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Abstract: Diabetes is a complex and progressive disease that has a major societal and economic 

impact. The most common form of diabetes, type 2 diabetes mellitus (T2DM), is a multifactorial 

disease, the pathophysiology of which involves not only the pancreas but also the liver, skeletal 

muscle, adipose tissue, gastrointestinal tract, brain, and kidney. Novel therapies with mechanisms 

of action that are different from most existing drugs are emerging. One such class consists of 

compounds that inhibit renal sodium-glucose cotransporter 2, which is responsible for the 

bulk of glucose reabsorption by the kidneys. This new class of compounds improves glycemic 

control independently of insulin and promotes weight reduction, providing an additional tool 

to treat patients with T2DM. This review discusses the underlying pathophysiology of T2DM, 

clinical guidelines, and available and emerging treatment options, with particular emphasis on 

sodium-glucose cotransporter 2 inhibitors.

Keywords: diabetes, hyperglycemia, oral antidiabetic therapies, pharmacotherapy, sodium-

glucose cotransporter 2

Introduction
Diabetes is a complex and potentially debilitating disease that affects an estimated 

8.3% of the adult population or 382 million people worldwide.1 The region with the 

highest number of adults with diabetes, ie, 138 million, is the Western Pacific, which 

includes the People’s Republic of China.1 It is estimated that 29.1 million people in the 

USA (9.3% of the population) have diabetes.2 If current trends continue, it is estimated 

that 592 million people worldwide will have diabetes by 2035.1

Diabetes care has a major economic impact in both developed and developing 

countries. Estimated global health care costs to treat and prevent diabetes were at 

least $548 billion in 2011.1 In the USA, the total cost of diabetes was estimated to be 

$245 billion in 20122 and may exceed $500 billion by 2025.3

Type 2 diabetes mellitus (T2DM) accounts for 90%–95% of new cases of diabetes.2 

T2DM pathophysiology involves at least seven organs and tissues, including the 

pancreas, liver, skeletal muscle, adipose tissue, brain, gastrointestinal tract, and kidney 

(Figure 1).4 Reduced sensitivity to insulin (ie, impaired insulin-mediated glucose 

disposal or insulin resistance) in liver, muscle, and adipose tissue, and a progressive 

decline in pancreatic β-cell function leading to impaired insulin secretion, eventually 

result in hyperglycemia, the hallmark feature of T2DM. The purpose of this review 

is to discuss the underlying pathophysiology of T2DM, clinical treatment guidelines, 

and available and emerging treatment options, with emphasis on the newest class of 

antihyperglycemic drugs, the sodium-glucose cotransporter 2 (SGLT2) inhibitors.
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Figure 1 Multiorgan and tissue pathophysiology of type 2 diabetes.
Notes: Adapted with permission from DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes 
mellitus. Diabetes. 2009;58:773–795.4

Abbreviations: FFA, free fatty acids; GLP-1, glucagon-like peptide-1.

Pathophysiology
Pancreas
Impairment of insulin action and of β-cell function occurs 

very early in the development of T2DM.5 Insulin resistance 

can be detected in individuals with normal glucose tolerance 

who are at higher risk for development of T2DM 10–20 years 

before the disease is diagnosed.6 Further, individuals who 

are transitioning from impaired glucose tolerance to T2DM 

may have already lost up to 80% of their β-cell function.4 

Mechanisms thought to play a role in the decline of β-cell 

function include the following:

Genetics
The clustering of T2DM in families has long been 

recognized.7 A number of genes associated with insulin 

and β-cell dysfunction have been identified in patients with 

T2DM, including genetic variants associated with pancreatic 

development and insulin storage and secretion.8 With insulin 

resistance comes an increased need for biosynthesis and 

release of insulin. It has been proposed that a genetic poly-

morphism in patients predisposed to T2DM results in failure 

of the β cell to adapt to the increased demand for insulin.9

Age
Numerous studies have demonstrated an age-related decline 

in β-cell function and insulin secretion.10 This is consistent 

with the increased prevalence of T2DM with aging.2

Diet and exercise
Obesity and physical inactivity are major factors in the 

increased prevalence of T2DM worldwide11 and are associ-

ated with insulin resistance.4 Diets high in rapidly absorbable 

carbohydrates result in elevated insulin and blood glucose 

levels,11 and the deposition of fat in liver and muscle increases 
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insulin resistance in these tissues.4 These factors increase 

the demand for insulin, and in the long term may lead to 

progressive β-cell failure.4,11

Glucotoxicity
Chronic exposure to elevated glucose concentrations impairs 

β-cell function and insulin secretion. The mechanisms 

involved in glucotoxicity remain to be elucidated but likely 

involve impairment of insulin gene expression, chronic 

oxidative stress, and apoptosis.12

Lipotoxicity
Elevated plasma concentrations of free fatty acids (FFAs) 

impair insulin secretion in patients at risk for development 

of T2DM.13,14 Elevated FFAs in β-cells lead to increased 

oxidative stress and apoptosis.15

Liver
The liver is the main organ responsible for glucose pro-

duction.16 Hepatic glucose production and release into 

the circulation comes from both gluconeogenesis and 

glycogenolysis.16,17 In patients with T2DM, the liver overpro-

duces glucose because it becomes resistant to the suppressive 

effects of insulin.4 Other factors, such as lack of suppression 

of postprandial glucagon secretion from pancreatic α cells in 

patients with T2DM,18 increased circulating glucagon, and 

increased sensitivity of the liver to glucagon, also contribute 

to increased hepatic glucose production.4 

Muscle
Insulin-stimulated transport of glucose into skeletal muscle 

is the primary mechanism for the disposal of an exogenous 

glucose load.19 The major transporter involved in the 

uptake of glucose into skeletal muscle, glucose transporter 

4 (GLUT4),19 is also expressed in adipocytes and cardiac mus-

cle and is responsible for insulin-stimulated glucose uptake 

into these tissues.20 Insulin and exercise acutely stimulate the 

translocation of GLUT4 to the membrane of muscle cells, 

resulting in increased glucose uptake.19,20 In patients with 

T2DM, skeletal muscle is resistant to the actions of insulin 

because of defects in insulin signaling and often a low level of 

physical activity.21 This leads to a decrease in glucose uptake 

that contributes to the development of hyperglycemia.

Adipose tissue
In patients with T2DM, adipocytes are resistant to the 

antilipolytic effect of insulin, resulting in elevation of 

circulating FFAs. Chronic increases in FFAs stimulate 

gluconeogenesis, induce hepatic and muscle insulin resistance, 

and impair insulin secretion.22 These lipid-induced changes 

in T2DM are part of a constellation of changes induced by 

excess FFAs, termed lipotoxicity.15 Dysfunctional adipose 

tissue produces excessive amounts of inflammatory and 

atherogenic cytokines that can induce insulin resistance and 

concurrently fails to adequately secrete insulin-sensitizing 

adipocytokines.22

Much interest has recently been focused on “brown 

fat”, a very metabolically active adipose tissue previously 

thought to be present only in small mammals and newborn 

humans, where it functions in cold-induced or diet-induced 

heat production.23 However, recent studies have shown that 

brown fat is also present in human adults.24–27 In contrast 

with white adipose tissue, which stores excess energy as 

triglycerides,23 brown adipose tissue uses small intracellular 

triglyceride vacuoles as a main energy source to produce 

heat.28 The mass of brown fat has been shown to be directly 

related to resting metabolic rate26 and inversely correlated 

with age, total body fat, and body mass index.24–26 In addi-

tion, exercise has been shown to induce the “browning” of 

white adipose tissue.29 These findings suggest that brown 

fat may play an important role in energy metabolism and in 

body weight control. However, the role of brown fat in the 

pathogenesis of T2DM is unclear.

Brain
Insulin can cross the blood-brain barrier and, by modulat-

ing the expression of various neuropeptides involved in 

food intake, suppress appetite.30 In patients with T2DM, the 

brain may become insulin resistant, such that the inhibitory 

effect of insulin on appetite is lost.30 In fact, central insulin 

resistance may develop in individuals at risk for T2DM who 

are otherwise healthy.31

Amylin, a peptide synthesized and cosecreted with insulin 

from β cells, decreases food intake32 by sensitizing the area 

postrema and nucleus of the solitary tract to other metabolic 

signals that reduce food intake, such as cholecystokinin and 

glucose.33 Amylin also slows gastric emptying, and reduces 

postprandial glucagon release.32 In patients with T2DM, as 

β-cell function progressively declines, amylin secretion is 

reduced and its satiety-producing effects wane.32

Leptin and ghrelin are two other hormones that act cen-

trally to control food intake and body weight homeostasis. 

Leptin is mainly produced and secreted by adipocytes,34 and 

its blood concentration is proportional to the percentage of 

body fat.35 A major effect of leptin is to decrease food intake 

and body weight by acting on areas in the hypothalamus 
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involved in feeding behavior and energy balance.36 Many 

individuals with T2DM are obese, have high circulating 

levels of leptin, and are resistant to exogenous leptin.34 

However, a subset of obese individuals has low levels of 

leptin and in these individuals exogenous leptin improves 

obesity.37 Although exogenous leptin prevents insulin 

resistance in animal models of diabetes,38 treatment of obese 

patients with T2DM did not improve insulin sensitivity.39

Ghrelin is secreted mainly by the stomach during fasting 

or caloric restriction and acts in the central nervous system 

to promote food intake.40 Ghrelin and its receptor are also 

present in pancreatic islet cells.41,42 In healthy humans, 

exogenous ghrelin reduces insulin secretion43,44 and causes 

hyperglycemia.43,45 In a population-based study, low plasma 

ghrelin concentrations were associated with increased fasting 

insulin concentrations, insulin resistance, and an increased 

prevalence of T2DM.46 

Gastrointestinal tract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent 

insulinotropic polypeptide (GIP) are hormones released by 

the gastrointestinal tract (incretins) in response to nutrient 

ingestion.47 GLP-1 and GIP act on β cells to stimulate the 

release of insulin and are responsible for up to 60% of insulin 

secretion following a meal.48 GLP-1 also promotes satiety, 

slows gastric emptying, and inhibits glucagon secretion, thus 

reducing hepatic glucose production.49 Patients with T2DM 

have impaired secretion of GLP-1 and reduced responsive-

ness to GIP.48 This results in increased gastrointestinal 

motility, decreased glucose-dependent insulin secretion, 

increased glucagon secretion, and increased liver glucose 

release, all of which adversely affect glycemic control.

Kidney
Under normal conditions, more than 99% of glucose filtered 

by the kidneys is reabsorbed in the proximal tubule.50 The 

bulk of glucose is reabsorbed by the SGLT2, in concert 

with a facilitative glucose transporter, GLUT2.50 Once 

plasma glucose concentrations exceed the renal threshold 

for reabsorption (approximately 180 mg/dL in healthy 

individuals), glucose starts to appear in the urine.51 A recent 

study demonstrated that the capacity of the kidney to reabsorb 

glucose is increased in patients with T2DM compared with 

matched healthy individuals.52 Therefore, in patients with 

T2DM, the kidneys reabsorb glucose in excess and return it 

to the circulation, potentially worsening hyperglycemia.

The liver and kidneys are the only organs that possess the 

requisite enzymes for gluconeogenesis and that subsequently 

release newly formed glucose into the circulation.16 In the 

postabsorptive (fasting) state in healthy humans, renal gluco-

neogenesis accounts for approximately 20% of total glucose 

released into the circulation, with the liver contributing the 

remainder.16,53 It has been suggested that renal glucose syn-

thesis is increased in patients with T2DM relative to healthy 

individuals.54 Therefore, in patients with T2DM, the kidneys 

may further exacerbate hyperglycemia by continued glucose 

reabsorption and increased production of glucose.

Treatment goals
T2DM is a major risk factor for the development of cardio-

vascular disease,55 as well as microvascular complications, 

including chronic kidney disease,56 end-stage renal disease 

requiring dialysis or transplantation,57 and blindness.2 

Hyperglycemia is the key determinant of microvascular 

complications. Randomized controlled trials have shown that 

intensive glycemic control can reduce the risk of microvascu-

lar complications in patients with T2DM.58–60 Therefore, the 

major treatment goal for T2DM is to reduce hyperglycemia 

and to manage comorbidities, especially those associated 

with cardiovascular disease (hypertension and dyslipidemia). 

Lifestyle changes (diet and exercise) and intensive phar-

macotherapy of hyperglycemia and of multiple risk factors 

substantially reduce the rates of death, cardiovascular events, 

and progression to end-stage renal disease and retinopathy 

in patients with T2DM.61

Hyperglycemia should be monitored over the long term 

by measurement of glycated hemoglobin (A
1C

) at least 

twice a year in all patients with diabetes and at least four 

times yearly in patients who are not at target.62 Management 

of hyperglycemia should be individualized based on life 

expectancy, duration of T2DM, presence of comorbidities or 

vascular complications, potential for hypoglycemia or other 

adverse events, and patients’ attitudes and access to support 

systems.62,63 The American Diabetes Association (ADA)/Euro-

pean Association for the Study of Diabetes (EASD) and the 

American Association of Clinical Endocrinologists (AACE) 

recommend general A
1C

 target levels 7.0% and 6.5%,  

respectively, for most patients.62,63 Strict control of blood 

pressure (BP) and lipids is also recommended.

Pharmacotherapy
Lifestyle changes that include a healthy diet, weight loss, 

increased physical activity, self-monitoring of blood glucose, 

and diabetes self-management education have broad benefits 

in controlling hyperglycemia and cardiovascular risk fac-

tors in patients with T2DM.64 Moreover, early intervention 
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with intensive lifestyle changes can prevent or delay the 

development of T2DM in susceptible individuals.65 However, 

lifestyle changes may not be adequate to control hyperglycemia 

in the long term, and most patients will require pharmacother-

apy to achieve and maintain glycemic control.64

Patients with T2DM usually require multiple medications 

to adequately treat their diabetes and associated comorbidities. 

There is currently no single agent available that affects 

all seven organs and tissues involved in the pathogenesis 

of T2DM; most drugs target up to four of the physiologic 

abnormalities.64 The major classes of drugs, mechanisms of 

action, and major contraindications are shown in Table 1. 

The ADA/EASD treatment recommendations (Figure 2) stress 

the importance of individualization of treatment and treatment 

intensification with combination therapy if A
1C

 goals are not 

attained. The ADA/EASD recommendations are based on the 

glucose-lowering effect, actions that may reduce long-term 

complications, tolerability, safety, ease of use, and expense 

of glucose-lowering medications.62 The AACE algorithm for 

the treatment of T2DM also emphasizes the importance of 

individualized glycemic goals and treatment regimens, and 

stratifies treatment options based on initial A
1C

.63

Despite the availability of several glucose-lowering drug 

classes, a recent survey of patients with diagnosed diabetes 

from 1999 to 2006 found that only 57% achieved an A
1C

 

7%, and only 12% achieved the recommended A
1C

, BP, 

and low-density lipoprotein cholesterol goals.66 The reasons 

for failure to achieve recommended treatment goals may 

include lack of treatment initiation and intensification, patient 

nonadherence,67 and progressive decline in β-cell function, 

Table 1 Drugs available for type 2 diabetes mellitus

Class Mechanism of action Glucose target Major precautions, contraindications,  
adverse effects

Oral agents
Biguanide (metformin) Decreases hepatic glucose production; 

hepatic insulin sensitizer; decreases 
intestinal glucose absorption

Fasting Gastrointestinal symptoms, lactic acidosis, 
contraindicated in renal insufficiency

Sulfonylurea (glyburide, 
glipizide, glimepiride)

increases insulin secretion Fasting and postprandial weight gain, hypoglycemia

α-glucosidase inhibitor 
(acarbose, miglitol)

Delays carbohydrate absorption Postprandial Gastrointestinal symptoms

Thiazolidinedione  
(pioglitazone, rosiglitazone)

insulin sensitizer Fasting and postprandial edema, weight gain, bone fractures, may cause 
or exacerbate heart failure, contraindicated in 
heart failure. Rosiglitazone has been withdrawn 
from the eU owing to potential increased risk 
of Cv events. Pioglitazone may be associated 
with an increased risk of bladder cancer.

Meglitinide  
(nateglinide, repaglinide)

increases insulin secretion Postprandial weight gain, hypoglycemia

DPP-4 inhibitors (sitagliptin, 
saxagliptin, linagliptin, alogliptin)

increases GLP-1 and GiP levels Postprandial Urticaria/angioedema

Dopamine agonist 
(bromocriptine)

Modulates central neurotransmitters, 
resulting in improved glycemic control 
and glucose tolerance

Postprandial Orthostatic hypotension, syncope, nausea

Bile acid sequestrant 
(colesevelam)

Lowers plasma glucose and LDL 
cholesterol

Postprandial Constipation

SGLT2 inhibitors (canagliflozin, 
dapagliflozin, empagliflozin)

increase renal glucose excretion Fasting and postprandial Genital and urinary tract infections. 
Contraindicated in moderate to severe renal 
impairment

Injectable agents
GLP-1 receptor agonist 
(exenatide, exenatide long-
acting release, liraglutide)

increases glucose-dependent insulin 
secretion, decreases glucagon 
secretion, slows gastric emptying

Postprandial, some  
fasting

Gastrointestinal symptoms

Amylin analog (pramlintide) Delays gastric emptying, decreases 
glucagon secretion

Postprandial, some  
fasting

Hypoglycemia, gastrointestinal symptoms

insulin (various analogs) Stimulate glucose uptake Basal, fasting bolus, 
postprandial

weight gain, hypoglycemia

Notes: Data from.123–128

Abbreviations: Cv, cardiovascular; DPP-4, dipeptidyl peptidase-4; eU, european Union; GiP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; 
LDL, low-density lipoprotein; SGLT2, sodium-glucose co-transporter 2.
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Healthy diet, weight control, increased 
physical activity 

+
Met

If Met is contraindicated: SU, DPP-4i, SGLT2i, GLP-1 RA, or TZD

Initial drug monotherapy 

Combination
injectable therapy

Assess after 3 months of monotherapy.
If not at A1C target, proceed to two-drug therapy.

Met + 
Basal insulin + mealtime insulin or GLP-1 RA

If combination therapy, including basal insulin,
fails to achieve A1C target after 3–6 months,

proceed to complex insulin regimens.

Assess after 3 months of two-drug therapy.
If not at A1C target, proceed to three-drug therapy. 

Two-drug 
combinationsa Met +

GLP-1 RA  
Met +

DPP-4i
Met +

SGLT2i
Met +
TZD

Met +
SU

Met +
insulinb

Three-drug 
combinationsa

Met +
TZD

+
SU

or DPP-4i
or SGLT2i
or GLP-1

RA
or insulinb

Met +
DPP-4i

+
SU

or TZD
or SGLT2i
or insulinb

Met +
SGLT2i

+
SU

or TZD
or DPP-4i
or insulinb

Met +
GLP-1 RA

+
SU

orTZD 
or insulinb

Met +
SU
+

TZD
or DPP-4i
or SGLT2i
or GLP-1

RA
or insulinb

Met +
insulinb

+ 
TZD 

or DPP-4i
or SGLT2i 
or GLP-1 

RA

Figure 2 General recommendations for the treatment of type 2 diabetes from the American Diabetes Association/european Association for the Study of Diabetes.
Notes: aOrder of drugs does not denote any specific preference; busually basal insulin. Copyright © 2009. American Diabetes Association. Adapted with permission from inzucchi Se, 
Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes 
Association and the european Association for the Study of Diabetes. Diabetes Care. 2015;38:140–149.124

Abbreviations: DPP-4i, dipeptidyl peptidase-4 inhibitor; GLP-1 RA, glucagon-like peptide-1 receptor agonist; A1C, glycated hemoglobin; Met, metformin; SGLT2i, sodium-
glucose co-transporter 2 inhibitor; SU, sulfonylurea; TZD, thiazolidinedione.

rendering therapies dependent on insulin secretion or action 

less effective over time.5 Accordingly, new pharmacologic 

therapies with mechanisms of action that are independent 

of insulin secretion or action and with acceptable safety 

profiles and a low risk of hypoglycemia and weight gain 

may enhance the ability of patients to achieve and maintain 

glycemic control.

New and emerging therapies
SGLT2 inhibitors
As discussed above, the kidney plays an important role in 

glucose homeostasis. Inhibition of the major transporter 

involved in glucose reabsorption by the kidney, SGLT2,68 is 

an attractive, insulin-independent mechanism for increasing 

urinary glucose excretion in the setting of hyperglycemia.69 

Because the actions of SGLT2 inhibitors are independent 

of insulin, there is less risk of major hypoglycemic events70 

compared with agents dependent on insulin action, and there 

is also the potential for effectiveness in advanced disease. 

Moreover, increased excretion of glucose and associated 

calories by SGLT2 inhibitors decreases body weight.71 

Finally, there is a potential for combination therapy with other 

classes of agents with complementary mechanisms of action 

to optimize treatment.72 However, because the mechanism 

of action of SGLT2 inhibitors depends on the filtration of 

glucose by the kidney, as the glomerular filtration rate (GFR) 

declines, the amount of glucose filtered is reduced, which 

decreases glucosuria and the efficacy of these drugs.73 A 

number of selective SGLT2 inhibitors are in various stages 

of clinical development for the treatment of T2DM.74
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Dapagliflozin
Dapagliflozin (AstraZeneca, Wilmington, DE, USA) is 

approved as a treatment for T2DM in the European Union, 

USA, and other countries. In Phase III trials, dapagliflozin 

reduced A
1C

 (up to approximately -0.7%, placebo-corrected), 

fasting plasma glucose (FPG, up to approximately 

-27 mg/dL), and in most studies, body weight by 2–3 

kg in patients with T2DM who were inadequately con-

trolled with diet and exercise,75 metformin,76,77 glimepiride,78 

pioglitazone,79 sitagliptin with and without metformin,80 

and insulin.81 In addition, combination of dapagliflozin 

(5 or 10 mg/day) and metformin extended release as initial 

therapy in treatment-naïve patients was more effective than 

either drug alone in reducing A
1C

; dapagliflozin 10 mg alone 

was also noninferior to metformin.82 Finally, in patients 

inadequately controlled with metformin, dapagliflozin 

(10 mg/day) was noninferior to glipizide (20 mg/day) 

in reducing A
1C

.77 

In patients with T2DM and moderate renal impair-

ment (estimated GFR [eGFR] 30–59 mL/min/1.73 m2), 

mean decreases in A
1C

 were similar for placebo (-0.32%) 

and for dapagliflozin 5 mg/day (-0.41%) and 10 mg/day 

(-0.44%) after 24 weeks of treatment.83 Although there 

was no significant effect on glycemic parameters in these 

patients, a mean reduction from baseline in body weight 

was observed with dapagliflozin 5 mg/day (-1.3 kg) and 

10 mg/day (-1.7 kg) versus an increase (0.7 kg) with 

placebo.

In a pooled analysis of 12 Phase II/III trials, dapagli-

flozin 10 mg/day reduced systolic BP from baseline by 

-4.4 mmHg and diastolic BP by -2.1 mmHg compared 

with changes of -0.9 mmHg in systolic BP and -0.5 mmHg 

in diastolic BP with placebo.84 Dapagliflozin treatment was 

associated with significant weight reduction of up to 3 kg  

over 24 weeks.76,78,79,81 The reduction in body weight with 

dapagliflozin is largely the result of a reduction in body fat.71 

The positive effects of dapagliflozin on hyperglycemia and 

body weight were sustained for up to two years when added 

to insulin85 or metformin therapy.86,87

Dapagliflozin was generally well tolerated, and adverse 

events were balanced across treatment groups.75–79,81 There was 

a low incidence of hypoglycemia when dapagliflozin was used 

as monotherapy75 or as add-on to metformin,76,77 pioglitazone,79 

or sitagliptin.80 The proportion of patients with hypoglycemia 

was higher in the dapagliflozin groups than in the placebo 

groups when added to glimepiride78 or insulin therapy,81 and 

was significantly lower compared with glipizide.77

In a 12-week randomized, double-blind study in patients 

with T2DM and normal renal function, dapagliflozin 

10 mg/day reduced the measured GFR from baseline 

by -10.8% compared with -2.9% with placebo.88 Mean eGFR 

decreased from baseline up to week 2 and tended to return 

toward baseline by 12 weeks. In an analysis of 12 random-

ized placebo-controlled trials involving more than 4,000 

patients with preserved renal function, dapagliflozin was 

associated with a reduction in eGFR at week 1 that slowly 

returned to baseline by week 24 and was maintained at that 

level for 2 years.89 The acute reductions in GFR may be 

due to reversible hemodynamic effects such as a decrease 

in BP or plasma volume as a result of the modest diuretic 

action of dapagliflozin.88 Because of the reduced efficacy in 

patients with renal impairment, dapagliflozin is not recom-

mended in patients with moderate to severe renal impairment 

(eGFR 60 mL/min/1.73 m2).84

In data pooled from 12 randomized, placebo-controlled 

trials, dapagliflozin 2.5, 5, or 10 mg once daily was accom-

panied by an increased risk of vulvovaginitis or balanitis 

(4.1%–5.7% versus 0.9% with placebo).90 Diagnosed uri-

nary tract infections occurred more frequently with dapa-

gliflozin 5 mg (5.7%) and 10 mg (4.3%) compared with 

placebo (3.7%).91 

Canagliflozin
Canagliflozin (Janssen Pharmaceuticals, Inc., Titusville, NJ, 

USA) is approved for the treatment of T2DM in the USA, 

European Union, and other countries. In Phase III trials, 

treatment with canagliflozin (100 and 300 mg/day) for 26 or 

52 weeks increased glucose excretion and decreased A
1C

 

(maximum change versus placebo or comparator -1.16%) 

and FPG (-43 mg/dL) in patients with T2DM when used as 

monotherapy,92 as add-on therapy to metformin,93 or as add-on 

to metformin and sulfonylurea.94 In patients stabilized on 

metformin, canagliflozin 100 mg/day was noninferior (mean 

difference -0.01%; 95% confidence interval (CI) -0.11%, 

0.09%) and 300 mg/day was superior (mean difference 

-0.12%; 95% CI -0.22%, -0.02%) to glimepiride (6 to 8 mg/

day) in reducing A
1C

.93 Absolute decreases in body weight 

of up to 4.2 kg after 52 weeks of therapy with 300 mg/day 

have been reported.93 Canagliflozin (300 mg/day) as add-on 

to metformin and sulfonylurea was more effective than 

sitagliptin (100 mg/day) in reducing body weight, FPG, and 

systolic BP.95

In patients with T2DM and chronic kidney disease (eGFR 

30 and 50 mL/min/1.73 m2), treatment with canagliflozin 

for 26 weeks reduced A
1C

 from baseline by -0.33% with 

100 mg/day and by -0.44% with 300 mg/day compared 

with -0.03% with placebo.96 Transient decreases in eGFR 

(-4 to -6 mL/min/1.73 m2) with canagliflozin were observed 
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at 3 weeks and trended toward baseline at 26 weeks. As 

expected, based on the mechanism of action, these reductions 

in A
1C

 in patients with impaired renal function were less than 

those reported in patients with normal renal function.92–95,97 

In addition to inhibiting SGLT2, canagliflozin is a weak 

inhibitor of SGLT1, the transporter responsible for intestinal 

glucose absorption.98 In healthy individuals, canagliflozin 

reduced postprandial plasma glucose and insulin and delayed 

the appearance of oral glucose in plasma following a mixed-

meal tolerance test.99 These results suggest that canagliflozin 

reduces postprandial glucose and insulin by increasing renal 

glucose excretion via SGLT2 inhibition and by delaying 

the intestinal absorption of glucose, possibly by inhibiting 

SGLT1.

An increase in symptomatic urinary tract infections92,93,96 

and genital infections92–94,96 was observed with canagliflozin. 

In addition, canagliflozin was associated with a modest 

increase in bone fractures and a dose-dependent increase in 

low-density lipoprotein cholesterol.100

In patients with T2DM without kidney disease 

(eGFR 55 mL/min/1.73 m2), canagliflozin caused a 

small initial decrease in eGFR that was stable up to 52 

weeks.93 In an analysis of pooled data from four random-

ized, placebo-controlled trials, canagliflozin caused early 

transient decreases in eGFR that remained stable or were 

attenuated over the course of 26 weeks.101 The changes 

in eGFR with canagliflozin 100 and 300 mg/day versus 

placebo were -1.6% and -3.0% versus -0.6% in patients 

65 years of age and -2.6%, and -2.9% versus -0.4% in 

patients 65 years of age. Canagliflozin should not be used 

in patients with eGFR 45 mL/min/1.73 m2 and the dose 

is limited to 100 mg/day in patients with eGFR of 45–60 

mL/min/1.73 m2.102

Empagliflozin
Empagliflozin (Boehringer Ingelheim, Ingelheim, 

Germany, and Eli Lilly, Indianapolis, IN, USA) is 

approved in the European Union and USA. In patients 

with T2DM, empagliflozin increased glucose excretion 

and decreased FPG (up to -32 mg/dL, placebo-corrected) 

and A
1C

 (maximum of -0.69%) when used as mono-

therapy for 12 weeks,103 as add-on to metformin for 12 

weeks,104 or as add-on to pioglitazone for 24 weeks.105 

As add-on therapy to metformin and sulfonylurea, pla-

cebo-corrected changes in A
1C

 and FPG after 24 weeks 

were -0.65% and -0.60% for empagliflozin 10 and 

25 mg/day, respectively.106 Decreases in body weight103–106 

and systolic BP106 have also been reported. Improvements in 

glycemic control and weight reduction were sustained for up 

to 90 weeks.107 An increased risk of genital and urinary tract 

infections was observed with empagliflozin.103,104,106,107

Ipragliflozin
Ipragliflozin (Astellas, Tokyo, Japan, and Kotobuki, 

Hanishina, Japan) is approved in Japan for the treatment of 

T2DM. In a 12-week dose-ranging study in patients with 

T2DM, ipragliflozin (12.5, 50, 150, and 300 mg/day) dose-

dependently reduced A
1C

 by up to 0.81% (placebo-corrected) 

and body weight by up to 1.7 kg. A decrease in A
1C

 of -0.72% 

was seen with metformin.108 In a similarly designed 12-week 

study in patients inadequately controlled on metformin 

(1,500 mg/day), ipragliflozin reduced A
1C

 by a maximum 

of -0.48% at 300 mg.109 Urinary tract and genital infections, 

as well as episodes of hypoglycemia, were similar with ipra-

gliflozin and placebo. In patients with impaired renal function 

± T2DM, a single dose of ipragliflozin increased urinary glu-

cose excretion in patients with mild (eGFR 60 to 90 mL/

min/1.73 m2), moderate (eGFR 30 to 60 mL/min/1.73 m2), 

and severe (eGFR 15 to 30 mL/min/1.73 m2) renal 

impairment. However, absolute glucose excretion decreased 

as eGFR declined.110

Other SGLT2 inhibitors in earlier phases of clinical 

development that have been reported to have positive effects 

on glycemic parameters in patients with T2DM include luseo-

gliflozin (Taisho, Tokyo, Japan),111 tofogliflozin (Chugai/

Roche, Tokyo, Japan),112 ertugliflozin, (Pfizer, New York, 

NY, USA)113 and the SGLT2/SGLT1 inhibitor LX4211 

(Lexicon Pharmaceuticals, The Woodlands, TX, USA).114

Receptor agonists
GPR119 agonists
The G-protein–coupled receptor (GPR)119 is expressed pre-

dominantly in the pancreas (β cells) and gastrointestinal tract 

in humans.115 Although the endogenous ligand for this recep-

tor is unknown, stimulation with synthetic ligands results in 

increased release of insulin, GLP-1, and GIP.115 A number 

of GPR119 agonists are in development for T2DM,116,117 and 

published findings for JNJ-38431055 (Johnson & Johnson 

Research & Development, Inc., Raritan, NJ, USA) report 

that this agent caused an increase in post-meal GLP-1 and 

GIP in patients with T2DM and was not associated with 

hypoglycemia.118 

Free fatty acid receptor 1 activators
The free fatty acid receptor 1 (FFAR1, also known as GPR40) 

is expressed mainly in pancreatic β cells.119 Activation of this 
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receptor results in fatty acid–induced glucose-stimulated  

insulin secretion. In a 12-week Phase II clinical trial, 

the FFAR1 activator TAK-875 (Takeda, Osaka, Japan) 

significantly reduced A
1C

, compared with placebo, with no 

increase in hypoglycemia.120

11β-hydroxysteroid dehydrogenase type 1 inhibitors
Excess glucocorticoids can cause insulin resistance and, in 

some individuals, can lead to the development of T2DM.121 

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) con-

verts inactive cortisone to cortisol in target tissues. Therefore, 

inhibition of this enzyme may improve insulin sensitivity. In a 

randomized, placebo-controlled Phase II study of overweight 

or obese patients with T2DM exhibiting inadequate glycemic 

control with metformin, an 11β-HSD1 inhibitor, INCB13739 

(Incyte, Wilmington, DE, USA), significantly reduced A
1C

 

and FPG compared with placebo.122 Body weight, insulin 

resistance, and total cholesterol levels were also reduced 

with treatment.

Summary and conclusion
The significant burden that T2DM imposes on individuals 

and society reinforces the need for achieving and maintain-

ing glycemic control in these patients. The key to optimal 

control is early diagnosis and intensive treatment with a 

combination of agents that address the various pathophysi-

ologic abnormalities in T2DM, thereby lowering fasting 

and postprandial glucose concentrations. Novel medications 

with mechanisms of action different from those of most 

existing drugs and with acceptable safety profiles (low rates 

of hypoglycemia and no weight gain) are essential for long-

term glycemic control and for improving disease outcomes 

and comorbidities. SGLT2 inhibitors are the newest treat-

ment option for T2DM. These agents improve glycemic 

control, lower fasting glucose concentrations, and promote 

weight loss. This new class of diabetes medication with a 

novel mechanism of action provides an additional option to 

improve glycemic control in patients with T2DM. Whether 

the investigational GPR119 agonists, FFAR1 activators, and 

11β-HSD1 inhibitors are safe and effective treatments for 

T2DM will be determined by the results of longer-duration, 

Phase III studies.
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