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Abstract: The developmental origins of health and disease hypothesis states that adverse early 

life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal 

cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, 

including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obe-

sity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy 

interferes with placental growth and functioning, and it has been proposed that this may occur 

through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide 

association studies have identified a number of differentially methylated placental genes that are 

associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, 

GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been 

linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. 

Candidate gene analyses have also found maternal smoking-associated placental methylation 

differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive 

elements LINE-1 and AluYb8. The differential methylation patterns of several genes have 

been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, 

NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during 

pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve 

global changes. It is important for future research to investigate the mechanistic roles that these 

differentially methylated genes may play in mediating the association between maternal smok-

ing during pregnancy and disease in later life, as well as to elucidate the potential influence of 

emerging tobacco product use during pregnancy, including the use of electronic cigarettes, on 

placental epigenetics.
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Introduction
According to the developmental origins of health and disease hypothesis, in utero 

environmental exposures may alter fetal programming and influence the risk of disease 

in later life,1–4 including risk for cardiovascular disease, diabetes, asthma, cancer, and 

other conditions.5–10 Despite the significant offspring morbidity and mortality associ-

ated with maternal cigarette smoking during pregnancy (MCSDP),11–20 10%–12% of 

US women smoke cigarettes during pregnancy.21,22 This can allow toxicants, includ-

ing nicotine, to cross the placenta and disrupt placental functioning,23,24 which may 

result in fetal programming of later-life disease risk via alterations to normal placental 

epigenetic mechanisms, whereby changes in gene expression occur without direct 

changes to the DNA sequence.25–27
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Four main modes of epigenetic regulation are known, ie, 

non-coding RNA-mediated regulation, histone modifications, 

imprinting, and DNA methylation,26 with DNA methylation 

being the most extensively studied. When a methyl group 

is added to the 5′ position of cytosine, DNA takes on a 

stable, transcriptionally less active and potentially inactive 

conformation that can repress or silence gene expression, 

particularly when methylation occurs within gene promoter 

regions.28–33 These methylation marks are often found in 

clusters of cytosine–guanine dinucleotide pairs called CpG 

islands.34 Normal methylation patterns are critical to many 

cellular functions, particularly in the placenta where correct 

cellular functioning is crucial to fetal development.35

It has been theorized that the placenta may act as a func-

tional record of in utero environmental quality.35 Nicotine, for 

example, crosses the placenta,11 and some MCSDP-associated 

perturbations to normal placental epigenetic patterns are also 

associated with adverse infant health outcomes,36–42 includ-

ing preterm birth,42 birth weight,43 and neurobehavioral 

outcomes.44 MCSDP-associated methylation patterns have 

also been found in tissues other than the placenta.36

This review summarizes what is known about the influ-

ence of MCSDP on placental methylation patterns, which 

may be associated with fetal programming of disease risk 

in later life.

Cigarette smoking in pregnancy: 
known risks to fetal health  
and development
Cigarette smoking is detrimental to health and linked to 

adverse health outcomes, including lung and other cancers,45–47 

asthma,48 chronic obstructive pulmonary disease,48 autoim-

mune diseases,49 and adverse fertility outcomes in women50 

and men,51 both in smokers themselves and those exposed 

to secondhand smoke. Cigarette smoking is associated with 

deleterious effects on ovarian steroidogenesis and game-

togenesis, oocyte maturity, ovulation, fertilization, and 

implantation.52 Animal models of nicotine exposure have 

revealed associated oocyte apoptosis53 and reduced sperm 

quality.54 MCSDP has also been linked to increased risk 

of stillbirth55 and miscarriage.56 These associations may 

be biologically explained by the ability of cigarette smoke 

components to interfere with placental development.

MCSDP negatively affects the processes of trophoblast 

migration and invasion, which are primarily accomplished 

by extravillous trophoblast cells57 and allow the placenta 

to anchor in the uterine wall.58 By negatively impacting 

the function of these placental cell types, MCSDP can 

increase the risk of placenta previa, placental abruption,59 

and other reproductive problems. MCSDP is associated with 

detriments to infant neurobehavior15,16,60–64 and the devel-

opment of autoimmune diseases.65–67 Both active68–73 and 

passive71,73–75 MCSDP are linked to small-for-gestational-

age infants.

These disruptions to normal placental growth and devel-

opment can be devastating to fetal growth. The placenta 

plays a crucial role in providing the fetus with oxygen and 

nutrients, allowing gas and waste exchange, and producing 

important hormones and other compounds necessary for 

fetal development.35,76–79 The metabolic activity of the pla-

centa also protects the fetus from many potentially harmful 

environmental toxicants,76–79 but certain heavy metals,80,81 

cocaine,82 and nicotine11 cross this selectively permeable 

membrane. Changes that affect placental gene expression, 

such as epigenetic alterations, may have harmful downstream 

effects not only on placental functioning, but on the health 

of the developing infant.35

Overview of altered DNA 
methylation patterns  
associated with MCSDP
DNA methylation patterns are established de novo early in 

pregnancy following a post-fertilization wave of demethy-

lation in the early embryo.28,83 DNA methylation involves 

the addition of a methyl group via a covalent bond to the 

5′ position of cytosine, which occurs almost exclusively in 

the context of CpG dinucleotides.35 Methylated CpGs, which 

mostly occur in clusters known as CpG islands, cannot be 

effectively bound by transcription factors, leading to reduc-

tion or silencing of gene expression.84 This process often 

occurs in gene promoter regions, where precise control of 

gene expression is necessary for cellular growth, differentia-

tion, and functioning.39 Thus, pregnancy and, in particular, 

the first trimester, is a critical window during which envi-

ronmental toxicant exposures may elicit detrimental effects 

on normal DNA methylation and gene expression patterns 

in multiple tissues. These exposures can have consequences 

for the developing fetus, which may continue throughout 

the life course.

Due to the stability of the covalent bond linking methyl 

groups to cytosine residues, aberrant DNA methylation 

patterns established early in life may persist into postnatal 

and adult life. Contrastingly, these aberrant DNA methyla-

tion patterns may also comprise an array of biomarkers for 

adverse early life exposures and serve to identify at-risk 

infants exposed to MCSDP.42

Placental DNA methylation patterns may serve as mecha-

nistic links between in utero exposures and adverse infant 
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Table 1 Studies observing differential placental methylation patterns associated with in utero exposure to nicotine or to maternal 
cigarette smoking during pregnancy

Reference n Methodology used to determine  
placental methylation status

Genes or elements identified P-values Associated health  
outcomes

Appleton et al121 444 Bisulfite pyrosequencing HSD11B2 ,0.05, ,0.10 NA
Chhabra et al91 80 illumina HumanMethylation450  

BeadChip array
GTF2H2C, GTF2H2D 2.87×10-06,  

3.48×10-05

NA

Maccani et al42 206 illumina HumanMethylation27  
BeadChip array; bisulfite  
pyrosequencing

RUNX3 0.04 Preterm birth

Paquette et al120 444 Bisulfite pyrosequencing HTR2A 0.0008–0.02 infant neurobehavior  
(NiCU Network  
Neurobehavioral Scales 
[NNNS])

Suter et al40 34 Bisulfite sequencing CYP1A1 0.027 NA
Suter et al41 36 illumina HumanMethylation27  

BeadChip array; bisulfite sequencing
STX5, FUT11, TUSC3, FAN1,  
and ZNF671 associated with both  
smoking and birth weight; PURA,  
GTF2H2, GCA, GPR135, and  
HKR1 associated with smoking

7.66×10-10,  
1.48×10-06

Birth weight reduction

Stroud et al119 45 Bisulfite pyrosequencing NR3C1 0.024 infant basal and reactive  
cortisol over the first  
postnatal month

wilhelm-Benartzi  
et al37

380 Bisulfite pyrosequencing; Illumina  
HumanMethylation27 BeadChip array

LiNe-1; AluYb8 0.01, ,0.0001 Birth weight percentile

Abbreviations: NA, not applicable; NiCU, Neonatal intensive Care Unit; n, sample size.
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health outcomes.8,37,42,84–87 Epigenome-wide association 

 studies (EWAS) have observed associations between MCSDP 

and placental methylation patterns in multiple genomic 

regions,37,41,42 although one study found associations between 

MCSDP and methylation in cord blood only.88 EWAS studies 

have also observed loci associated with both MCSDP and 

known smoking-associated adverse infant health outcomes, 

including birth weight37,41 and pre-term birth.42 These stud-

ies may provide mechanistic insight into the links between 

MCSDP and pre-term birth or low birth weight.12,14

Genetic pathways associated  
with MCSDP
Table 1 describes placental methylation patterns associated 

with exposure to nicotine or MCSDP.

EWAS findings have elucidated potentially relevant genes 

and pathways that may mediate prenatal exposure to MCSDP 

and disease risk in later life. Many studies have employed 

the Illumina Infinium HumanMethylation27 BeadArray,89 

which assesses the methylation status of .27,000 CpG loci 

following DNA bisulfite modification. This method allows 

for detection of methylated cytosine residues by treating 

DNA with bisulfite, which converts unmethylated cytosines 

to uracil; methylation is protective against conversion to 

uracil. Once converted, DNA samples are hybridized to 

array probes, and percent methylation at .27,000 loci is 

measured in beta values ranging from 0 (absence of methy-

lation) to 1 (complete methylation). The advent of the more 

comprehensive Infinium HumanMethylation450 BeadAr-

ray, which interrogates .450,000 CpG loci,90 has allowed 

more extensive epigenome-wide coverage. One such study91 

found placental methylation patterns associated with nicotine 

exposure during pregnancy in the GTF2H2C and GTF2H2D 

genes (see Table 1).

MCSDP-associated genes discovered via the Illumina 

HumanMethylation27 and 450 BeadArrays include RUNX3,42 

PURA,41 GTF2H2,41,91 GCA, GPR135, and HKR141 (Table 1). 

Although the placental function of RUNX3 has not been 

elucidated, RUNX3 is important for cellular differentiation 

and development in neuronal cells, T-cells, macrophages, 

and dendritic cells.92–99 As a tumor suppressor gene, RUNX3 

interacts with β-catenin and increases p27, Rb, and TIMP-1 

expression when upregulated.100–102 RUNX3 is associated 

with numerous cancers,98,101,103–108 including bladder cancer 

in smokers.109 A potential role also exists for RUNX3 to 

mediate the relationship between MCSDP and asthma and 

airway hyperresponsiveness,42,110–116 as has been observed in 

murine models.117,118

Suter et al41 found MCSDP-associated methylation 

alterations in a number of genes regulating DNA replica-

tion, excision repair, cellular membrane fusion, G-protein 

coupled receptor activity, and transcriptional regulation, 
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potentially highlighting the placental genomic damage 

incurred by exposure to MCSDP. The array-based findings 

in both studies were validated by gold-standard bisulfite 

pyrosequencing.41,42

The findings of differential GTF2H2 methylation by Suter 

et al were confirmed in 2014 by Chhabra et al91 (see Table 1), 

who observed differential GTF2H2C and GTF2H2D methy-

lation associated with in utero nicotine exposure.91

Candidate gene studies have also elucidated links between 

MCSDP and altered placental methylation patterns. Most 

studies have utilized bisulfite pyrosequencing to interrogate 

the methylation status of candidate gene regions of interest. 

Candidate genes of potential interest that have been associ-

ated with MCSDP include NR3C1,119 CYP1A1,40 HTR2A,120 

and HSD11B.121 NR3C1, better known as the glucocorticoid 

receptor gene, and HSD11B2, the 11β-hydroxysteroid dehy-

drogenase type 2 (11-β-HSD2) gene, play important roles 

in stress response.122 Placental methylation status of NR3C1 

has been previously associated with infant birth weight43 

and neurobehavior,123,124 and placental methylation status 

of 11-β-HSD has been associated with infant growth125 and 

neurobehavior.124,125 The 11-β-HSD2 enzyme catalyzes the 

conversion of active cortisol into inactive cortisone, thus 

regulating the availability of glucocorticoids to the glucocor-

ticoid receptor.122 Placental cortisol is also associated with 

postnatal weight gain,126 underscoring the potential for this 

pathway as a marker of infant health outcomes. The relation-

ship between placental NR3C1 methylation, MCSDP, and 

birth weight41,43,127 is likely a complex one and birth weight 

may be a proxy measure for multiple interplaying in utero 

factors that can influence fetal growth and development.

CYP1A1 is a xenobiotic-processing enzyme known to be 

involved in the phase I metabolism of potentially carcinogenic 

compounds found in cigarette smoke, including polycyclic 

aromatic hydrocarbons.40 Suter et al40 found that CYP1A1 

expression is upregulated by MCSDP via a mechanism of 

placental CYP1A1 promoter hypomethylation, suggesting 

important roles for placental methylation alterations in the 

physiological response to this exposure.

HTR2A, or the serotonin receptor gene, is expressed in 

placental tissue and is regulated by DNA methylation.120,128 

Although its functional role in placental tissue has yet 

to be fully elucidated, Paquette et al120 recently observed 

MCSDP-associated placental HTR2A methylation, adding 

to a growing literature linking placental HTR2A to placental 

implantation129 and neurodevelopment.130,131

In addition to these candidate gene studies, Wilhelm-

Benartzi et al37 observed associations between MCSDP and 

methylation of the repetitive elements LINE-1 and AluYb8 

(see Table 1). This partly confirmed findings by Moore 

et al,132 who showed that cytosine methylation levels differ 

according to smoking status. The methylation levels of these 

repetitive elements were, in turn, associated with epigenome-

wide placental methylation patterns as measured by the 27K 

array platform.37 Methylation of repetitive elements, which 

comprise roughly 50% of the human genome, is important 

for the maintenance of genomic stability.133,134 These find-

ings suggest that placental methylation may be an indicator 

of underlying functional alterations to normal placental 

development that can be perturbed by environmental toxicant 

exposures, such as exposure to MCSDP.

Functional consequences: changes 
in gene expression and implications 
for future disease risk
Several studies40,43,120,123,135 have found MCSDP-associated 

placental gene expression patterns, and these findings are sup-

ported by studies of placental methylation changes occurring 

concomitantly with changes in expression of relevant genes. 

In particular, one study found 241 genes to be differentially 

expressed in the placentas of infants born to smoking moth-

ers, many of which were related to xenobiotic metabolism, 

collagen, coagulation and thrombosis.135 Another genome-

wide study found 174 genes to be differentially expressed 

in the placenta, including CYP1A1 and CYP19A1, perhaps 

indicating a response to the oxidative stress induced by 

MCSDP.136 A third study137 found 329 genes to be differ-

entially expressed in the placentas of infants exposed to 

MCSDP, including the additional cytochrome P450 family 

gene CYP1B1. These findings are consistent not only with 

other studies linking active and passive MCSDP with oxida-

tive stress138–141 and the induction of the hypoxia-sensitive 

protein HIF1α,142 but also with the findings of Suter et al,40,41 

who noted that placental methylation and expression changes 

occurred within gene regions related to xenobiotic process-

ing, oxidative stress response, and hypoxia.

Other groups have also demonstrated MCSDP-related 

changes in gene expression associated with alterations in 

placental methylation. One study120 observed both placental 

methylation and expression alterations in the HTR2A gene, 

while Stroud et al119 found NR3C1 placental methylation 

alterations associated with MCSDP and altered cortisol 

levels. Additional work has suggested that NR3C1 methy-

lation status is correlated with glucocorticoid receptor 

expression.43,123 Taken together, these studies suggest that 

methylation alterations in these genes within placental tissue 
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may have functional consequences for important placental 

pathways.

MCSDP is associated with a host of diseases and disor-

ders in infancy, childhood, and later life.11–19,22 These include 

pre-term birth,11,12 fetal growth retardation and intrauterine 

growth restriction,13,14 adverse neurobehavioral outcomes,15,16 

obesity,17–19 and asthma.10,84,110–116 In fact, even grand-maternal 

smoke exposure has been associated with an increased risk 

of asthma in grandchildren,10 although a recent study of 

children from the Avon Longitudinal Study of Parents and 

Children did not reveal such an association.143 Nonetheless, 

epigenetic mechanisms have been implicated in the relation-

ship between grand-maternal and maternal smoking during 

pregnancy and risk of asthma and airway hyper-responsive-

ness in offspring.84,144 EWAS have borne out this finding, 

showing that alterations in placental methylation associated 

with both MCSDP and adverse infant health outcomes, such 

as pre-term birth, occur in genes associated with asthma 

and airway hyper-responsiveness (such as RUNX3).42 These 

findings suggest that epigenetic mechanisms may underlie 

MCSDP-associated adverse health outcomes.

Conclusion and future directions
Although a growing body of literature exists on MCSDP-

associated alterations in placental methylation, there is 

much work yet to be done to elucidate the specific signaling 

pathways and mechanisms involved in mediating the relation-

ship between MCSDP and disease risk in later life. Ongoing 

cohort studies may help to further discern the risks posed by 

MCSDP to infant and child health outcomes, including risks 

for respiratory disorders,110,111,113,114,116 adverse neurodevelop-

mental outcomes,15,16,60,61,64,85,145 and obesity,17–19 all of which 

have been linked to MCSDP.

One such cohort study is the Rhode Island Child Health 

Study (RICHS), a population-based birth cohort enrolling 

mother-infant pairs at the Women and Infants’ Hospital in 

Providence, RI, USA.146 RICHS recruits newborn infants 

and their mothers following delivery and seeks to examine 

how the prenatal environment may influence postnatal health 

and neurobehavioral outcomes. Several important findings 

describing epigenetic links between the prenatal environment 

and postnatal outcomes have already been published from 

this cohort44,146–150 and work is ongoing to examine additional 

mechanistic links between prenatal exposures and a variety 

of postnatal outcomes.

The Norwegian Mother and Child Cohort Study has also 

published several key studies on MCSDP and DNA methy-

lation patterns in cord blood,151,152 fetal loss,153 plasma lipid 

levels in adult offspring,154 and infant behavioral outcomes.155 

This cohort will likely continue to produce important data 

on MCSDP-associated disease risk in later life in the com-

ing years.

Both epigenome-wide and candidate-based studies of 

placental methylation patterns have yielded intriguing results 

for genes of potential biological interest that should be further 

investigated in future studies, including RUNX3,42  CYP1A1,40 

NR3C1,119 HTR2A,120 HSD11B2,121 PURA,41 GTF2H2,41,91 

GCA, GPR135, and HKR1.41 The methylation status of 

genomic repetitive elements, such as LINE-1 and AluYb8, has 

also shown promise as a potential biomarker of MCSDP.37 It is 

important to note that an additional gene, the aryl hydrocarbon 

receptor repressor (AHRR), has also been recently investigated 

with respect to exposure to MCSDP, but while an association 

was found within this gene in cord blood mononuclear cells, a 

similar association was not found in placental tissue.156

Cumulatively, these results suggest that MCSDP-

 associated placental methylation is gene-specific, and 

perhaps, to a lesser degree, can also occur epigenome-wide, 

a conclusion previously drawn by Suter and Aagaard.133 

These patterns also appear to be tissue-specific, as stud-

ies investigating MCSDP-associated methylation pat-

terns have observed alterations in genes with only partial 

overlap in various tissues of interest. These genes include 

FRMD4A,157,158 C11orf52,157 AHRR,151,152 CYP1A1, GFI1,152 

ATP9A, GALNT2, and MEG3.158 Consideration should also 

be given to the role that additional in utero factors may play 

in placental methylation patterns. The studies described 

above have largely attempted to control for or match samples 

on potential confounders, including infant sex,37,40–42,120,121 

maternal age,37,41,42,121 maternal pre-pregnancy body mass 

index,37,41,121 birth weight,42,120 delivery method,42 gestational 

age or birth weight percentile,41,120,121 maternal education,120 

race/ethnicity,37,41,121 and other maternal factors,37,40 including 

smoking status for analyses of methylation patterns associ-

ated with infant health outcomes.37,119,120 Future studies may 

reveal concordance in genes identified, although to date only 

GTF2H241,91 has been differentially methylated in association 

with MCSDP or nicotine exposure in multiple studies.

Concordance of methylation patterns between tissues 

and life stages should also be investigated. For example, two 

studies159,160 observed smoking status-associated peripheral 

blood methylation patterns in adults, but these findings have 

yet to be confirmed in the placenta. Investigation of these find-

ings, as well as epigenome-wide analyses of placental methy-

lation patterns differing between infants exposed to MCSDP 

throughout pregnancy versus mothers who quit, would help to 
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elucidate whether placental methylation  patterns are reversible 

with smoking cessation. As methylation is known to exhibit 

a degree of plasticity with respect to environmental and sto-

chastic factors,87 demonstration of reversible methylation with 

smoking cessation would have implications for variations in 

MCSDP-associated health risks.

It will be important for future studies to focus on the 

use of emerging tobacco products as unique prenatal expo-

sures that may be associated with unique gene-specific and 

tissue-specific methylation patterns. Such emerging tobacco 

products include electronic (e-)cigarettes, electronic nicotine 

delivery devices which, as of February 2015, are under con-

sideration for regulation at the federal level by the US Food 

and Drug Administration.161 Some types of e-cigarettes are 

capable of producing nicotine yields at levels comparable 

with those in traditional cigarettes,162 but e-cigarette liquids 

and vapors contain different compounds, such as propyl-

ene glycol and specific flavors, not found in traditional 

cigarettes.163–165 E- cigarette flavors may also be formulated 

with other compounds that are not found in traditional ciga-

rettes. The influence of prenatal exposure to e-cigarettes on 

the placenta and developing fetus remains unknown, and it 

is important to investigate such exposures during pregnancy 

or in in vitro models. It will also be important to investigate 

placental methylation alterations associated with prenatal 

e-cigarette exposure and, if they exist, to compare these 

e-cigarette exposure-associated placental methylation profiles 

with the placental methylation profiles previously associated 

with MCSDP.

In conclusion, while a growing literature exists on 

MCSDP-associated placental methylation, work remains to be 

done to fully investigate the gene-specific and tissue-specific 

mechanisms that underlie the relationship between MCSDP 

and disease in later life. This knowledge will help identify 

at-risk infants exposed to MCSDP and hopefully help to for-

mulate effective interventions to improve infant health. Future 

studies should examine placental methylation alterations asso-

ciated with prenatal exposure to emerging tobacco products 

as well, so that information on potential health effects can be 

disseminated to women who are pregnant or of child-bearing 

age. Collectively, such efforts will help to further understand 

links between prenatal tobacco exposure and infant and child 

health outcomes, with the goal of better elucidating the greater 

developmental origins of health and disease.
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