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Background: Amyloid-beta (Aβ) imaging with positron emission tomography (PET) holds 

promise for detecting the presence of Aβ plaques in the cortical gray matter. Many image analyses 

focus on regional average measurements of tracer activity distribution; however, considerable 

additional information is available in the images. Metrics that describe the statistical proper-

ties of images, such as the two-point correlation function (S
2
), have found wide applications 

in astronomy and materials science. S
2
 provides a detailed characterization of spatial patterns 

in images typically referred to as clustering or flocculence. The objective of this study was to 

translate the two-point correlation method into Aβ-PET of the human brain using 11C-Pittsburgh 

compound B (11C-PiB) to characterize longitudinal changes in the tracer distribution that may 

reflect changes in Aβ plaque accumulation.

Methods: We modified the conventional S
2
 metric, which is primarily used for binary images 

and formulated a weighted two-point correlation function (wS
2
) to describe nonbinary, real-

valued PET images with a single statistical function. Using serial 11C-PiB scans, we calcu-

lated wS
2
 functions from two-dimensional PET images of different cortical regions as well as 

three-dimensional data from the whole brain. The area under the wS
2
 functions was calculated 

and compared with the mean/median of the standardized uptake value ratio (SUVR). For three-

dimensional data, we compared the area under the wS
2
 curves with the subjects’ cerebrospinal 

fluid measures.

Results: Overall, the longitudinal changes in wS
2
 correlated with the increase in mean SUVR 

but showed lower variance. The whole brain results showed a higher inverse correlation between 

the cerebrospinal Aβ and wS
2
 than between the cerebrospinal Aβ and SUVR mean/median. We 

did not observe any confounding of wS
2
 by region size or injected dose.

Conclusion: The wS
2
 detects subtle changes and provides additional information about the 

binding characteristics of radiotracers and Aβ accumulation that are difficult to verify with 

mean SUVR alone.

Keywords: amyloid-beta plaques, positron emission tomography, 11C-Pittsburgh compound B,  

statistical descriptors, two-point correlation function

Introduction
The presence of amyloid-beta (Aβ) plaques in the cortical gray matter is among the 

major pathological features of Alzheimer’s disease (AD), and is present years before 

memory decline and other clinical manifestations emerge.1–7 Reliable diagnostic and 

prognostic information in the early stages of AD is necessary for clinical interven-

tions that can halt disease progression. More so, there exists a substantial need for 

quantitative imaging techniques that can sensitively monitor changes in amyloid status 

over time and determine the response to therapeutic interventions. Aβ plaques have 
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been imaged in the human brain using positron emission 

tomography (PET) with radiotracers, such as 11C-Pittsburgh 

compound B (11C-PiB)8 and 18F-florbetapir.9 In an attempt 

to quantify levels of in vivo amyloid plaque, contempo-

rary analyses rely on the calculation defined as the ratio of 

image intensity between the cortex and a reference region 

(commonly the cerebellar gray matter). This method, the 

standardized uptake value ratio (SUVR), is appealing due to 

its computational simplicity and short scan time. Radiotracer 

uptake is measured after binding in the cortex and reference 

region reaches a steady state 40–50 minutes after injection.3 

Healthy cortex typically shows tracer binding at an SUVR 

of 1.5 or less. Any ratio above this threshold is referred to 

as “PiB-positive” and is thought to be indicative of abnor-

mal accumulation of Aβ plaques. Another method employs 

kinetic modeling of amyloid-PET, and is computed from 

dynamic data10,11 collected over a longer acquisition time, but 

is more susceptible to subject movement. Both the SUVR and 

the kinetic modeling methods typically rely on the mean or 

median of the voxel activity values across a region of interest, 

but fail to account for variations in the spatial pattern within 

the region. Consequently, regional SUVR mean values are 

subject to high variance (large error bars), thus precluding an 

accurate assessment of longitudinal alterations to Aβ accu-

mulation. Therefore, there exists a need for image analysis 

methods that can characterize spatial patterns of radiotracer 

activity in Aβ-PET data to provide additional information 

about longitudinal alteration in distribution of radiotracer 

activity and Aβ accumulation.

Statistical descriptors such as the two-point correlation 

function (S
2
) are commonly used in specialties such as material 

science and astronomy to characterize microscopic properties 

of materials or galaxy distributions.12–20 This metric provides 

a detailed characterization of spatial patterns in images, 

typically referred to as clustering or flocculence. Continuous-

valued Aβ-PET images are analogous to the material science 

concept of multiphase media where different voxel activity 

values correspond to different phases. Conventional two-point 

correlation analysis would require the computation of S
2
 func-

tions for each voxel value, which is difficult to interpret due to 

the broad range of activity values within the PET data. In this 

study, we applied a modified S
2
 metric, a weighted two-point 

correlation function (wS
2
), on continuous-valued (nonbinary) 

11C-PiB PET to capture longitudinal changes in image spatial 

patterns with a single statistical function. Here, we introduce 

a novel computational framework of the wS
2
 analysis. We 

then implement this analysis on longitudinal 11C-PiB scans 

in human subjects and compare the outcomes of wS
2
 with 

currently used mean/median SUVR and cerebrospinal fluid 

(CSF) measures of Aβ.

Material and methods
Calculation of two-point correlation 
function
Calculation of S

2
 involves comparison of each voxel with 

all other voxels within the image. This process can be 

approximated by selecting N number of random voxel pairs 

on a binary image space (voxel values are either 1 or 0) with 

variable intervoxel distances and counting the number of 

times both voxel values are equal to 1 (true instances). The 

instances are then binned by the intervoxel distances, and for 

a given distance r, the number of true instances is divided 

by the total number of instances with distance r. Figure 1 

illustrates two binary images with a spatially random distri-

bution of nonzero voxels and their corresponding two-point 

correlation functions. The two-point correlation function can 

be interpreted as the probability that two randomly selected 

image voxels x
1
 and x

2
 both are nonzero. The x axis of the plot 

in Figure 1 represents the intervoxel distance and the y axis 

shows the calculated S
2
 values for the given distance. The two 

images in Figure 1 are not identical but are statistically simi-

lar, thus generating similar S
2
 curves. Figure 2 shows another 

set of binary images with the same number of nonzero (black) 

voxels. While in the first image (Figure 2A) these voxels 

are randomly distributed, in the second image (Figure 2B)  

some of them were moved around to form small clusters of 

4–5 voxels. The clustering effect changes the S
2
 function of 

the second image (dashed line). The area under the curve 

(AUC) increases with the increase of flocculence (clustering) 

in the spatial distribution of black voxels. Similarly, more 

changes in S
2
 function can be observed when the flocculence 

increases (Figure 2C). Since all three images have the same 

fraction of nonzero voxels, their calculated mean voxel values 

remain unchanged. Therefore, the utilization of the two-point 

correlation function can reveal additional information about 

the spatial distribution of the voxel values, which cannot be 

determined by their calculated mean or median values.

Calculation of weighted two-point 
correlation function
Continuous-valued images such as an amyloid-PET can be 

characterized with multiple two-point correlation functions, 

one for each voxel value.20 However, typical amyloid-PET 

images have more than a few activity values. Therefore, such 

an approach would require computation of a large number 

of S
2
 functions, which is not only computationally intensive 
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Figure 1 Two nonidentical binary images (A, B) with similar statistical properties in their nonzero voxel distribution, and their corresponding two-point correlation 
functions (C). The horizontal axis of the plot in C indicates the distance between voxels, and the vertical axis indicates the probability of finding two black voxels at a given 
distance. Because there is no spatial clustering in images A and B, s2 drops off rapidly as a function of distance in C.

but also the results are difficult to interpret. To address this 

challenge, we formulated a weighted two-point correlation 

function (wS
2
) to facilitate implementation of a single sta-

tistical function on a nonbinary image. Similar to S
2
, wS

2
 is 

estimated by randomly selecting N pairs of voxels at vari-

able distances on the image space. For S
2
, each instance is 

weighted either zero (when one or both voxels are zero) or 

one (when both voxels are nonzero). For wS
2
, we general-

ize this by computing a weighting factor that preferentially 

weights instances where both voxels have high activity. We 

used the following equation as an initial approach in defining 

a weighting scheme:

 W
I I I I=

+ −1 2 (

2
1 2. )e−  (1)

The weighting factor for each instance, W, is calculated 

as the product of two terms. The first term is the average 

value of the two selected voxels (I
1
, I

2
). The second term 

incorporates the absolute difference between the two voxel 

values into an exponential decay. This weighting scheme 

takes advantage of the information encoded by the image 

intensities. Figure 3 illustrates the weighting schemes in S
2
 

for binary images and in wS
2
 for nonbinary images. Figure 4 

shows the weighted two-point correlation functions of three 

simulated nonbinary images. The AUC and the slope changes 

with the clustered increase of activity from the upper image 

(Figure 4A) to the lower image (Figure 4C). Implemented 

on amyloid-PET images, the wS
2
 can be used to capture 

the flocculence of the tracer activity within different corti-

cal regions. While several factors, such as the nonspecific 
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Figure 2 Three binary images with equal fractions of nonzero voxels. In (A) the black voxels are randomly distributed, while in (B) and (C) they are increasingly clustered. 
(D) The s2 functions of the three images are compared. As the clustering of nonzero voxels increases, the value of s2 at shorter distances increases, as does the area under 
the curve.

radiotracer binding, partial volume effect, and white matter 

retention contribute to the activity pattern within a region of 

a PET image, we hypothesize that the observed clustering 

of the activity distribution and the spread of high-activity 

clusters could be partially attributed to underlying heteroge-

neity in the spatial distribution of Aβ plaques and the specific 

binding of the radiotracer. The presence of regional activity 

clusters in longitudinal PET data is often qualitatively vis-

ible, as shown in Figure 5, with images of 11C-PiB in four 

different regions of three Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) subjects. The regional activity distribution 

of baseline images (Figure 5A, C, E, and G) were compared 

with their follow-up time points (Figure 5B, D, F, and H). 

All images show localized patterns of high activity clusters, 

which seem to remain in the same area within the course 

of one or 2 years. With the weighted two-point correlation 

functions, we can define a quantitative metric that character-

izes the clustered increase of activity in different regions or 

in the whole brain. The next sections of this study provide 

details on 11C-PiB PET acquisition and preprocessing, as 

well as implementation of wS
2
 on two-dimensional and 

three-dimensional PET data and evaluation.

subjects
Data used in the preparation of this paper were obtained 

from the ADNI database (adni.loni.usc.edu). The ADNI 

was launched in 2003 by the National Institute on Aging, 

the National Institute of Biomedical Imaging and Bioen-

gineering, the US Food and Drug Administration, private 

pharmaceutical companies, and non-profit organizations 

as a $60 million, 5-year public–private partnership. The 

primary goal of the ADNI has been to test whether serial 

magnetic resonance imaging (MRI), PET, other biological 

markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive 

impairment (MCI) and early AD. Determination of sensitive 

and specific markers of very early AD progression is intended 

to aid researchers and clinicians in the development of new 

treatments and monitor their effectiveness, as well as lessen 

the time and cost of clinical trials. The principal investigator 

of this initiative is Michael W Weiner, from the VA Medi-

cal Center and University of California-San Francisco. The 

ADNI is the result of efforts of many coinvestigators from 

a broad range of academic institutions and private corpora-

tions, and subjects have been recruited from over 50 sites 
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across the USA and Canada. The initial goal of the ADNI 

was to recruit 800 subjects, but the ADNI has been followed 

by ADNI-GO and ADNI-2. To date, these three protocols 

have recruited over 1,500 adults aged 55–90 years to partici-

pate in the research, consisting of cognitively normal older 

individuals, people with early or late MCI, and people with 

early AD. The follow-up duration of each group is specified 

in the protocols for ADNI-1, ADNI-2, and ADNI-GO. Sub-

jects originally recruited for ADNI-1 and ADNI-GO had the 

option to be followed in ADNI-2. For up-to-date information, 

see www.adni-info.org.

We used 31 ADNI subjects from MCI, late mild MCI, 

and the old healthy control (normal) cohort. Table 1 sum-

marizes the demographic and clinical data of the subjects 

used in this study. The subjects were selected based on the 

availability of longitudinal 11C-PiB scans. In addition to 

longitudinal PiB-PET scans, 13 subjects also had longitudinal 

CSF measures obtained at the same time points as the PiB 

scans. The ADNI UPENN-Longitudinal-Biomarker Data 

(4-year) file was searched to identify these subjects, whose 

PiB-PET data were used for three-dimensional analysis of 

the whole brain wS
2
 and its association with CSF Aβ. The 

remaining subjects who did not have complete biospecimen 

information were used for two-dimensional wS
2
 analysis of 

different brain regions and its association with region size 

and image noise.

Data acquisition and preprocessing
11C-PiB PET from baseline and follow-up scans together 

with T1-weighted MRI volumes were downloaded from the 

ADNI database. While some subjects had follow-up scans 

at both 12 months and 24 months after baseline, others 

had only one follow-up at either 12 months or 24 months. 

All PiB-PET scans were started 50 minutes after injection, 

allowing for tracer uptake and nonspecific washout. Four 

dynamic frames with a scan duration of 20 minutes were 

coregistered, averaged into a single image, and normalized 

with respect to cerebellar gray matter. All preprocessing 

steps were performed by the Laboratory of Neuroimaging 

at the University of Southern California. We downloaded 

the preprocessed PET data that were coregistered, aver-

aged, and intensity-normalized to the cerebellar gray matter.  

=
+ − −

Figure 3 Illustration of weighting schemes in s2 and ws2. The conventional s2 metric utilizes a binary weighting scheme where each event is weighted as either zero (if one 
or both voxels are zero) or one (if both voxels are nonzero). In ws2, we utilize equation 1 to calculate the weighting factor. The higher and the closer the voxel values, the 
higher the weighting factor of the event.
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In addition, we limited our PiB-PET data selection to those 

scans that were performed with the same scanner, acquisition 

protocol, and image reconstruction method at baseline and 

each follow-up to reduce variations due to scanner resolu-

tion or sensitivity.

ws2 analysis on two-dimensional data
For each subject we sampled axial PiB image slices from 

several different brain regions, including the occipital lobe 

and the bilateral temporal, parietal, and frontal lobes. The 

T1-weighted MRI volume was used to define these regions 

using the methods described by Riddle et al.21 Briefly, these 

anatomical regions were obtained by aligning the subject’s 

T1-weighted MRI volume (acquired at a time point close to 

the PiB PET baseline scan) with the T1-weighted MRI vol-

ume from a reference brain where the regions were segmented 

manually. The deformation field between the reference brain 

and the subject’s T1-weighted MRI volume was calculated 

with a nonrigid demons registration algorithm.22 The regional 

binary masks from the reference brain were warped to the 

subject’s image volume with the nonrigid deformation field. 

Each brain volume was also segmented into CSF, gray 

matter, and white matter with Fuzzy C-means23 and a gray 

matter mask was created for each anatomical region. These 

regional gray matter masks were applied to the PiB-PET 

images that were coregistered to the subject’s MRI volume 

in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Altogether, 

we had over 300 sets of two-dimensional images that served 

as starting points for our two-dimensional analysis, which 

aimed to investigate the association between SUVR and wS
2
 

in different regions and to determine whether the wS
2
 out-

comes were biased by the region size, which was defined as 

the number of gray matter voxels within a region where the 

wS
2
 voxel pairs were sampled from. For the wS

2
 calculation, 

we generated 100,000 random voxel pairs located within 

the gray matter of that region. All instances were weighted 

using equation 1, binned by the Euclidean voxel distances r  

between zero and 10 mm, and divided by the number of 

instances for each distance to obtain the wS
2
(r). The error 

associated with the wS
2
 curves was calculated by resampling 

20 ensembles of 100,000 voxel pairs and calculating the 

standard deviation. We found that additional resampling 

beyond 20 did not increase the error bars. The areas under the 

wS
2
 curves (AUC) from zero to 10 mm distance were used 

as quantitative values to characterize the increased clustered 

activity and how it related to changes in SUVR mean values. 

Figure 4 Weighted two-point correlation functions (D) of three simulated continuous-valued (nonbinary) images (A–C).
Note: Area under the curve and its slope change in figure D with the clustered increase of activity in images A, B and C. The image with the smallest cluster (A) corresponds to 
the function with smallest area under the curve. The image with highest and largest cluster of activity (C) shows the two-point correlation with largest area under the curve.
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Figure 5 Four sample images of 11C-Pittsburgh compound B in four different regions of three subjects from the Alzheimer’s Disease neuroimaging Initiative. The regional 
activity distribution of the baseline images (A, C, E, G) are compared with their follow-up time points (B, D, F, H). There is a clearly noticeable localized pattern of clustered 
activity, which seems to remain in the same area and is slightly spread within the course of 12–24 months. (A, B) right temporal lobe in subject 010_s_04129. (B, C) left 
temporal lobe in subject 005_s_0546. (D, E) left frontal lobe in subject 041_s_0898. (G, H) Occipital lobe in subject 041_s_0898.
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Table 1 Clinical data for Alzheimer’s Disease neuroimaging 
Initiative subjects used for this study

Total Female Male

number of subjects 31 13 18
Baseline age, y 76±7 76±8 77±6
late MCI, n 15 7 8
MCI, n 7 1 6
normal, n 9 5 4
APOe A1/A2 carrier, n 17 7 10

Abbreviations: APOe, apolipoprotein e; MCI, mild cognitive impairment; y, years.

We implemented a linear mixed-effects model to determine 

the effect of the region size on wS
2
. We also utilized another 

statistical analysis to determine whether longitudinal changes 

in the regional wS
2
 curves were affected by differences in the 

administered radiotracer dose at baseline and follow-up time 

points. This was analyzed with mixed-effects models using 

the R software package (www.r-project.org). The AUC at 

the follow-up time points was predicted by baseline (time 0) 

AUC, time point (1 or 2), region size, and change in injection 

dose relative to baseline as fixed effects.

Three-dimensional ws2 analysis of whole 
brain
The whole brain PiB-PET images were aligned to the 

T1-weighted MRI image at a time point closest to the 

baseline PET. The gray matter mask of the whole brain 

T1-weighted MRI was overlaid with the PiB-PET. We 

generated 50,000 random voxel pairs located within the 

gray matter fraction of the PET images to calculate the wS
2
. 

The AUCs from zero to 15 mm distance were calculated 

and compared with the CSF measures obtained from the 

ADNI database. For the CSF measures, lumbar punctures 

were performed at the participating ADNI sites and are 

described in the ADNI biospecimen protocols (adni.loni.

ucla.edu/research/protocols/biospecimens-protocols). The 

CSF Aβ
1–42 

was obtained from a multiplex xMAP Luminex 

platform using Innogenetics immunoassay kit-based reagent. 

Using the Spearman’s rank correlation, we calculated the 

correlation coefficients between the AUC of the wS
2
 curves 

and 1/Aβ. There is an inverse correlation between CSF Aβ 

and PET images. For convenience, we used 1/Aβ instead 

of Aβ to take away the negative sign from the correlation 

coefficient. Similarly, we calculated the correlation coeffi-

cients between the whole brain PiB-PET SUVR mean and 

median values and the CSF Aβ measures. In addition to 

Spearman’s correlation, we utilized a linear mixed-effects 

(AR1) model to evaluate temporal correlations between  

wS
2
, SUVR mean and SUVR median (outcome variables) 

and CSF Aβ (predictor).

Results
ws2 analysis on two-dimensional data
The implementation of wS

2 
on two-dimensional images 

not only offered a visual comparison of this method with 

the observed qualitative changes in the PET data, but also 

allowed a comparison between wS
2
 and SUVR mean values 

in different brain regions. Figure 6 shows a sample 11C-PiB  

image from a subject’s right temporal lobe at baseline 

(Figure 6A) and follow-up (Figure 6B). Figure 6C shows 

the calculated SUVR mean values of the images at baseline 

and follow-up, and Figure 6D shows their corresponding  

wS
2
 curves. Both the SUVR mean and the wS

2
 method 

indicate little change between baseline and follow-up. For 

comparison, Figure 7 shows the 11C-PiB images from 

another subject’s left parietal lobe at baseline (Figure 7A) 

and follow-up (Figure 7B). Figure 7C shows the calculated 

SUVR mean values at baseline and follow-up. Due to the 

large error bars, it is difficult to determine whether there is 

a significant change in the SUVR mean. In comparison with 

the SUVR mean value, the wS
2
 curves at the two time points 

(Figure 7D) are clearly separated. For the group level, the 

Spearman’s rank correlation between the wS
2
 and SUVR 

mean is 0.9 with P0.001. We used a linear mixed-effects 

model analysis to determine whether longitudinal changes in 

the wS
2
 curves were affected by region size or differences in 

the radiotracer dose administered at baseline and follow-up 

time points. The outcomes of this analysis are summarized in 

Table 2. For the effect of region size on AUC, we obtained 

a P-value of 0.61, indicating that the size of the region from 

where the voxel pair was sampled does not affect the wS
2
 out-

comes. For the effect of differences in injected dose between 

the baseline and follow-up scan, we obtained a P-value of 

0.28, indicating no significant effect.

Three-dimensional ws2 analysis on whole 
brain
The visit-to-visit association between the whole brain AUCs 

of wS
2
 and the CSF 1/Aβ were calculated using the Spear-

man’s correlation coefficient. The outcomes were compared 

with the correlation between the SUVR mean/median values 

and CSF measures at baseline and 12-month follow-up. All 

correlation outcomes are summarized in Table 3. We found 

a slightly higher inverse correlation between wS
2
 and CSF 

Aβ. These were 0.82 for baseline and did not change signifi-

cantly (0.8) after 12 months. For comparison, the correlation 

between the SUVR mean and CSF Aβ decreased from 0.83 

to 0.6 after 12 months. Similarly, the correlation between 

SUVR median value and CSF Aβ decreased from 0.83 to 0.6. 

We also utilized a linear mixed-effects (AR1) model as an 
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v

Figure 6 11C-Pittsburgh compound B image from the right temporal lobe at baseline (A) and follow-up (B) positron emission tomography scan. Mean standardized uptake 
value ratio values for images (C) at baseline and (D) follow-up showing their ws2 curves.
Abbreviation: sUVr, standardized uptake value ratio.

Figure 7 11C-Pittsburgh compound B image from the left parietal lobe at baseline (A) and follow-up (B) positron emission tomographic scan. (C) Mean standardized uptake 
value ratio values for images at baseline and follow-up and (D) their ws2 curves.
Abbreviation: sUVr, standardized uptake value ratio.
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additional method to evaluate temporal correlations between  

wS
2
, SUVR mean and SUVR median (outcome variables) 

and CSF Aβ (predictor). Based on this model, we observed 

similarly significant inverse correlation between CSF Aβ and 

all three brain PET measures. These were 0.45 (P=0.005) for 

wS
2
, 0.45 (P=0.008) for SUVR mean, and 0.39 (P=0.02) for 

SUVR median.

Discussion
This is the first study that implements two-point correlation 

functions to detect longitudinal changes in Aβ-PET data. We 

formulated a weighted two-point correlation to character-

ize the clustered activity increase of 11C-PiB PET images 

and its association with CSF outcomes and SUVR mean 

values. We used a weighting function that preferentially 

weights instances where both voxels have high activity as 

an initial approach for implementing a single correlation 

function on continuous-valued amyloid-PET data. All PET 

data were normalized to the cerebellum gray matter, allow-

ing utilization of a simple weighting scheme for wS
2
. The 

objective of this study was to validate the wS
2
 technique. 

In the future, we will implement this method on amyloid-

PET data that are not normalized by the cerebellum or any 

other reference region, thus minimizing potential errors 

associated with reference tissue normalizations. The wS
2
 

approach on non-normalized PET data would require more 

thoroughly evaluated weighting functions, which we intend 

to explore further. We used the area under the wS
2
 function 

as a quantitative outcome of this method. Other characteristic 

features, such as the shape or the temporal slope of the wS
2
 

function, may be used as additional quantitative parameters 

to characterize longitudinal changes, particularly for non-

normalized amyloid-PET data. Similar to the SUVR mean 

analysis, the wS
2
 approach can be performed on static PET 

scans and does not require long dynamic acquisitions. The 

wS
2
 metric has some characteristics that offer potential 

advantages over the conventional typical SUVR mean value. 

It is associated with smaller variance (error bars), which 

is particularly useful for clinicians who are interested in 

detecting small changes in longitudinal amyloid-PET as a 

response to therapeutic interventions. The large error bars 

of the SUVR mean value often make it difficult to detect 

subtle changes, and the wS
2
 analysis can provide additional 

information to assess for possible alterations. Implemented 

on an AD cohort, the two-point correlation function could 

be used to determine whether amyloid accumulation remains 

static in the AD phase. The wS
2
 method could be also utilized 

as a useful tool to compare the regional patterns of activity 

distribution between different amyloid-PET radiotracers in 

the same subject and gain more insight into differences in 

radiotracer binding characteristics. As the P-values in Table 2  

indicate, we did not see any significant effect on AUC related 

to region size or dose injected. The injected dose was used 

as a surrogate for image noise to determine whether possible 

noise mismatches between baseline and follow-up scans 

would be considered as confounding factors in the wS
2
 analy-

sis. While differences in scanner sensitivity also contribute 

to the noise, we were able to disregard the scanner effect by 

selecting PiB-PET data that were performed with the same 

scanner at baseline and follow-up. The objective of our 

three-dimensional whole brain wS
2
 analysis was to compare 

the AUC outcomes with the CSF measures of Aβ
1–42

, which 

are known biomarkers of AD pathology. The decrease in 

CSF Aβ
1–42

 is associated with increased activity in 11C-PiB 

PET images, as investigated by several previous studies.24–28 

The correlation coefficients between the SUVR mean and 

the CSF Aβ
1–42

 from our study were also comparable with 

those in a previous study by Forsberg et al26 investigating the 

relationship between PiB retention and CSF Aβ
1–42

 in an MCI 

cohort. Comparing the wS
2
 method with the conventional 

SUVR mean and median values (Table 2), we were able to 

show a slightly higher inverse correlation between the PiB 

Table 2 Outcome results for the two mixed-effects models 
investigating the effect of region size (number of gray matter 
voxels) and difference between baseline and follow-up injected 
dose (noise mismatch) on changes in the AUC

AUC

region size (AUC/mm3) 0.13
95% CI -0.38, 0.63
P-value 0.61
Delta injection dose (AUC/mCi) 0.06
95% CI -0.05, 0.17
P-value 0.28

Abbreviations: AUC, area under the curve; CI, confidence interval.

Table 3 Spearman’s rank correlation coefficients and P-values 
between the AUC/sUVr mean/sUVr median and 1/Aβ in 
cerebrospinal fluid

1/Aβ 1/Aβ

Baseline P-value 12 m P-value

ws2 0.82 0.007 0.8 0.003
Mean 0.83 0.005 0.6 0.04
Median 0.83 0.005 0.6 0.04

Abbreviations: AUC, area under the curve; sUVr, standardized uptake value ratio.
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imaging data and CSF Aβ. Overall, the wS
2
 technique can 

detect subtle changes in the spatial pattern of PiB-PET and 

efficiently reduce the complexity of implementing statistical 

descriptors on continuous-valued images. The weighed two-

point correlation technique can be easily adapted for other 

imaging modalities, such as computed tomography or MRI 

for a wide range of applications in medicine and biology.
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