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Abstract: In clinical development of a test treatment under investigation, clinical trials are often 

conducted for evaluation of safety and efficacy of the test treatment. To provide an accurate and 

reliable assessment, adequate and well-controlled clinical trials using valid study designs are 

necessarily conducted for obtaining substantial evidence of safety and efficacy of the test treat-

ment under investigation. In practice, however, some debatable issues are commonly encountered 

regardless compliance with good statistics practice and good clinical practice. These issues 

include, but are not limited to: 1) appropriateness of statistical hypotheses for clinical investiga-

tion; 2) correctness of power analysis assumptions; 3) integrity of randomization and blinding; 

4) post hoc endpoint selection; 5) impact of protocol amendments on the characteristics of the 

trial population; 6) multiplicity in clinical trials; 7) missing data imputation; 8) adaptive design 

methods; and 9) independence of a data monitoring committee. In this article, these issues are 

briefly described. The impact of these issues on the evaluation of the safety and efficacy of 

the test treatment under investigation are discussed with examples whenever applicable. Some 

recommendations regarding possible resolutions of these issues are also provided.

Keywords: data safety monitoring committee, endpoint selection, integrity of blinding, missing 

data imputation, multiplicity, protocol amendment, two-stage adaptive designs

Introduction
In clinical research and development of a test treatment, relevant clinical data are usu-

ally collected from subjects with the diseases under study in order to evaluate safety 

and efficacy of the test treatment under investigation. To provide an accurate and 

reliable assessment, adequate well-controlled clinical trials using valid study designs 

are necessarily conducted for obtaining substantial evidence of the safety and efficacy 

of the test treatment under investigation. The clinical trial process, which consists of 

protocol development, trial conduct, data collection, statistical analysis/interpretation, 

and reporting, is a lengthy and costly process. This process is necessary to ensure a 

fair and reliable assessment of the test treatment under investigation. In practice, some 

controversial or debatable issues inevitably occur regardless the compliance to good 

statistics practice (GSP) and good clinical practice (GCP). Chow1 and Chow et al2 

define controversial issues in clinical research as debatable issues that are commonly 

encountered during the conduct of clinical trials. In practice, debatable issues could 

be raised from: 1) compromises between theoretical and real practices; 2) miscom-

munication, misunderstanding, and/or interpretation in perception among regulatory 

agencies, clinical scientists, and biostatisticians; and 3) disagreement, inconsistency, 

and errors in clinical practice.
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In clinical research and development of a test treat-

ment under investigation, commonly seen controversial 

issues include: 1) appropriateness of traditional statistical 

hypotheses for clinical evaluation of both safety and efficacy; 

2) correctness of power analysis for sample size calcula-

tion based on information from a small-scale pilot study; 

3) integrity of randomization and blinding for preventing 

potential biases; 4) post hoc endpoint selection (based on 

some derived endpoints); 5) impact of protocol amendments 

on the characteristics of the trial population; 6) multiplicity 

in clinical trials; 7) missing data imputation; 8) adaptive 

design methods; and 9) independence of the data monitoring 

committee (DMC).

In this article, we will review these debatable issues rather 

than provide resolutions. The impact of these issues on the 

evaluation of the safety and efficacy of the test treatment 

under investigation is discussed with examples whenever 

applicable. Recommendations regarding possible resolutions 

of these issues are also provided whenever possible. It is our 

goal that medical/statistical reviewers from regulatory agen-

cies such as the United States Food and Drug Administration 

(FDA), clinical scientists, and biostatisticians will: 1) pay 

attention to these issues; 2) identify the possible causes of 

these debatable issues; 3) resolve/correct the issues; and, 

consequently 4) enhance GSPs and GCPs for achieving the 

study objectives of the intended clinical trials.

Appropriate hypotheses  
for clinical investigation
In clinical trials, a typical approach for clinical investigation 

of safety and efficacy of a test treatment under investigation is 

to first test for the null hypothesis of no treatment difference 

in efficacy based on clinical data collected under a valid trial 

design. If significant, the investigator would reject the null 

hypothesis of no treatment difference and then conclude the 

alternative hypothesis that there is a difference in favor of 

the test treatment. If there is a sufficient power for correctly 

detecting a clinically meaningful difference (improvement) 

when such a difference truly exists, we claim that the test 

treatment is efficacious. The test treatment will then be 

reviewed and approved by the regulatory agency such as 

FDA if the test treatment is well tolerated and there appears 

to be no safety concerns.

In practice, however, it is a concern whether the tra-

ditional approach based on hypothesis testing on efficacy 

alone (ie, the study is powered based on the efficacy alone) 

for evaluation of both safety and efficacy of a test treatment 

under investigation is appropriate. The test treatment may be 

approved by the regulatory agency based on the hypothesis 

testing on efficacy alone and subsequently be withdrawn 

due to safety concerns. A typical example is the withdrawal 

of Vioxx. Vioxx is a COX-2 inhibitor drug intended for 

treating arthritis approved by the FDA in 1999, which was 

subsequently withdrawn from the market in 2004 due to the 

safety concern of increased risk of heart attack and stroke.

To overcome this problem, Chow suggested that both 

safety and efficacy should be included in a composite 

hypothesis for testing clinical benefit of the test treatment 

under investigation.1 Composite hypotheses which take into 

consideration both safety and efficacy for evaluation of a test 

treatment under investigation are summarized in Table 1. As 

can be seen in Table 1, suppose, as an example, that we are 

interested in demonstrating therapeutic equivalence in efficacy 

and superiority in safety. In this case, we may consider testing 

the null (composite) hypothesis of H
0
: not ES, where E denotes 

therapeutic equivalence in efficacy and S indicates superiority 

in safety. Thus, we would reject the null hypothesis in favor of 

the alternative hypothesis that H
a
: ES. In other words, the test 

treatment is therapeutically equivalent to the active control 

agent and its safety appears to be superior to the active control 

agent. To test the null hypothesis of H
0
: not ES, appropriate 

statistical tests should be derived under the null hypothesis. 

Under the alternative hypothesis, the test statistics can then 

be evaluated for achieving the desired power.

It should be noted that, with a switch from single hypoth-

esis testing (traditional approach) to a composite hypothesis 

testing, an increase in sample size is expected. For composite 

hypothesis testing, in the interest of controlling the overall 

type I error rate at the α level, appropriate α levels (say α
1
 

for efficacy and α
2
 for safety) may be chosen.

Instability of sample size calculation
In clinical trials, power analysis for sample size calculation is 

necessarily performed to ensure that there is high probability 

of correctly detecting a clinically meaningful effect size if 

such an effect size truly exists. In practice, power calculation 

is often performed based on either: 1) information obtained 

from previous studies or pilot studies; or 2) pure guesses or 

Table 1 Composite hypotheses for clinical investigation

Efficacy Safety

N S E

N NN NS Ne
S SN SS Se
e eN eS ee

Abbreviations: e, equivalence; N, noninferiority; S, superiority.
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beliefs based on the best knowledge of the investigator (with 

or without scientific justification). Since a pilot study is usu-

ally a small-scale study with a limited number of subjects, the 

data obtained from the pilot study and/or the investigator’s 

guess or belief could deviate far from the truth, which will 

bias the power calculation for sample size determination. 

Thus, it is a concern whether the sample size calculation 

based on the information from the pilot study or the investi-

gator’s guess or belief is robust or stable.

Chow et al3 considered assessing the instability of power 

calculation for sample size in terms of its bias. For simplicity 

and illustrative purposes, consider the simple case for testing 

equality of treatment effect where the primary endpoint is a 

continuous normal variable. In other words, consider testing 

the following null hypothesis:

 H T C0 0: ,µ µ δ− = =  (1)

where µ
T
 and µ

C
 are the means for a test treatment and a 

(placebo) control, respectively, and δ is a clinically mean-

ingful difference or effect size. Power calculation leads to 

the following formula for sample size calculation (see also 

Chow et al3):

 
N

z z
0

/2
2 2

2
,=

+( )α β σ
δ

 (2)

where α and β are the probabilities of committing type I error 

and type II error, respectively, and σ is the standard deviation 

of the control. In practice, δ and σ2 are often estimated by 

difference in sample mean ˆ ˆ ˆ( )T Cδ µ µ= −  and sample vari-

ance (s2). In other words, σ2/δ2 is estimated by 2 2ˆ/s δ . It can be 

verified that the asymptotic bias leading term of 2 2ˆˆ( / )E sθ δ=  

is given by (Lee et al, unpublished data, 2008):

 
{ }

2

0

3ˆ( ) 1 (1) .E o
N

θ
θ θ− = +

 
(3)

Table 2 provides biases of ˆ / ˆθ δ= s2 2 in sample size cal-

culation with various combinations of δ, σ, and θ. As can 

be seen from Table 2, the sample size calculation based on 

estimates from a small pilot study could vary and conse-

quently instable, especially when there is a large variability 

associated with the observed data. Thus, it is a concern that 

the estimate of effect size and standard deviation based on a 

pilot study is often imprecise.

The above discussion justifies the need for sample size 

re-estimation or sample size adjustment during the conduct 

of clinical trials. Sample size re-estimation is often planned 

in clinical trials utilizing group sequential design with 

planned interim analyses. In practice, the following sample 

size adjustment based on the ratio of the initial estimated 

effect size (E
0
) to the observed effect size (E) is usually 

considered:4

 N N N sign E E
E

E
N

a

=





















min , max , ( ) ,max min 0

0
0  (4)

where N is the sample size after adjustment, N
max

 and N
min

 are 

the maximum (due to financial and/or other constraints) and 

minimum (the sample size for the interim analysis) sample 

sizes, respectively, a is a constant (which is usually deter-

mined based on the review of the interim analysis results), 

and sign(x) =1 for x.0; otherwise, sign(x) =-1. Note that the 

above sample size adjustment reduces to the method proposed 

by FDA statisticians for normal study endpoint with a=2.4

However, it should be noted that the information obtained 

for sample size re-estimation at the interim is still an estimate 

of treatment effect. Thus, the instability issue regarding 

sample size remains unsolved because there is a variability 

associated with the observed (estimated) treatment effect at 

the interim.

Integrity of randomization/blinding
In clinical trials, randomization and blinding (eg, double-

blind) are often employed to prevent or minimize bias 

(eg, operational bias) from assessment of a test treatment 

under investigation. In randomized and double-blind clinical 

trials, due to human nature, both patients and the investigator 

may guess what treatment patients are  receiving. Karlowski 

et al challenged the integrity of the use of randomization and 

blinding in a randomized, double-blind, placebo-controlled 

study conducted by the National Institutes of Health 

(NIH). The study was to evaluate the difference between 

the prophylactic and therapeutic effects of ascorbic acid 

for the common cold.5 After the completion of the study, 

a questionnaire regarding the knowledge of the treatment 

Table 2 Biases of sample sizes

δ  σ θ = σ2/δ2 Classic sample  
size number

Bias 
3θ2/N0

Sample size 
with Bias N

5 10 4 32 1.53 44
20 16 126 6.12 174
30 36 283 13.76 391

10 10 1 8 0.38 11
20 4 32 1.53 44
30 9 71 3.44 98
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assignment was  distributed to every subject enrolled in the 

study (a total of 190 subjects completed the study). Results 

from the 190 subjects are summarized Table 3.

Table 3 indicates that there is a high percentage of 

patients who correctly guessed the treatment assignment they 

received. Thus, there is a reasonable doubt that the blindness 

may not be preserved during the study. Thus, “How to test 

for the integrity of blinding in clinical trials?” is an interest-

ing question.

To address this question, according to Table 3, Chow and 

Shao proposed a test for testing the integrity of blinding.6 

Without loss of generality, consider a parallel design com-

paring a$2 treatments conducted at a single study site. Let 

A
ij
 be the event in which a patient in the jth treatment group 

guesses that he/she is in the ith group, and i = 1, … a, a + 1, 

where i = a + 1 defines the event that a patient whose answer 

is “do not know” or “does not guess”. Consider the following 

null hypothesis:

 H P A P A for any i andij i0 1: ( ) ( )= j.
 

(5)

If the above null hypothesis holds, then we claim that the 

blindness is preserved. Chow and Shao indicated that H
0
 can 

be tested using the Pearson’s chi-squared test under the con-

tingency tables constructed based on observed counts given 

in Table 3.6 As a result, a simple calculation gives Pearson’s 

chi-squared statistic of 31.3. Thus, the null hypothesis of 

independence is rejected (P-value ,0.001). Thus, we con-

clude that the blindness is not preserved and the integrity of 

blinding is in doubt.

When the integrity of blinding is doubtful, it is sug-

gested that appropriate adjustment to statistical analysis 

should be made.6 In practice, one of the debatable issues is 

that of whether a formal statistical test for the integrity of 

the blinding should be performed at the end of the clinical 

trial regardless of whether the results are positive or nega-

tive. If the results are positive, the sponsor would prefer not 

to perform the test. However, if the results are negative, the 

sponsor would argue to perform the test and hopefully to 

rescue the failed trial. In addition, what action should be 

taken if a positive clinical trial fails to pass the test for the 

integrity of the blinding?

Clinical strategy for  
endpoint selection
In clinical trials, it is not uncommon to see that we may 

reach some clinical endpoints but fail to achieve other clini-

cal endpoints. In this case, the selection of clinical endpoint 

plays an important role for achieving the study objectives 

with a desired power at a prespecified level of significance. 

For a given primary clinical endpoint, power calculation and 

statistical analysis are usually performed based on either 

absolute change from baseline or relative (or percent) change 

from baseline. The absolute change from baseline and the 

relative change from baseline are referred to as derived study 

endpoints. Based on the original data obtained from the same 

target patient population, another derived endpoint based on 

the percentage of patients who show some improvement is 

often considered. A subject who shows some improvement 

is considered a responder. The definition of a responder, 

however, could be based on either absolute change from 

baseline or relative change from baseline of the primary 

study endpoint.

It should be noted that statistical analysis/interpretation, 

sample size calculation, and power for different derived study 

endpoints are different. Thus, endpoint selection has become 

very controversial, especially when a significant result is 

observed based on a derived endpoint but not on the other 

derived endpoint. For example, in weight reduction studies 

with obese patient populations, statistical analysis based on 

absolute change from baseline is often different from that 

based on relative (percent) change from baseline. Besides, 

power analysis for sample size calculation based on absolute 

change and relative changes could be very different depend-

ing upon what difference is considered of clinical importance. 

For example, the sample size required in order to achieve the 

desired power based on the absolute change could be very 

different from that obtained based on the percent change, 

or the percentage of patients who show an improvement 

based on the absolute change or relative change at α level 

of significance.1,2

The issue could become more complicated if the intended 

trial is a noninferiority trial for establishing noninferiority 

of a test treatment to an active control agent. In this case, 

sample size calculation will also depend upon the selection 

of noninferiority margin. Similar to endpoint selection based 

on either absolute change or relative change, noninferiority 

margin could be selected based on either absolute change or 

Table 3 Results of patients’ guesses

Patient’s  
guess

Actual treatment assignment

Ascorbic acid Placebo

Ascorbic acid 40 11
Placebo 12 39
Do not know 49 39
Total 101 89

Note: Data from Karlowski et al.5
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relative change. As a result, there are eight possible clini-

cal strategies with different combinations of derived study 

endpoints (ie, absolute change, relative change, responder 

analysis with absolute change, and responder analysis with 

relative change) and noninferiority margins (absolute change 

and relative change) for assessment of the treatment effect 

(Table 4). To ensure the success of the intended clinical trial, 

a sponsor will usually carefully evaluate the eight clinical 

strategies through extensive clinical trial simulation for 

selecting the most appropriate (derived) endpoint, clinically 

meaningful difference, and noninferiority margin during the 

planning stage of protocol development.

In practice, some clinical strategies may be successful in 

achieving study objectives with desired power, while some 

strategies may not. These inconsistent results are debatable. 

The sponsor may choose the strategy to their best interest, 

while the FDA may challenge the sponsor regarding the 

inconsistent results. In other words, the FDA may ask the 

sponsor to address the questions of: 1) which endpoint is 

telling the truth; and 2) can these study endpoints translate 

one another since they are derived based on data collected 

from the same patient population?

Impact and sensitivity  
of protocol amendments
In clinical trials, protocol amendments are commonly issued 

after the initiation of a clinical trial due to various reasons 

such as slow enrollment and/or safety concerns. In practice, 

before a protocol amendment can be issued, a detailed 

description, rationales, and clinical/statistical justification 

regarding the changes must be provided to ensure the valid-

ity and integrity of the clinical trial. Statistically, it is often a 

concern that major or significant changes or modifications to 

study protocol could result in a similar but different patient 

population. For example, if major or significant changes 

are made to eligibility (inclusion/exclusion) criteria of 

the study, the original target patient population may have 

become a similar but different patient population. This raises 

the debatable issue regarding the validity and reliability of 

the statistical inference to be drawn based on data collected 

before and after protocol amendment.

To evaluate whether major or significant changes made 

to the original target patient population has resulted in a 

similar but different target patient population after protocol 

amendments, let ( , )µ σ  denote the original target patient 

population. Also, denote by ( , )µ σ1 1  the  resultant (actual) 

patient population after the implementation of a protocol 

amendment, where µ µ ε1 = +  and σ σ1 = C  (C.0). The shift 

in treatment effect of the original target patient population 

can be characterized by:

 

E
C

E1
1

1

= =
+

= =
µ
σ

µ ε
σ

µ
σ

∆ ∆ ,  (6)

where ∆ = (1 + ε/µ)/C; E and E
1
 are the effect size before and 

after population shift, respectively; and ∆ is a sensitivity index 

measuring the change in effect size between the original target 

patient population and the actual patient population (see, for 

example, Chow et al and Chow and Shao7,8). Table 5 provides 

an evaluation of the impact of protocol amendment in terms 

of sensitivity index under various scenarios of  location shift 

(ie, change in ε ) and scale shift (ie, change in C). As can 

be seen from Table 5, with the shifts in ε and C  (inflation or 

deflation), the sensitivity index ∆ varies from 0.667 to 1.500. 

It should also be noted that the shift in ε could be offset by 

the shift in C.

If there is evidence that the mean response is correlated 

to some covariates, Chow et al9 proposed an alternative 

Table 4 Clinical strategy for endpoint selection in noninferiority 
trial

Study endpoint (E) Noninferiority margin

Absolute 
difference (δ1)

Relative 
difference (δ2)

Absolute change (E1) E1δ1 E1δ2

Relative change (E2) E2δ1 E2δ2

Responder based on 
absolute change (E3)

E3δ1 E3δ2

Responder based on 
relative change (E4)

E4δ1 E4δ2

Table 5 evaluation of sensitivity index

e/µ (%) Increase in  
variability

Decrease in 
variability

C (%) Δ C (%) Δ

-20 100 0.800 – –
120 0.667 80 1.000

-10 100 0.900 – –
120 0.750 80 1.125

-5 100 0.950 – –
120 0.792 80 1.188

0 100 1.000 – –
120 0.833 80 1.250

5 100 1.050 – –
120 0.875 80 1.313

10 100 1.100 – –
120 0.917 80 1.375

20 100 1.200 – –
120 1.000 80 1.500
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approach by considering a model that links the population 

means and the covariates. In many cases, however, such cova-

riates may not be observable or may not even exist. In this 

case, Chow et al’s approach is not applicable.  Alternatively, 

it is suggested that the sensitivity index ∆ be assessed by 

assuming that there are random shifts in both location or 

scale parameters.10

In practice, it is not uncommon to have a number of proto-

col amendments after the initiation of a clinical trial. Frequent 

issuance of protocol amendments may result in a shift in target 

patient population. Thus, regulatory guidances or regulations 

on 1) levels of changes, and 2) number of protocol amendments 

that are allowed are necessarily developed for maintaining the 

validity and integrity of the intended study.

Controversial issue of multiplicity  
in clinical trials
In clinical trials, multiplicity is usually referred to as multiple 

inferences that are made simultaneously.11 The concept of 

multiplicity could include comparison of: 1) multiple doses 

(treatments); 2) multiple endpoints; 3) multiple time points; 

4) multiple interim analyses; 5) multiple tests of the sample 

hypothesis; 6) variable/model selection; and 7) subgroup 

analyses. In practice, it is of interest to the investigators 

when adjustment for multiplicity should be performed for 

controlling the overall type I error rate at a prespecified level 

of significance.

To address this issue, the International Conference on 

Harmonization (ICH) published a guideline on statistical 

principles in clinical trials in 1998.12 This guideline indicates 

the concern regarding the multiplicity issue for providing 

substantial evidence in clinical trials. The ICH guideline sug-

gests that data analysis of the clinical trial may necessarily 

adjust for controlling the overall type I error rate. Moreover, 

the guideline requires that any adjustment procedure or an 

explanation (justification) regarding why adjustment is not 

done should be described in detail in the statistical analysis 

plan.12 Similarly, the issue of multiplicity is also addressed 

in the European Agency for the Evaluation of Medicinal 

Products (EMEA).13 In 2007, the Committee for Proprietary 

Medicinal Products published a draft guidance Points to 

 Consider on Multiplicity Issues in Clinical Trials.14 This 

guideline points out that multiplicity can have a substantial 

influence on false positive rate when there is an opportunity 

to select the most favorable results from two or more analyses. 

Both the EMEA guideline and the ICH guideline recommend 

stating details of the multiple comparisons procedure in the 

statistical analysis plan.

In their review article, Westfall and Bretz indicated that 

the following are the most commonly seen controversial 

issues regarding multiplicity in clinical trials:11

1. Penalizing for doing more.

2. Adjusting α for all possible tests in the trial.

3. Testing for family of hypotheses.

Penalizing for doing a good job is referred to as adjust-

ment for multiplicity in dose-finding trials which often 

involve several dose groups. For adjusting α for all possible 

tests, it is excessive to control the α at the prespecified level 

because it is not the study objective to show that all of the 

observed differences (simultaneously) are not by chance 

alone. In clinical trials, it is debatable for choosing an appro-

priate family of hypotheses (eg, primary and secondary study 

endpoints) and adjust α for multiple comparisons  for clinical 

investigation of the test treatment under study.

Although ICH12 and EMEA13 did provide some guidances 

for adjustment of multiplicity, regulations regarding multi-

plicity adjustment are still not clear. Marcus et al indicated 

that there is no need for multiplicity adjustment for closed 

testing procedure.15 Chow pointed out that one should always 

look the primary null hypothesis before deciding whether 

there is a need for multiplicity adjustment.1

Validity and power of missing  
data imputation
Missing data inevitably occurs in clinical trials. When there 

are a few missing values, one of the approaches is to impute 

the missing values with their estimates under some valid 

and appropriate statistical models. Missing data imputation 

then becomes one of the most debatable issues in clinical 

trials. The following questions are often asked when there 

are missing values in clinical trials:

1. Why impute missing values?

2. What methods should be used if we are to impute the 

missing values?

3. What if there are a high percentage of missing values?

For the first question, some clinical scientists criticize 

that missing data imputation actually makes up the data we 

do not observe. We should not make up data for missing 

data as missing data imputation could bias the assessment of 

treatment effect and hence missing data imputation does not 

add much value to the clinical research. For the second ques-

tion, the method of last observation carry forward (LOCF) is 

widely used although it has been recognized that the valid-

ity of LOCF is questionable. In addition to the method of 

LOCF, other methods such as the mixed effects model for 

repeated measures, generalized estimating equations, and 
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complete-case analysis of covariance are often employed in 

missing data imputation. When there is large proportion of 

missing values, it is suggested that missing data imputation 

should not be applied. This, however, raises a debatable issue 

for determination of the cut-off value for the proportion of 

missing values for preserving good statistical properties of 

the statistical inference derived based on the incomplete data 

set and imputed (complete) data set.

Statistically, one of the concerns for missing data impu-

tation is the potential reduction of power. In clinical trials, 

it is recognized that missing data imputation may inflate 

variability due to additional variability associated with 

the imputed missing data. The inflation of variability will 

definitely decrease the power. Consequently, the intended 

clinical trial will not be able to address the scientific/clinical 

questions asked with desired power. This could be a major 

concern for regulatory review and approval.

To address current issues and recent development of 

missing data imputation, the Journal of Biopharmaceutical 

Statistics published a special issue on missing data prevention 

and analysis in 2009.16 Soon indicated that management of 

missing data involves missing data prevention and missing 

data analysis, which are equally important in the handling 

of missing data.16 Missing data prevention can be achieved 

through the enforcement of GSPs and GCPs during the 

clinical trial process, including clinical operations personnel 

training for data collection. It should be noted that despite the 

effort, missing data cannot be totally avoided, and may occur 

due to factors beyond the control of patients, investigators, 

and clinical project teams.

Flexibility and feasibility  
of two-stage adaptive design
A seamless trial design is a study design that can address 

study objectives within a single trial which are normally 

achieved through the conduct of separate independent  trials. 

A seamless adaptive design is a seamless trial design that 

fully utilizes data collected from patients before and after 

the adaptation in the final analysis. A seamless trial design 

is called a two-stage seamless design if it combines two 

studies into a single study. Thus, a two-stage (seamless) 

adaptive design consists of two phases (stages; each stage 

contains one study), namely, learning or exploratory phase 

and confirmatory phase. A two-stage seamless adaptive trial 

design reduces lead time between studies (ie, the first study 

and the second study). Most importantly, data collected at 

the learning phase are combined with those data obtained at 

the confirmatory phase for final analysis.

For a two-stage adaptive design, since it combines two 

independent trials into a single study, the study objectives 

and study endpoints at different stages (studies) could be 

different. Depending upon study objectives and endpoints 

used, two-stage adaptive trial designs can be classified into 

four categories of designs as indicated in Table 6.

Thus, we have SS (same objectives and same endpoints), 

SD (same objectives and different endpoints), DS (different 

objectives and same endpoints), and DD designs, where 

SS designs indicate study designs with the same objectives 

and same endpoints at different stages and so on. In clinical 

trials, different study objectives could be dose finding or 

treatment selection at the first stage and efficacy confirmation 

at the second stage. Different study endpoints could include 

biomarker, surrogate endpoint, and clinical endpoint with 

different (shorter) treatment duration at the first stage versus 

clinical endpoint at the second stage, or the same clinical 

endpoint with different treatment durations.

SS designs are similar to typical group sequential designs 

with one planned interim analysis. Thus, standard methods 

for a typical group sequential design can be directly applied 

to the SS designs.

In this article, our emphasis will be placed on SD, DS, 

and DD designs. In practice, typical examples for SD, DS, 

and DD designs include a two-stage Phase I/II adaptive 

design, which is often employed in early clinical develop-

ment, and a two-stage Phase II/III adaptive design, which 

is usually considered in late phase of clinical development. 

For example, for the two-stage Phase I/II adaptive design, 

the objective at the first stage is for biomarker development 

and the study objective at the second stage is to establish 

early efficacy. For a two-stage Phase II/III adaptive design, 

the study objective at the first stage could be for treatment 

selection while the study objective at the second stage could 

be for efficacy confirmation.

One of the most debatable issues regarding the flexibility 

and feasibility of the use of two-stage adaptive design in 

early phase and/or late phase of clinical development is the 

efficiency and effectiveness of the trial design as compared to 

the traditional approach (ie, conducting two separate trials). 

To address this issue, Table 7 provides a simple comparison 

Table 6 Classifications of two-stage adaptive designs

Study objectives Study endpoint

S D

S SS SD
D DS DD

Abbreviations: D, different; S, same.
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due to safety, futility, and/or efficacy. In clinical trials, an 

independent DMC ensures the quality, validity, and integrity 

of the clinical trial. Some sponsors, however, will make every 

attempt to influence the function and activity of the DMC, 

which challenges the independence of the DMC. The follow-

ing is a summary of some observations which are commonly 

seen in DMCs across various therapeutic areas:

1. DMC members are selected and appointed by the 

sponsors.

2. The DMC charter is usually developed by the sponsor. 

The charter is developed without consulting with the 

DMC members. DMC members usually do not have the 

chance to review it until the organizational meeting. As 

result, the charter is usually approved in a hurry.

3. The trial may have begun to enroll patients prior to the 

DMC organizational meeting.

4. Those DMC members who have disagreements with 

the sponsor are replaced prior to the DMC meeting. To 

avoid selection bias, it is suggested that the reasons for 

replacing DMC members be documented.

5. DMC members and investigators are from the same orga-

nization with administrative reporting relationships.

6. There is no single voice from the DMC.

7. The sponsor issues protocol amendments or modifies 

randomization schedules without consulting with DMC 

members.

8. The project statistician and the unblinded (or DMC 

 support) statistician are the same person.

Based on the above observations, it is doubtful that an 

independent DMC is really independent. In addition, the fol-

lowing debatable issues have also been raised. First, should 

the DMC directly communicate with regulatory agencies for 

any wrongdoing in the conduct of the intended clinical trial? 

Second, can the DMC perform well if a less-well-understood 

adaptive design is used in the intended clinical trial?

Conclusion
In this article, several commonly encountered statistical 

controversial issues in clinical research are discussed. In prac-

tice, many more debatable issues are still under tremendous 

discussion among regulatory agencies, academia, and the 

pharmaceutical industry. These debatable issues include the 

issue of placebo effect, the impact of baseline adjustment, 

selection of noninferiority margin in active control trials, 

the use of Bayesian methods in clinical research, issues in 

bridging and/or multinational (multiregional) studies, and 

the potential misuse and abuse of adaptive trial designs 

(especially those less-well-understood design as described 

Table 7 Simple comparison

Two separate  
trials

Two-stage  
adaptive design

Significance level 1/20 × 1/20 1/20
Power 0.8 × 0.8 0.8
Lead time 6 m to 1 yr Reduced lead time
Sample size n = n1 + n2 m , n?

Note: n1 and n2 are the sample sizes for the two separate trials and m is the sample 
size for the two-stage adaptive design.
Abbreviations: m, months; yr, year.

in terms of significance level, power, lead time, and sample 

size required for achieving a desired power.

As can be seen from Table 7, a traditional approach 

by conducting two separate trials does provide substantial 

evidence at 1/400 level of significance level with a 64% 

power, while the two-stage adaptive design will achieve an 

80% power at the 5% (1/20) level of significance. Besides, 

the use of two-stage adaptive design could reduce lead time 

between studies and hence shorten the process of clinical 

development. In terms of the sample size required, the use 

of two-stage adaptive design may also reduce the sample size 

required for achieving the desired power depending upon the 

study objectives and the study endpoints used at different 

stages in the two-stage adaptive trial design. Note that sample 

size calculation and statistical analysis for SD, DS, and DD 

designs can be found in Chow and Chang.10

When applying a two-stage adaptive design in clinical 

trials, one of the most challenging and debatable questions 

often asked by the regulatory agency such as the FDA is 

related to the concern that the overall type I error rate may 

not be controlled at a prespecified level of significance when 

1) O’Brien–Fleming type boundaries (such as Lan–DeMets 

boundary) and 2) additional adaptations are applied.

Challenge of the independence  
of DMCs
In clinical trials, a DMC is usually established to monitor the 

validity and integrity of the intended clinical trial. The DMC 

is independent from the project team, which performs ongo-

ing safety monitoring and/or interim analyses for efficacy. 

Typically, a DMC consists of experienced physicians and 

biostatisticians. A charter is necessarily developed to outline 

the activities and functions of the DMC, but also to describe 

roles and responsibilities of DMC members.

One of the major concerns regarding an established DMC 

is the independence of the DMC. A DMC has the authority 

to perform a review of unblinded data, though most DMCs 

prefer a blinded review of interim data. After the review of 

interim data, a DMC has the authority to stop the trial early 
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in the FDA draft guidance on adaptive trial design). Most 

recently, the scientific/statistical issues on the assessment 

of biosimilarity and interchangeability of biosimilar drug 

products have received much attention. These issues such as 

“How similar is considered highly similar?” and “A biosimi-

lar product is expected to produce the same clinical result in 

any given patient” are debatable from different perspectives 

of regulatory agencies, academia, and the pharmaceutical/

biotech industry.

It should be noted that, debatable issues are likely 

encountered in clinical trials. Consequently, the accuracy 

and reliability of statistical inference on the treatment effect 

is a concern to the investigator. To address this issue, Shao 

and Chow17 and Chow and Shao18 proposed the concept 

of reproducibility and generalizability of evaluation of the 

accuracy and reliability of the clinical trials. The reproduc-

ibility is defined as the probability of observing positive 

results (which have achieved statistical significance) of future 

clinical trials that are conducted under similar experimental 

conditions given the observed significant positive clinical 

results. Shao and Chow17 suggested considering the prob-

ability of reproducibility as a monitoring tool for the perfor-

mance of a test treatment under investigation for regulatory 

approval. The evaluation of reproducibility provides valuable 

information which protects patients from unexpected risk of 

the test  treatment. For example, in a given clinical trial with 

a relatively low probability of reproducibility, the observed 

significant positive clinical results may not be reproducible 

if the clinical trial is repeatedly conducted under similar 

experimental conditions. To ensure that there is a high repro-

ducibility (say 95%), Chow and Shao18 indicated that the 

P-value for the observed positive results should be less than 

0.001 (ie, the study has to be highly significant).
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