involved in the many other RNA processes such as the maturation 

steps in precursor RNA processing and transfer RNA (tRNA) editing.16 Therefore, it 

is not surprising that the TRAMP complex is also directly involved in many RNA 

processing pathways such as splicing,15,17,18 RNA export,19,20 and heterochromatic gene 

silencing,21,22 and is even indirectly involved in the maintenance of genomic stabil-

ity.9,23,24 This review summarizes recent findings on molecular mechanisms underlying 

how the TRAMP complex regulates nuclear RNA surveillance.

Trf4p and Trf5p – non-canonical nuclear  
poly(A) polymerases
Trf4p and Trf5p are two highly similar (45% identity and 72% similarity) poly(A) 

polymerases.24 Previous studies showed that they exhibited negative genetic interaction 

with the DNA topoisomerase Top1p, and they were named as topoisomerase-related 

function (Trf) 4p and Trf5p.23,24 As a result, Trf4p and Trf5p were suggested to act as 

DNA polymerases that play a role in genome stability.25–27 Many different mechanisms 

for their contribution in genomic instability were proposed, for example, through the 
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regulation of the levels of histone messenger RNA (mRNA)28 

and non-protein coding RNA transcripts (ncRNAs),9,29 the 

R-loop-mediated transcription-associated recombination,30 

and the recruitment of replication protein A.31 In subse-

quent research, the importance of Trf4p and Trf5p in RNA 

degradation intermediates were demonstrated, and the fact 

that their poly(A) polymerase activity is required for RNA 

degradation.32,33

As the TRAMP complex is composed of either Trf4p 

or Trf5p, two distinct TRAMP complexes (TRAMP4 and 

TRAMP5, named for the presence of Trf4p or Trf5p, respec-

tively) co-exist in S. cerevisiae. The cellular level of Trf4p 

is approximately three times higher than that of Trf5p. That 

may be the reason why deletion of TRF5 generates no obvi-

ous phenotype, whereas loss of TRF4 leads to a slow-growth 

 phenotype.28 As deletion of both TRF4 and TRF5 are invi-

able,24 it is highly possible that Trf4p and Trf5p have overlap-

ping functions.5,14 However, recent studies demonstrated that 

deletion of TRF4 and TRF5 affected barely overlapping sets 

of substrates.14,32,34,35

Despite considerable structural similarities to the catalytic 

and central regions of the canonical poly(A) polymerase, both 

Trf4p and Trf5p lack the RNA-binding domain and rely on 

their RNA-binding partners, AIR proteins (Air1p or Air2p), 

to bind to their substrates. It was supported by chromatin 

immunoprecipitation analyses that the absence of Air2p 

impeded the recruitment of Trf4p and Trf5p to transcribing 

genes.36

Air1p and Air2p – zinc knuckle 
RNA-binding proteins 
Both Air1p and Air2p were originally identified by a yeast-

two hybrid screening, as proteins physically interacting with 

Hmt1p. Air1p inhibits Npl3p methylation by suppressing 

Hmt1p’s activity.19 AIR proteins were hence named accord-

ingly as arginine methyltransferase-interacting RING finger 

proteins.19 A recent protein–protein interaction study demon-

strated that Air2p could be methylated by Hmt1p and that the 

direct interaction between Npl3p and Air2p was significantly 

increased in the presence of active Hmt1p.37

The amino acid sequences of Air1p and Air2p are highly 

similar (45% identity and 71% similarity). They have five 

zinc knuckle (ZnK) motifs that are critical for the binding 

to RNA and the assembly of the TRAMP–RNA complex.38,39 

That exposed guanosines on RNA loops or in the single-

stranded RNAs are recognized by the ZnK motifs of AIR 

proteins was shown by the quantitative solution-binding assay 

using fluorescence anisotropy experiments.39 This previous 

study also demonstrated that Air2p bonded to unstructured 

oligo(A) 15 RNA substrate with a dissociation constant in 

the lower micromolar range, but did not bind to oligo(dA) 

15 DNA substrate.39 The function of ZnK motifs on AIR 

proteins is not only important for RNA binding, but also for 

protein–protein interaction. Based on mutation analysis and 

nuclear magnetic resonance titration experiments, the fourth 

and fifth ZnK motifs of Air2p are associated with the central 

domain of Trf4p, and the interaction is essential for TRAMP4 

polyadenylation activity.39,40

Since no change in the growth rate of S. cerevisiae cells 

lacking either Air1p or Air2p was evident, while double 

deletion led to very severe growth defects,19 early publica-

tions2,14 assumed that the functions of Air1p and Air2p were 

redundant. However, by RNA deep sequencing, distinct 

accumulation patterns of polyadenylated RNAs in the cells 

lacking either Air1p or Air2p were observed.41 The findings 

clearly indicated that Air1p and Air2p targeted specific tran-

scripts for polyadenylation and degradation by the nuclear 

RNA exosome, resulting in profound physiology effects on 

the cell.41 In brief, ablation of Air1p causes the loss of the 2 µ 

plasmid and 2 µ CUTs, but ablation of Air2p decreases the 

levels of mRNAs encoding proteins for glucose transport and 

metabolism, while it elevates the levels of mRNAs involved 

in iron import.41

Mtr4p – RNA helicase
Mtr4p (also known as Dob1p) was identified as an RNA heli-

case critical for the regulation of TRAMP-mediated degrada-

tion by unwinding secondary structures of target RNAs and 

modulating the polyadenylation in the TRAMP complex.42,43 

The Mtr4p subunit of TRAMP was initially discovered as a 

protein that, when mutated, would result in an mRNA trans-

port (mtr) defect with the accumulation of polyadenylated 

RNAs in the nucleus. It was then shown to be required for the 

nuclear exosome-dependent synthesis of 5.8S rRNA from its 

7S precursor.42 As Mtr4p is a member of the DExH-box RNA 

helicases family, Mtr4p may accelerate RNA degradation by 

the nuclear exosome through unwinding the RNA duplexes.44,45 

In addition, it has been suggested that Mtr4p is also responsible 

for the proper recruitment of TRAMP-targeted RNAs to the 

nuclear exosome via the direct physical interaction between 

Mtr4p and the components of the nuclear exosome.29,46

Molecular mechanism of the 
TRAMP complex
The current model states that both helicase and poly(A) 

polymerase activities of the TRAMP complex are 
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required,45 but not essential,46,47 for its function. Based 

on the findings from isothermal titration calorimetry, 

the dimerization of Trf4p and Air2p is likely required 

for efficient assembly with Mtr4p.39 Trf4p and Air2p 

form the poly(A) polymerase subcomplexes first, and the 

N-terminal low-complexity regions of Trf4p and Air2p 

bind to the DExH adenosine triphosphate (ATP)ase core 

domain of the Mtr4p in a cooperative  manner.48 A similar 

conserved region in the N-terminus of Trf5p is required 

for Mtr4p interaction.3

The interactions between the subunits of the TRAMP 

complex are important for the coordination between heli-

case and polyadenylation activities of TRAMP.43 On one 

hand, Trf4p with Air2p stimulates the RNA helicase activity 

of Mtr4p through increasing its ATP affinity.49 On the other 

hand, Mtr4p detects the number of 3′ adenosines added 

and inhibits polyadenylation by controlling the activity of 

Trf4p.43 Mtr4p is also shown to bind to RNAs with adenos-

ines tighter than other sequences.44,50 Mtr4p only fully binds 

when the 3′ extensions contain at least 5–6 nucleotides.49 

Therefore, during polyadenylation, the binding affinity of 

Mtr4p to target substrate increases and induces slower dis-

sociation of TRAMP from terminal adenosines.43

The model was supported by previous findings that 

polyadenylation by Trf5p was also markedly increased in 

strains lacking the RNA helicase Mtr4p51 or with mutated 

Mtr4p.39,43 That may be the reason why RNAs adenylated by 

the TRAMP complex contain significantly shorter poly(A) 

tails than the canonical poly(A) polymerases.52,53 These 

findings collectively suggested that the TRAMP complex 

polyadenylates the 3′ ends of aberrant noncoding RNAs, 

and subsequently provides a docking site for the exosome 

to initiate RNA decay.40 However, in some cases, RNA 

degradation does not require the polyadenylation activity 

of TRAMP.14,47,54

Targeting RNAs for degradation: 
recognition of aberrant sequences
As mentioned in the “Molecular mechanism of the TRAMP 

complex” section, the TRAMP complex processes a broad 

range of RNAs produced by all three RNA polymerases 

(RNAP I, II and III). In the TRAMP complex, only the AIR 

proteins (Air1p and Air2p) have RNA-binding domains. 

Therefore, it is highly possible that the RNA-binding domains 

of Air1p and Air2p determine the substrate specificity of the 

TRAMP complex.2,40,41,51,55,56 The subcellular localizations of 

the TRAMP complexes may also contribute to the different 

substrate specificities of TRAMP4 and TRAMP5 complexes. 

The TRAMP5 complex localizes mainly in the nucleolus,36,57 

while the TRAMP4 complex is found throughout the entire 

nucleus in S. cerevisiae.58,59 That may be the reason why 

TRAMP5 is recruited co-transcriptionally to nucleolar sur-

veillance machinery and is responsible for the degradation 

of aberrant 23S RNA.60,61

In addition, the physical binding of interacting proteins 

to TRAMPs controls differential substrate specificity.41 For 

example, TRAMP4, but not TRAMP5, is co-purified with 

Nrd1p and Nab3p,62,63 which are part of the Nrd1p–Nab3p–

Sen1p (NNS) complex that bind to the nuclear exosome to 

mediate transcription termination of non-polyadenylated 

RNAs. The Nrd1p–Trf4p interaction is required for this 

activity.63 According to the current model, Nrd1p interacts 

with RNAPII and Trf4p in a mutually exclusive manner.63 

The C-terminal repeat domain (CTD) interacting domain 

(CID) of Nrd1p mediates the transition of the NNS complex 

from RNAPII to the Trf4p of the TRAMP complex.63 Nrd1p 

interacts with Trf4p and stimulates the RNA polyadenylation 

by the TRAMP  complex.63 Hence, the dynamic interactions 

among RNAPII, Nrd1p, and Trf4p regulate the NNS targets 

by promoting proper 3′ end formation of small nuclear 

RNAs (snRNAs) and small nucleolar RNAs (snoRNAs), 

and the degradation of unstable ncRNAs and CUTs in the 

nucleus.54,63

Interestingly, Air1p is shown to be co-purified with the 

poly(A) binding protein Hrb1p,64 and Trf4p binds to the splic-

ing factor Prp16p.55 In addition, Hrb1p and Gbp2p genetically 

and physically interact with Mtr4p, and play an important role 

in the quality control of spliced mRNAs; whether TRAMP4 

is specialized for quality control of spliced mRNAs remains 

to be explored.

Modulation of the RNA exosome  
by TRAMP
Although the nuclear exosome is an active ribonuclease 

in vivo, purified nuclear exosome only showed weak activ-

ity in vitro, particularly toward highly structured RNA 

substrates.2 The TRAMP complex increases the acces-

sibility of the RNA 3′ ends to nuclear exosome through 

 polyadenylation. The 3′ oligo-adenosine tail then serves as 

docking for the exosome and unwinds the structured RNA. 

Although there is evidence demonstrating the requirement of 

ATP and polyadenylation of RNA substrates for the TRAMP 

complex to enhance the activity of the exosome,2,4,55 both 

poly(A) polymerase and the helicase activities of the TRAMP 

complex seem  dispensable for the enhancement of RNA 

degradation by the exosome in vitro.47 Interestingly, one of 
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the components of nuclear exosome Rrp6p plays an unexpect-

edly critical role in the enhancement of RNA degradation by 

purified exosomes via the TRAMP complex in vitro.47

Recent crystallographic analysis revealed that the 

N-terminal domains of Rrp6p and Rrp47p form a highly 

intertwined structure, which creates a groove that binds the 

N-terminus of Mtr4p.46 In agreement with previous findings,65 

overexpression of the core domains of Mtr4p is sufficient to 

suppress the growth defect of rrp6∆ and thus restore specific 

rrp6∆ RNA defects. 

The TRAMP complex may enhance RNA degradation 

and specificity of the exosome via co-transcriptional recruit-

ment.36 Co-transcriptional recruitment of the exosome cofac-

tors is required to enhance the degradation of RNA substrates 

by the exosome.2,36,55,66 The transcription elongation complex 

(THO) (which is involved in RNAPII transcription elonga-

tion and messenger ribonucleoprotein [mRNP] export) was 

suggested to be responsible for the maintenance of TRAMP 

occupancy at sites of snoRNA transcription in fission yeast.67 

It is interesting to further explore whether the THO complex 

is also important for the recruitment of the TRAMP complex 

to the transcription sites for other RNA substrates.

Conservation of TRAMP-mediated 
processes
Components of the TRAMP complex are highly conserved 

from yeast to mammals. Schizosaccharomyces pombe’s 

TRAMP complex, consisting of Cid14p, Air1p, and Mtr4p, 

is functionally homologous to the TRAMP complex in 

S. cerevisiae.68,69 Interestingly, S. pombe CID1 family of 

non-canonical poly(A) polymerases has six members (Cid1p, 

Cid11p, Cid12p, Cid13p, Cid14p, and Cid16p).70 As Cid14p 

is constitutively nucleolar and is required for polyadenylation 

and degradation of S. pombe rRNAs, Cid14p is considered as 

the functional orthologue of S. cerevisiae Trf4p and Trf5p.71 

Unlike trf4–trf5 double mutants in budding yeast, S. pombe 

lacking CID14 is viable, though it suffers from an increased 

frequency of chromosome mis-segregation.68 In addition, 

S. pombe Cid14p is required for proper silent RNA (siRNA) 

generation through the RNA interference pathway.21,72

Similar to S. cerevisiae, the human TRAMP complex also 

consists of three subunits: a helicase hMtr4p, a non- canonical 

poly(A) polymerase hPAPD (PAP-associated domain-

containing) 5 or hPAPD7, and a ZnK protein hZCCHC7.73 

Humans also contain two TRF homologues, hPAPD5 and 

hPAPD7, both of which exhibit 37% identity to the catalytic 

domain of S. cerevisiae Trf4p. Human Air1/2p orthologues 

of hZCCHC7 share 35% and 34% identity to yeast Air1p 

and Air2p, respectively. In addition, hMtr4p (also named as 

SKIV2L2) exhibits 51% total identity to yeast Mtr4p. Recent 

studies showed that hMtr4p precipitates contain hZCCHC7p 

and hPAPD5p, which strongly suggests that humans have 

functionally related yeast TRAMP complex in the process-

ing and surveillance of rRNA, snRNA, snRNA, mRNA, 

and miRNA.38,73 However, in contrast to yeast Trf4p, the 

C-terminus of hPAPD5p contains a stretch of basic residues 

that is involved in binding the RNA substrate, which enables 

hPAPD5p to carry out its function without a separate RNA-

binding subunit, such as AIR proteins in S. cerevisiae.74

hMtr4p also forms a heterotrimer with a putative RNA-

binding protein hRbm7p and a zinc knuckle RNA-binding 

domain-containing protein hZCCHC8, known as nuclear 

exosome targeting (NEXT) complex. The NEXT complex 

contributes to the degradation of promoter upstream tran-

scripts (PROMPTs), which are produced upstream of the 

promoters of actively transcribing protein-coding genes.73 

The recruitment of NEXT to PROMPT regions is through 

NEXT’s physical interaction with a cap-binding com-

plex (CBC). The CBC–NEXT subcomplex mediates the 

RNAPII-derived transcription termination and suppresses 

the expression of PROMPTs in humans.75 Interestingly, the 

localization of the human TRAMP complex is only restricted 

to the nucleolus, and the NEXT complex is found in other 

parts of the nucleoplasm.73 The presence of the TRAMP 

complex and the NEXT complex in different subnuclear 

localizations suggests that compartmentalization of nuclear 

exosome cofactors may be necessary to cope with the more 

diverse transcripts.

In addition, a recent study demonstrated that the RNA-

binding component of the NEXT complex, Rbm7p, could be 

phosphorylated by p38MAPK/MK2.76 Phosphorylated Rbm7p 

has lower RNA-binding capacity  to nuclear non-coding RNA 

(such as PROMPTs) than its unphosphorylated form, and hence 

increases the stability of nuclear noncoding RNA for the stress-

dependent modulations of the noncoding transcriptome.76

Conclusion and perspectives
The advances in protein binding and structural analysis have 

advanced our knowledge of the molecular mechanisms of the 

TRAMP complex in nuclear RNA surveillance (Figure 1). 

 However, many fundamental questions remain to be addressed. 

For example, how does the TRAMP complex determine 

the fate of different types of RNA? How does the TRAMP 

complex coordinate with other RNA processing events via 

protein–protein interactions? How is the TRAMP complex 

co-transcriptionally recruited, especially for the RNAPI- and 
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RNA

Poly(A) polymerase
subcomplex

Air1p/Air2p
Mtr4p

Rrp6p

Rrp47p

Trf4p/Trf5p

TRAMP

Exosome

Figure 1 Model of interactions between RNA, TRAMP, and the exosome. RNA 
substrate bound by Air1p or Air2p is oligo-adenylated by poly(A) polymerase Trf4p 
or Trf5p until sufficient binding sites are generated for the helicase Mtr4p. Mtr4p is 
loosely associated with the poly(A) polymerase subcomplex in the TRAMP complex. 
Mtr4p can only fully bind when the 3′ extensions contain at least 5–6 nucleotides. 
Therefore, during polyadenylation, the binding affinity of Mtr4p to target substrate 
increases. This increased affinity might contribute to Mtr4p inhibiting further 
oligo-adenylation and might induce slight slowing of TRAMP dissociation from 
the substrate. TRAMP recruits the exosome for RNA degradation through the 
interaction between Mtr4p and Rrp6p/Rrp47p. Mtr4p also forms a complex with 
other proteins, such as with Hrb1p and Gbp2p, to mediate quality control of spliced 
transcripts in yeast, and with hRbm7p and hZCCHC8, as NeXT complexes to 
degrade PROMPTs.
Abbreviations: RNA, ribonucleic acid; NeXT, nuclear exosome targeting; PROMPT, 
promoter upstream transcript.

RNAPIII-derived transcripts? Can the activity and specificity 

of the TRAMP complex be regulated by post-translational 

modifications?
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