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Abstract: Stem cell therapy and tissue engineering represent a forefront of current research 

in the treatment of heart disease. With these technologies, advancements are being made into 

therapies for acute ischemic myocardial injury and chronic, otherwise nonreversible, myocardial 

failure. The current clinical management of cardiac ischemia deals with reestablishing perfusion 

to the heart but not dealing with the irreversible damage caused by the occlusion or stenosis of 

the supplying vessels. The applications of these new technologies are not yet fully established 

as part of the management of cardiac diseases but will become so in the near future. The discus-

sion presented here reviews some of the pioneering works at this new frontier. Key results of 

allogeneic and autologous stem cell trials are presented, including the use of embryonic, bone 

marrow-derived, adipose-derived, and resident cardiac stem cells.
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Introduction
It is well known that cardiovascular disease is a main cause of morbidity and mor-

tality worldwide.1 Traditional medical and surgical therapies have had success in 

the treatment of many cardiovascular diseases, such as coronary artery disease and 

valvular diseases, but have had limited success in the therapy of damaged myo-

cardium. Acute ischemic myocardial damage and chronic myocardial failure have 

been challenging conditions for which to provide an adequate long-term prognosis, 

although a recent study by Beltrami et al,2 demonstrated the ability of cardiac cells 

(cardiomyocytes) to divide after the occurrence of myocardial infarction (MI), and 

reentering the human cell cycle, but that may not be enough to provide the needed 

quantity of cells to restore the damage; the common belief before that study was that 

myocytes are unable to divide depending on the interpretation of the scar formation 

after the infarction.

This aspect widens our perspective of the management approach – from being 

dependent solely on medical, percutaneous coronary intervention (PCI) and a surgical 

approach, to include a new side for management that includes the application of stem 

cell therapy – as these conditions have so far exceeded the reach of traditional medicine. 

The use of stem cells and tissue engineering has been tested in the laboratories and 

clinical trials as a potential solution for future treatment.

When engineering tissue for use as a cardiovascular therapy, there are three main 

points to consider: scaffolds, cell sources, and signaling factors.
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Scaffolds
A “scaffold” is a substitute that provides a structural platform 

for a new cellular microenvironment that supports new tissue 

formation. It allows cell attachment, migration, differentia-

tion, and organization that can aid in delivering soluble and 

bound biochemical factors.3

Cell sources
The choice of cells to populate a scaffold depends on the 

purpose of the new tissue graft. The new cells will synthe-

size the bulk of the mass of a tissue matrix, and will form 

the integrating connections with existing native tissues. They 

also maintain tissue homeostasis in general and  provide 

various metabolic supports to other tissues and organs. 

Terminally differentiated cells have been used with variable 

degrees of success and there are some limitations to their 

use in tissue engineering, but stem cells, and more recently 

adult stem cells, have become the major players in most new 

tissue replacement strategies.4 Their favorable properties 

are being harnessed to drive most new tissue engineering 

processes.5

Signaling factors
Signaling factors can influence, and even direct, a new 

tissue’s phenotype. Their application has been learned from 

signals observed during native tissue formation and they 

have direct and indirect effects on cell metabolism, migra-

tion, and organization.3

Stem cell types used  
for cardiac repair
Xenogeneic cells from nonhuman species have limitations in 

therapeutic strategies due to significant differences in anti-

gens between species, potentially leading to graft rejection. 

Meanwhile, allogeneic cells from human donors are likely to 

have greater success after implantation. Allogeneic stem cells 

include umbilical cord-derived cells, fetal cardiomyocytes, 

and embryonic mesenchymal stem cells (EmSCs). These 

cells, however, are still potentially subjected to immune 

surveillance and rejection.

To eliminate the potential for allogeneic rejection, autolo-

gous cells from the same individual have become a central 

focus of stem cell research. This category of cells includes 

skeletal myoblasts, adipose-derived stem cells (AdSCs), resi-

dent cardiac stem cells (RCSCs) and bone marrow-derived 

(BMD) stem cells, such as CD34+ cells, induced pluripotent 

stem cells (iPSCs), mesenchymal stem cells (MSCs), mul-

tipotent adult progenitor cells, and endothelial progenitor 

cells (EPCs).

Allogeneic sources
Fetal cardiomyocytes
Fetal cardiomyocytes have significant potential for integration 

and regeneration.6,7 However, there are concerns, including 

immunogenicity, malignant potential, ethical questions, as 

well as limited availability. For these reasons, other cell 

types have surpassed this source as likely candidates for use 

in cardiac regenerative therapy.

emSCs
EmSCs have broad potential to differentiate into cells from 

all three embryonic germ layers. In addition, intact cardio-

myocytes have been produced in vitro as well.8 However, 

there are concerns about the use of EmSCs, due to their 

association with teratoma formation in rodent models9 and 

concerns about their potential malignant transformation. 

Moreover, the ethical and legal issues surrounding the use 

of human EmSCs have obstructed further exploration and 

shifted the existing attention onto other alternative sources 

for stem cell therapy in cardiac repair.

Human umbilical cord blood-derived cells
Human umbilical cord blood-derived cells are presently used 

for repopulating bone marrow in patients treated for bone 

marrow illnesses such as acute leukemia. Human cord blood 

contains a big number of non-hematopoietic stem cells that 

show fewer class II human leukocyte antigens and appears not 

to trigger an immune response, thus dropping the risk of rejec-

tion. This reduced immunological activity provides a striking 

option for regenerative therapy.10 A significant reduction in 

infarct size has also been shown after intramyocardial injection 

of human cord blood derived cells in animal models.11

Autologous sources
AdSCs
AdSCs have been considered as a source of adult stem cells for 

cardiac repair. Adipose tissue includes a heterogeneous mixture 

of MSCs, hematopoietic stem cells, and EPCs. Consequently, 

the major clinical advantages of this type of cell is their avail-

ability, easy harvesting, and relatively low cost. Preclinical stud-

ies have shown that AdSCs are associated with improvement in 

ventricular function in animal models of MI. The mechanism of 

neoangiogenesis formation has hypothesized paracrine effects 

as a possible mechanism of action for AdSCs.12,13

Skeletal myoblasts
Skeletal myoblasts can be harvested by muscle biopsy from 

the individual and grafted to cardiac tissue. Preclinical ani-

mal studies have verified their ability to engraft, create 
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myotubules, and improve cardiac function after transfer into 

infarcted myocardium.14 Clinical human trials such as the 

Myoblast Autologous Grafting in Ischemic Cardiomyopathy 

(MAGIC) trial and others have demonstrated that epicardial 

injection of skeletal myoblasts during coronary artery bypass 

graft (CABG) surgery is feasible with likely functional ben-

efits (see Table 1 for study summaries).15,16 A major limitation, 

however, is that they remain devoted to the skeletal muscle 

lineage and have been associated with arrhythmias due to 

separation of cardiomyocytes by islands of skeletal muscle 

cells, therefore interfering with the propagation of electrical 

potentials.15

BMD stem cells
BMD stem cells are widely studied due to their versatility 

and ease of collection. Of these, the most frequently tested 

adult stem cells are BMD mononuclear cells. Encouraging 

results have been reported in animal models of ischemic 

heart failure.17

iPSCs
“iPSCs” are autologous adult cells that can be converted into 

pluripotent cells. Through specific alterations, adult cells can 

be reprogrammed to express embryonic genes, allowing them 

to differentiate into tissues other than their specific lineage. 

Table 1 Clinical effects of cell therapy for acute or chronic heart failure with different types of stem cells

Trial Cell source Route of delivery Effect on LV function

TOPCARe-AMi77 BMDs and CPCs intracoronary No change
BOOST79 BMDs intracoronary Positive
RePAiR-AMi82 BMDs intracoronary Positive
ReGeNT83 BMDs intracoronary No significant change
MYSTAR84 BMDs intracoronary/intramyocardial Positive
SwiSS-AMi85 BMDs intracoronary No change
LeUveN-AMi200 BMDs intracoronary No change
ASTAMi80 BMDs intracoronary No change
FiNCeLL201 BMDs intracoronary Positive
HeBe202 BMDs intracoronary No change
TiMe203 BMDs intracoronary No change
Late-TiMe87 BMDs intracoronary No change
APOLLO STUDY70 AdSCs intracoronary Positive
PReCiSe89 AdSCs Transendocardial No change
TOPCARe-CHD92 BMDs or CPCs intracoronary No change
FOCUS-CCTRN204 BMDs Transendocardial No change
Dib et al16 Skeletal myoblasts Transepicardial Positive
MAGiC15 Skeletal myoblasts Transepicardial No change
SeiSMiC205 Skeletal myoblasts Transendocardial No change, with positive trend
CAuSMiC206 Skeletal myoblasts Transendocardial Positive
Stamm et al72 BMDs Transepicardial Positive
Ang et al207 BMDs Transepicardial/intracoronary No change
STAR-heart94 BMDs intracoronary Positive
TOPCARe-DCM95 BMDs intracoronary Positive
ACT34-CMi208 CPCs intramyocardial Positive
POSeiDON93 BMD Transendocardial No change
SCiPiO28 RCSCs intracoronary Positive
CADUCeUS88 Cardiospheres intracoronary No change
C-CURe209 RCSCs Transendocardial Positive

Abbreviations: ACT34-CMi, Autologous Cellular Therapy CD34 – Chronic Myocardial ischemia; AdSCs, adipose-derived stem cells; APOLLO, AdiPOse-derived Stem 
ceLLs in the treatment of patients with ST-elevation myOcardial infarction; ASTAMi, Autologous Stem-cell Transplantation in Acute Myocardial infarction; BMDs, bone 
marrow-derived stem cells; BOOST, BOne marrOw transfer to enhance ST-elevation infarct regeneration; C-CURe, Cardiopoietic stem Cell therapy in heart failURe; 
CADUCeUS, CArdiosphere-Derived aUtologous Stem Cells to reverse ventricUlar dySfunction; CAuSMiC, CAtheter-based delivery of aUtologous Skeletal Myoblasts for 
ischemic Cardiomyopathy; CPC, circulating progenitor cells; FiNCeLL, FiNnish stem CeLL trial; FOCUS-CCTRN, First Mononuclear Cells injected in the United States 
conducted by the CCTRN [Cardiovascular Cell Therapy Research Network]; HeBe, Multicenter, randomized trial of intracoronary infusion of autologous mononuclear 
bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention (PCi); LateTiMe, Use of Adult Autologous Stem Cells in 
Treating People 2 to 3 weeks after having a Heart Attack; LeUveN-AMi, Leuven acute myocardial infarction; Lv, left ventricular; MAGiC, Myoblast Autologous Grafting 
in ischemic Cardiomyopathy; MYSTAR, MYocardial STem cell Administration after acute myocardial infaRction; POSeiDON, Comparison of Allogeneic versus Autologous 
Bone Marrow-Derived Mesenchymal Stem Cells Delivered by Trans-endocardial injection in Patients with ischemic Cardiomyopathy; PReCiSe, AdiPose-deRived stem and 
Regenerative Cells in the Treatment of Patients with non revaScularizable ischemic myocardium; RCSCs, resident cardiac stem cells; ReGeNT, Myocardial ReGeNeraTion 
by intracoronary infusion of selected population of stem cells in acute myocardial infarction; RePAiR-AMi, Reinfusion of enriched Progenitor cells And infarct Remodeling in 
Acute Myocardial infarction; SCiPiO, Stem Cell infusion in Patients with ischemic cardiOmyopathy; SeiSMiC, Safety and effects of implanted (Autologous) Skeletal Myoblasts 
(MyoCell) Using an injection Catheter; STAR-heart, The acute and long-term effects of intracoronary Stem cell Transplantation in patients with chronic heARt failure; SwiSS-
AMi, Swiss Multicenter intracoronary Stem cells Study in Acute Myocardial infarction; TiMe, Timing in Myocardial infarction evaluation; TOPCARe-AMi, Transplantation of 
Progenitor Cells and Regeneration enhancement in Acute Myocardial infarction; TOPCARe-CHD, Trans-Coronary Transplantation of Functionally Competent BMD Stem 
Cells; TOPCARe-DCM, Selective intracoronary Bone Marrow-Derived Progenitor Cell infusion in Patients with Non-ischemic Dilated Cardiomyopathy.
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Interestingly, a recent publication has led to the discovery 

of a cardiac progenitor population of cells expressing both 

platelet-derived growth factor receptor-alpha and kinase 

insert domain receptor derived from human iPSCs that can 

give rise to smooth muscle cells (SMCs), cardiomyocytes, 

and vascular endothelial cells (ECs).18 Also, vascular ECs 

from human iPSCs can be attained from several distinct 

progenitor populations.

RCSCs
RCSCs have recently been discovered with great interest. 

Previously, the heart was considered to lack self-renewal 

capabilities as a terminally differentiated organ. Evidence 

has now shown, however, that the heart demonstrates con-

tinuous cell division following various injuries; for example, 

post-MI.2 Several studies have addressed, identified, and 

isolated RCSCs, which are capable of differentiating into 

multiple cell types, such as cardiomyocytes or vascular SMCs 

(VSMCs).19,20 Reduction in the infarct size and improvement 

of left ventricular (LV) function were noticed in rodent mod-

els of MI after RCSC culture and injection.21 These cells are 

an attractive option for cardiac repair. However, effective 

harvesting techniques need to be perfected (see Table 1 for 

study summaries).

The best-characterized and most well-studied RCSC 

population is c-kit+/Lin– cells, originally described in the 

rat heart.19 The c-kit+/Lin– RCSCs, isolated and expanded 

in culture, exhibit all the properties of induced stem cells. 

When injected into the injured myocardium, they were 

shown capable of restoring the cardiac pattern and function 

in various animal models of ischemic heart model, albeit to 

a variable extent.22–24 Human c-kit+ cells have also recently 

been tested as a potential therapy in patients suffering from 

ischemic cardiomyopathy with promising results.19,24–28

Origin, production, and purification 
of cardiac stem cells
Since 1960, different experiments and discoveries in the field 

of stem cells have been made. Emerging clinical application 

trials started to evolve in the past 15 years and include but 

are not limited to the study of cardiac regeneration.

embryologic development  
of stem cells in the heart
Different theories addressed the origin of stem cells in the 

heart. The origins of the cells in the heart may affect organ 

function, which implies that cells for tissue engineering 

and regenerative medicine should be selected cautiously. 

The myocardial cells in the adult heart originate from meso-

dermal precursors during the embryonic period of the heart’s 

growth. Signaling pathways orchestrate the formation of the 

first and second heart fields,29 which become cardiomyocytes, 

and the subsequent growth of the four-chambered heart from 

a linear heart tube.30,31 After the early framework for the heart 

is formed, some mesodermal cells from the proepicardium 

are enrolled to form the epicardium, the single layer of cells 

enveloping the heart.32

Next, in transition from an epithelial to mesenchymal 

layer, epicardial cells become migratory mesenchymal 

cells. These cells enter the underlying myocardium and dif-

ferentiate into VSMCs as well as fibroblasts of the vascular 

interstitium and adventitia.

While the origin of the coronary endothelium is contro-

versial, the present understanding is that this endothelium 

has a well-defined progenitor population of SMCs and 

fibroblasts in the proepicardium.33,34 It is interesting that 

only after the main structure of the coronaries is estab-

lished do the ECs conquer the aorta and create the coronary 

circulation.35

Differentiation of stem cells  
into cardiomyocytes
The derivation of cardiomyocytes from human pluripotent 

stem cells follows a distinct developmental lineage through-

out mesoderm induction. There has been a recent increase in 

the understanding of this process since the ability to derive 

cardiomyocytes from human EmSCs and iPSCs has driven 

a transition from using pluripotent cells to form cardiomyo-

cytes for tissue engineering36 (summarized in Figure 1). The 

use of cardiomyocytes was first introduced when neonatal 

rat ventricular cardiomyocytes, which were developed for 

cardiac tissue engineering,34 were seeded into gel-foam and 

implanted onto an infarcted adult rat heart.35

Differentiation protocols for human EmSCs to car-

diomyocytes involve adding bone morphogenetic protein 4 

(BMP4) and recombinant human activin A to induce the 

cardiac mesoderm to reproduce the main foundations of 

embryonic development.18,37,38 Laflamme et al18 produced 

cardiomyocyte populations with over 50% cardiac purity 

(consisting of nodal cells, ventricular cells, and atrial cells). 

In this protocol, they induced endogenous expression of 

recognized Wnt ligands, and after mesodermal Wnt induc-

tion, successful cardiac differentiation requires subsequent 

inhibition of this pathway.39 This biphasic signaling profile, 

which normally occurs during development,40,41 offers an 

approach to evaluate the efficiency of cardiac differentiation 
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in different human EmSC and human iPSC lines and can be 

boosted by the addition of exogenous Wnt3a followed by 

inhibition of Wnt signaling with dickkopf-related protein 1 

(DKK1) to increase cardiogenesis.39

Yang et al37 developed a different approach mimicking the 

three-dimensional (3D) setting of an evolving embryo using 

small cell groups called “embryoid bodies”. These cells are 

exposed to basic fibroblast growth factor (bFGF), activin A, 

BMP4, vascular endothelial growth factor (VEGF), and, after 

mesodermal induction, DKK1 in a hypoxic environment for 

10–12 days. A positive cardiovascular progenitor population 

expressing kinase insert domain receptor and platelet-derived 

growth factor receptor-alpha could be isolated on the 4th day, 

which revealed a differentiation of greater than 50% cardiac 

troponin T (cTnT)+ cardiomyocytes in multiple lines of 

human EmSC and human iPSCs.33 Progenitor cardiovascular 

cells derived using this protocol also give rise to low levels 

of ECs (CD31+), fibroblasts (discoidin domain receptor 2 

[DDR2]+), and VSMCs.

Another approach used the glycogen synthase kinase 3 

(GSK3) inhibitor to activate Wnt/β-catenin signaling and 

mesoderm differentiation, which yielded high levels of car-

diogenesis to produce greater than 80% cardiomyocytes.42

An alternative approach uses transdifferentiation and 

reprogramming of fibroblasts directly into cardiomyocytes 

at the in vivo stage, using gene therapy, avoiding the pluri-

potent stage.43,44 However, reproducing this high-yield work 

has proven to be a challenge,45 with very few transduced 

cells demonstrating contractile activity and several of 

these cells demonstrating only a partially reprogrammed, 

cardiomyocyte-like phenotype.46 This approach, though inef-

ficient at this time, will is likely to have potential in the future 

as therapy for patients who are not surgical candidates for 

revascularization using tissue-engineered replacement.
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Figure 1 Progression of stem cells in vitro into cardiomyocytes for in vivo transplantation.
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Cardiac purity after differentiation
Once differentiation has been achieved, there are several 

strategies to improve the yield and the purity of the tissue 

sample. One proposed protocol involved Percoll density 

gradient centrifugation.18 This, however, reveled an injury 

to the cardiomyocytes and low survival rate at transplanta-

tion stage. Since then, multiple studies have used different 

strategies using genetic selection in which a cardiac-specific 

agent drives expression of an antibiotic-resistance gene, 

permitting cardiomyocytes to last while other cell types 

are lost.47–49 Cell-sorting techniques have been developed 

for cardiac-specific surface markers including vascular cell 

adhesion molecule (VCAM1)50 and signal regulatory protein 

alpha (SIRPA).51

Another strategy used involved culturing cells in a lactate-

rich medium that would eradicate or kill the cells that do not 

have enough mitochondria to survive (which most of the time 

are the non cardiac cells). 100% purity is hard to achieve. 

It has been reported that usage of unsorted cardiomyocytes 

with purities greater than 50% does not result in the forma-

tion of teratomas in animal model (rodent) studies,18 though 

occasional epithelial cysts have been detected.53 These results 

are promising and imply that practically high-purity human 

EmSC- and iPSC-derived cardiomyocytes can be developed 

for clinical usage (summarized in Figure 1).

Cell-based therapy for heart failure
The treatment of post-MI heart failure remains an important 

and difficult task due to the high prevalence of post-MI heart 

failure and low levels of success with traditional medical 

and surgical therapies.54 An evolving strategy for the treat-

ment of advanced ischemic cardiomyopathy is regenerative 

medicine. This involves the transplantation of pluripotent 

progenitor cells into the area of the infarcted myocardium 

with the expectancy of new functioning myocyte and vascular 

cell production.

The adult mammalian heart has been traditionally con-

sidered as a post-mitotic organ without intrinsic capacity for 

regeneration. Clinically, it behaves in this manner, with little 

recovery after ischemic damage. New understandings of cell 

biology, however, have caused a shift in such opinions and 

introduced a new avenue for potential therapy. Several reports 

have shown new cardiomyocyte cell-cycle production rang-

ing from 0.0005% to 3% in normal adult hearts,55–57 and the 

dating of adult hearts with 14C has also concluded that during 

a lifetime the human heart renews approximately 50% of its 

myocytes.58 For these reasons, animal experiments have been 

performed and the interest generated from these experiments 

has led to clinical trials to evaluate stem cells as therapy for 

damaged adult human hearts.59

Myocardial regeneration with  
allogeneic stem cell therapy
Allogeneic cells can be grown in large quantities in advance, 

stored before their use, and made available at short notice, 

which make them a suitable option for highly prevalent diseases 

and will permit their use soon after an acute insult to either 

prevent or diminish pathological remodeling of the heart.

As yet unanswered questions about the use of allogeneic 

stem cells in the treatment of patients with acute myocar-

dial injury need to be addressed, including what method of 

delivery is best for cell administration and what is the best 

cell population to deliver.

To be widely available and compatible with the cur-

rent clinical standard of care for acute myocardial injury, 

an intracoronary method for delivery at the time of the 

primary revascularization is feasible. Catheter-based direct 

myocardial injection during revascularization surgery is 

also realistic.

For choice of cell populations, MSCs have been tested. 

These cells secrete a broad range of favorable cytokines. 

However, they also secrete factors that negatively modulate 

cardiomyocyte apoptosis, inflammation, scar formation, 

and pathological remodeling, as described by Ranganath 

et al.60 Also, only approximately 3%–4% of the cells 

delivered by intracoronary technique are retained in the 

myocardium, as reported by Dauwe and Janssens,61 as well 

as Teng et al,62 and MSCs can clump together, becoming 

entrapped in the microvasculature and obstructing entry 

into the myocardium.

Groups of allogeneic cell types in small aggregates known 

as “cardiospheres” have also been tested for therapy in a 

rat module of infarcted hearts.63 Allogeneic cardiosphere-

derived cell (CDC) transplantation resulted in an improve-

ment in fractional area change (12%), ejection fraction (EF; 

20%), and fractional shortening (10%), which was sustained 

for at least 6 months. Also, allogeneic CDCs stimulated 

regeneration through endogenous mechanisms, such as 

increased myocardial VEGF, insulin-like growth factor 1, 

and hepatocyte growth factor, and the recruitment of c-kit+ 

angiogenesis.63

One promising cell type to undergo testing for cell therapy 

is the RCSC, which has advanced beyond more primitive stem 

cells into a definite cardiac lineage but has not yet terminally 

differentiated or matured. Unlike other cell types such as 

BMD stem cells, which were mentioned by Abdel-Latif 
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et al64 and Hofmann et al,65 RCSCs have a high tropism for 

the myocardium. When administered through the systemic 

circulation, the majority of RCSCs home to and nest in the 

damaged myocardium.66

Under appropriate conditions it is possible to replicate 

and expand RCSCs up to 1×1011 cells without noticeable 

alteration of karyotype, loss of differentiating properties, 

or the phenotype of the differentiated progeny.67 These cells 

produce a range of beneficial pro-survival, anti-inflamma-

tory, and cardiovascular regenerative growth factors, such 

as insulin-like growth factor 1, hepatocyte growth factor, 

activins, transforming growth factor-beta 1, and neuregulin-1, 

among others.68

It is postulated that it is because of the secretion of these 

regenerative factors that allogeneic stem cell therapy is 

successful. The factors produced by the allogeneic cells may 

stimulate endogenous stem cells of the target tissue while the 

transplanted cells themselves may survive only transiently. Thus, 

they might not directly participate in the production of progeny 

that contribute to the regenerated tissue. As a result, although the 

therapeutic cells are allogeneic, a lasting regenerative response 

may be autologous, carried out by host RCSCs.69

Myocardial regeneration  
with autologous stem cell therapy
Notwithstanding the values of autologous therapy, autologous 

cells require time for preparation and are not suited for highly 

prevalent diseases. A study done using an intracoronary infu-

sion of AdSCs within hours of percutaneous revasculariza-

tion in patients presenting with acute MI showed improved 

left ventricular ejection fraction (LVEF) with reduced scar 

formation.70

Meanwhile, intracoronary injection of autologous BMD 

stem cells in patients with chronic heart failure had been 

shown to result in a corresponding 15% improvement in EF 

and a 30% reduction in infarct size.71 Direct myocardial injec-

tion of CD133+ BMD stem cells into infarct border zones led 

to an improvement in LVEF from 37% to 47%.72

Also, cardiac stem cells have been shown to differentiate 

into multiple cell types, including cardiac myocytes, SMCs, 

and ECs.19 Infusion of autologous Lin–/c-kit+ cardiac stem 

cells into patients with post-MI resulted in LVEF improve-

ment from 30.3% to 38.5%.28

In patients with refractory angina after conventional 

revascularization therapy, compelling evidence support-

ing stem cell therapy emerged from a randomized trial of 

catheter-based intramyocardial (endoventricular) injection 

of CD34+ progenitor cells, arranged following granulocyte 

colony stimulating factor-induced cell mobilization and 

“leukapheresis” (separation of white blood cells).73 It 

showed a trend in efficacy for endpoints such as fewer 

angina episodes, lowered nitroglycerin usage, improved 

exercise time, and improved functional class (as per the 

New York Heart Association Functional Classification) 

when compared with placebo. These results were similar 

to a recent trial (Efficacy and Safety of Targeted Intramyo-

cardial Delivery of Auto CD34+ Stem Cells for Improving 

Exercise Capacity in Subjects With Refractory Angina 

[RENEW] study).73,74 In another trial, when patients 

were injected with bone marrow mononuclear stem cells 

endocardially, a trend toward improvement in chronic 

ischemia refractory to medical treatment was shown. 

Although there was no significant difference.75 In conjunc-

tion with coronary arterial bypass grafting, another study 

showed that intramyocardial injection of high-dose BMD 

mononuclear cells yields improved results compared with 

CABG alone.76 When CD133+ cells are injected through 

the transepicardial route during coronary surgery, there 

has been an improved LVEF and perfusion at 6 months 

post-operatively.72

Clinical trials of cell therapy  
for heart failure
Many studies have addressed the efficacy of stem cell 

injection in the cardiac disease patient. Here, we mention 

some of these studies and divide them depending on the 

timeframe of the intervention (summarized in Figure 2 and 

Tables 1 and 2).

Acute heart failure
intervention within ,7 days
Transplantation of Progenitor Cells and Regeneration 
enhancement in Acute Myocardial infarction  
(TOPCARe-AMi)
This was a safety and feasibility trial targeting patients with 

acute MI successfully reperfused by stent implantation. They 

used an intracoronary infusion of circulating progenitor 

cells (CPCs) (approximately 245±72×106 Ficoll-separated, 

cultured CPCs) and bone marrow cells (approximately 

10±7×106 Ficoll-separated BMD cells) 4 days after the 

infarction. It showed a trend of improvement in regional 

wall motion in the infarcted zone and reduction of end-

systolic LV volume immediately after the injection as well 

as during the 4-month follow-up. The efficacy was similar 

between patients receiving BMD stem cells and patients 

receiving blood-derived CPCs.77
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BOne marrOw transfer to enhance  
ST-elevation infarct regeneration (BOOST)
This study targeted patients who had acute MI and had stent 

implanted using PCI. They had a transfusion of a single dose 

of autologous bone marrow stem cells through intracoronary 

route. The number of cells used was approximately 2.5×109 

of unfractionated BMD cells. The results showed a slight 

improvement in LVEF of 7%, which was, however, not sus-

tained at 18 months.78,79

Autologous Stem-cell Transplantation in Acute  
Myocardial infarction (ASTAMi)
This trial targeted patients with acute ST-segment elevation 

myocardial infarction (STEMI). They harvested autologous 

bone marrow cells, which were delivered through intracoronary 

injections during PCI for stent implantation. The number of 

cells used was approximately 7×107 Ficoll-separated BMD 

stem cells. In this trial, there was no improvement in LVEF 

at 6 months after delivery of injected cells.80

Ischemic heart 
disease 

Acute heart
failure 

Early (<7 days)

TOPCARE-AMI77 

BOOST78

ASTAMI80 

REPAIR-AMI82  

REGENT83 

Late (>7 days)

MYSTAR84 

SWISS-AMI85 

LateTIME87  

CADUCEUS'88

Chronic heart
failure

PRECISE89

TOPCARE-CHD92 

POSEIDON93

STAR-heart94

SCIPIO'28

Chronic non-
ischemic heart

failure 

TOPCARE-
DCM95

Figure 2 Clinical trials of cell therapy for acute and chronic, ischemic and nonischemic heart failure.
Abbreviations: ASTAMi, Autologous Stem-cell Transplantation in Acute Myocardial infarction; BOOST, BOne marrOw transfer to enhance ST-elevation infarct regeneration; 
CADUCeUS, CArdiosphere-Derived aUtologous Stem Cells to reverse ventricUlar dySfunction; LateTiMe, Use of Adult Autologous Stem Cells in Treating People 2 to 3 weeks 
after having a Heart Attack; MYSTAR, MYocardial STem cell Administration after acute myocardial infaRction; POSeiDON, Comparison of Allogeneic versus Autologous Bone 
Marrow-Derived Mesenchymal Stem Cells Delivered by Trans-endocardial injection in Patients with ischemic Cardiomyopathy; PReCiSe, AdiPose-deRived stem and Regenerative 
Cells in the Treatment of Patients with non revaScularizable ischemic myocardium; ReGeNT, Myocardial ReGeNeraTion by intracoronary infusion of selected population of stem 
cells in acute myocardial infarction; RePAiR-AMi, Reinfusion of enriched Progenitor cells And infarct Remodeling in Acute Myocardial infarction; SCiPiO, Stem Cell infusion in 
Patients with ischemic cardiOmyopathy; STAR-heart, The acute and long-term effects of intracoronary Stem cell Transplantation in patients with chronic heARt failure; SwiSS-
AMi, Swiss Multicenter intracoronary Stem cells Study in Acute Myocardial infarction; TOPCARe-AMi, Transplantation of Progenitor Cells and Regeneration enhancement in 
Acute Myocardial infarction; TOPCARe-CHD, Trans-Coronary Transplantation of Functionally Competent BMD Stem Cells; TOPCARe-DCM, Selective intracoronary Bone 
Marrow-Derived Progenitor Cell infusion in Patients with Non-ischemic Dilated Cardiomyopathy.
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Reinfusion of enriched Progenitor cells And infarct 
Remodeling in Acute Myocardial infarction (RePAiR-AMi)
This was a randomized and double-blinded study target-

ing patients who had PCI after acute MI. They divided the 

population into two groups receiving bone marrow cells versus 

placebo infusion. The total number of cells used was estimated 

to be 2.4×108. The initial 4 months’ result showed an increase 

in LVEF in the bone marrow group compared with in the 

Table 2 Cells number and purification methods

Trial Cell source (number of cells used) Separation/purification method

TOPCARe-AMi77 CPCs (245±72×106) 
BMDs (10±7×106)

Positive KDR/CD105 
Ficoll centrifugation

BOOST79 BMDs (2.5×109) Density gradient sedimentation, CD34+ flow cytometry
ASTAMi80 BMDs (7×107) Ficoll centrifugation
RePAiR-AMi82 BMDs (2.4×108) Ficoll centrifugation
ReGeNT83 BMDs-CD34+ (1.90×106) 

BMDs (1.78×108)
Ficoll centrifugation/ 
immunomagnetic monoclonal antibodies

MYSTAR84 BMDs e (1.56±0.40×109) 
BMDs L (1.55±0.44×109)

COBe® Spectra™ filter 
Fluorescence cell sorting

SwiSS-AMi85 BMDs e (153×106) 
BMDs L (139.5×106)

Ficoll centrifugation 
Anti-CD34 and CD133

LateTiMe87 BMDs (150×106) Ficoll centrifugation 
Fluorescence cell sorting

PReCiSe89 AdSCs (42×106) Cytori Celution® device™
TOPCARe-CHD92 BMDs (214±98×106) Ficoll centrifugation
POSeiDON93 Allogenic/Autologous BMDs (20–100–200×106) Ficoll centrifugation
STAR-heart94 BMDs (6.6±3.3×107) Ficoll centrifugation, CD34+/CD133+

TOPCARe-DCM95 BMDs (259±135×106) Ficoll centrifugation
SCiPiO28 RCSCs (1 million) immunomagnetic sorting with human CD117
LeUveN-AMi200 BMDs (172–304×106) Ficoll centrifugation
FiNCeLL201 BMDs (360×106) Ficoll centrifugation
HeBe202 BMDs (296±164×106) 

Blood (287±137×106)
Lymphoprep density centrifugation

TiMe203 BMDs (150×106) Ficoll centrifugation
APOLLO70 AdSCs (17.4±4.1×106) Cytori Celution® device™
FOCUS-CCTRN204 BMDs (100×106) Ficoll centrifugation, flow cytometry CD34, 133
Dib et al16 SMs (1–3×108) Anti-CD56 antibody staining
MAGiC15 SMs (400–800×106) Flow cytometry CD56+ cells
SeiSMiC205 SMs (586±193×106) Flow cytometry CD56+ cells
CAuSMiC206 SMs (2×105) Anti-CD56 monoclonal antibodies
Stamm et al72 BMDs (5.8×106) Magnetic separation with ferrite-conjugated antibody
Ang et al207 BMDs iM (84±56×106) 

BMDs iC (115±73×106) 
CD34+/CD117+ iM (142±166×103) 
CD34+/CD117+ iC (254±254×103)

Lymphoprep™ density centrifugation

ACT34-CMi208 MSCs (1–5×105)/kg CD34+ fluorescence sorting
CADUCeUS88 Cardiospheres (12.5–25.0×106) 95% positive CD105
C-CURe209 BMDs (600–1,200×106) PCR of CD34, FABP4, SOX9, osteocalcin, and nestin 

(exposed vs nonexposed to cardiac GF cocktail)

Abbreviations: ACT34-CMi, Autologous Cellular Therapy CD34 – Chronic Myocardial ischemia; AdSCs, adipose-derived stem cells; APOLLO, AdiPOse-derived Stem ceLLs 
in the treatment of patients with ST-elevation myOcardial infarction; ASTAMi, Autologous Stem-cell Transplantation in Acute Myocardial infarction; BMDs, bone marrow-
derived stem cells; BOOST, BOne marrOw transfer to enhance ST-elevation infarct regeneration; C-CURe, Cardiopoietic stem Cell therapy in heart failURe; CADUCeUS, 
CArdiosphere-Derived aUtologous Stem Cells to reverse ventricUlar dySfunction; CAuSMiC, CAtheter-based delivery of aUtologous Skeletal Myoblasts for ischemic 
Cardiomyopathy; CPCs, circulating progenitor cells; e, early; FiNCeLL, FiNnish stem CeLL trial; FOCUS-CCTRN, First Mononuclear Cells injected in the United States 
conducted by the CCTRN [Cardiovascular Cell Therapy Research Network]; GF, growth factors; iC, intramyo cardial; iM, intra muscular; HeBe, Multicenter, randomized trial 
of intracoronary infusion of autologous mononuclear bone marrow cells or peripheral mononuclear blood cells after primary percutaneous coronary intervention (PCi); KDR, 
kinase insert domain receptor; L, late; LateTiMe, Use of Adult Autologous Stem Cells in Treating People 2 to 3 weeks after having a Heart Attack; LeUveN-AMi, LeUveN- 
Acute Myocardial infarction; MAGiC, Myoblast Autologous Grafting in ischemic Cardiomyopathy; MSCs, mesenchymal stem cells; MYSTAR, MYocardial STem cell Administration 
after acute myocardial infaRction; PCR, polymer chain reaction; POSeiDON, Comparison of Allogeneic versus Autologous Bone Marrow-Derived Mesenchymal Stem Cells 
Delivered by Trans-endocardial injection in Patients with ischemic Cardiomyopathy; PReCiSe, AdiPose-deRived stem and Regenerative Cells in the Treatment of Patients with 
non revaScularizable ischemic myocardium; ReGeNT, Myocardial ReGeNeraTion by intracoronary infusion of selected population of stem cells in acute myocardial infarction; 
RePAiR-AMi, Reinfusion of enriched Progenitor cells And infarct Remodeling in Acute Myocardial infarction; RCSCs, resident stem cells; SCiPiO, Stem Cell infusion in Patients 
with ischemic cardiOmyopathy; SeiSMiC, Safety and effects of implanted (Autologous) Skeletal Myoblasts (MyoCell) Using an injection Catheter; SMs, skeletal myoblasts; STAR-
heart, The acute and long-term effects of intracoronary Stem cell Transplantation in patients with chronic heARt failure; SwiSS-AMi, Swiss Multicenter intracoronary Stem cells 
Study in Acute Myocardial infarction; TiMe, Timing in Myocardial infarction evaluation; TOPCARe-AMi, Transplantation of Progenitor Cells and Regeneration enhancement in 
Acute Myocardial infarction; TOPCARe-CHD, Trans-Coronary Transplantation of Functionally Competent BMD Stem Cells; TOPCARe-DCM, Selective intracoronary Bone 
Marrow-Derived Progenitor Cell infusion in Patients with Non-ischemic Dilated Cardiomyopathy.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Stem Cells and Cloning: Advances and Applications 2015:8submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

90

Alrefai et al

placebo group. At the 2-year follow-up, cell-treated patients in 

this trial had had fewer myocardial ischemias and there were 

fewer patients who met the combined endpoint of death, MI, 

or need for revascularization. Although the results were not 

statistically significant, there was a trend toward sustained 

improvement in EF and LV end-systolic volume.81,82

Myocardial ReGeNeraTion by intracoronary  
infusion of selected population of stem cells  
in acute myocardial infarction (ReGeNT)
REGENT was a randomized, multicenter study targeting 

patients with acute STEMI within 12 hours of the symptoms, 

to assess the myocardial regeneration by intracoronary infu-

sion of selected populations of BMD stem cells. They used 

autologous BMD cells and divided them into three groups: 

selected CD34+ group (median number of cells 1.90×106), 

nonselected bone marrow cell group (median number of cells 

1.78×108), and placebo group. The treatment with BMD stem 

cells did not lead to a significant improvement in LVEF or LV 

volumes. However, there was a trend in favor of cell therapy in 

patients with the most severely impaired LVEF and prolonged 

periods between symptoms and revascularization.83

intervention within .7 days
MYocardial STem cell Administration after  
acute myocardial infaRction (MYSTAR)
The hypothesis relied on, is the injected stem cells homing 

which will be ideal 21 days after the incident of MI but not 

later than 42 days. They used autologous bone marrow stem 

cells by intracoronary and intramyocardial injections at two 

different timings. Patients were divided into four groups: 

early intracoronary nonselected BMD stem cells (between 21 

and 42 days), early combined intracoronary with intramyocar-

dial BMD stem cells, late (3 months) intracoronary injection, 

and late combined injections. The mean number of injected 

cells in the early group and late group was 1.56±0.40×109 

and 1.55±0.44×109, respectively. The results showed that the 

early and late delivery of cells induced mild, but not clinically 

relevant, improvements. There was a reduction in infarct size 

and an improvement in LVEF at both 3 months and 9 to 12 

months after acute myocardial ischemia. The main improve-

ments in the early and late groups were an estimated 3.5% and 

3.9%, respectively, improvement in LVEF, as well as a 3.5% 

and 3.4%, respectively, improvement in infarct size.84

Swiss Multicenter intracoronary Stem cells Study  
in Acute Myocardial infarction (SwiSS-AMi)
In this trial, BMD mononuclear stem cells were injected 

through the intracoronary route for patients who had STEMI, 

received a successful PCI intervention within 24 hours, and 

had an EF of less than 45%. They used an intracoronary 

injection of an estimated 153×106 and 139.5×106 of BMD 

stem cells in the early group (5–7 days) and in the late group 

(3–4 weeks), respectively. It showed that the infusion of BMD 

stem cells, either at 5–7 days or 3–4 weeks after acute MI 

did not improve LV function at 4 months.85

Use of Adult Autologous Stem Cells in Treating People 2 
to 3 weeks after having a Heart Attack (LateTiMe)
This trial evaluated the use of bone marrow mononuclear 

(BMD) stem cells with infusion at 2 to 3 weeks after acute 

anterior-wall MI versus placebo in patients with EF less than 

45% successfully treated with primary PCI. Single intracoro-

nary infusion of 150×106 of autologous BMD stem cells was 

injected within 12 hours of aspiration and cell preparation. 

The results showed no substantial improvement in LVEF 

measured after 6 months.86,87

CArdiosphere-Derived aUtologous Stem Cells  
to reverse ventricUlar dySfunction (CADUCeUS)
This was a randomized prospective trial targeting patients 

within 2–4 weeks of acute MI with an LVEF of 25%–45%. 

Cells were obtained from the right ventricular endocardium 

through biopsy. Patients received either a low dose (12.5×106) 

or a high dose (25×106) of cells versus a control group (which 

received no cells). The cells were introduced through the 

intracoronary route using an angioplasty catheter over a 

period of 15 minutes. This study was done to assess the safety 

of CDCs. There was a significant decrease in the scar size 

and increase in viable myocardium at 6 and 12 months in 

the treatment group compared with in the control group, but 

there was no significant difference between the two groups 

at 6 months in terms of EF improvement.88

Chronic heart failure
AdiPose-deRived stem and Regenerative Cells  
in the Treatment of Patients with non 
revaScularizable ischemic myocardium (PReCiSe)
PRECISE was a randomized clinical trial of AdSCs for 

patients with no revascularization option by either surgery 

or PCI. The autologous AdSCs were harvested by liposuction 

and the mean of the total number of cells used was 42×106 in 

the treatment group. This trial, which had an AdSCs group 

versus a placebo group, showed that harvesting and transen-

docardial injection of AdSCs are safe and feasible. Also, the 

treatment appeared to result in scar stabilization.89 However, 

data preceding this trial, by Perin et al, explored the transen-

docardial administration of BMD stem cells in patients with 
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ischemic cardiomyopathy and a mean LVEF of less than 

40%.90 There was no major improvement in LVEF at 6 or 

12 months in the treated group when  compared with control 

subjects. There was, however, a substantial improvement in 

exercise capacity, as well as ischemic burden, as measured 

by single-photon emission computed tomography (SPECT), 

found at 6 and 12 months.91

Transplantation of progenitor cells and recovery 
of left ventricular function in patients with chronic 
ischemic heart disease (TOPCARe-CHD)
This study targeted patients with an MI of more than 

3 months who were stable on medical therapy since the attack. 

Autologous BMD stem cells (mean number of 214±98×106) 

were injected through the intracoronary route. The study 

found that the treatment was associated with a reduction 

in natriuretic peptide serum levels (as natriuretic peptide 

serum levels are a solid marker for chronic heart failure) 

and improved the survival of patients with chronic heart 

failure post-MI.92

Percutaneous stem cell injection delivery effects on 
neomyogenesis: Comparison of Allogeneic versus 
Autologous Bone Marrow-Derived Mesenchymal 
Stem Cells Delivered by Trans-endocardial 
injection in Patients with ischemic Cardiomyopathy 
(POSeiDON)
This trial targeted patients with ischemic cardiomyopathy 

with EF of less than 50%. It compared autologous (extracted 

by bone marrow aspiration) and allogenic (extracted by bone 

marrow aspiration from healthy donors) MSCs. The research-

ers divided the population into three groups according to the 

number of infused cells: 20×106 for the first group, 100×106 

for the second group, and 200×106 for the third group. 

 Treatment was associated with lower rates of treatment-

emergent serious adverse effects, including immunologic 

reactions. MSC injection favorably affected patient quality 

of life, functional capacity, and ventricular remodeling.93

The acute and long-term effects of intracoronary 
Stem cell Transplantation in patients with chronic 
heARt failure (STAR-heart)
This study included a large group of patients with chronic 

ischemic heart failure within a time interval of 8.5±3.2 years 

between the infarct intervention and the admission to the 

clinical care. The study evaluated autologous BMD stem 

cells in patients with an LVEF of 35% or less and a remote 

history of MI. During this unblinded study, patients who 

refused cell therapy served as controls. The BMD stem 

cells were delivered into the infarct-related coronary artery 

through the intracoronary route and the estimated number 

of injected cells was 6.6±3.3×107. At 3 months, the treated 

group had had substantial improvements in cardiac index 

and calculated LVEF with an increase of almost 7%. There 

was also a drop in New York Heart Association class and in 

both end-systolic (≈15 mL) and end-diastolic (≈10 mL) ven-

tricular volumes. These improvements persisted at 12 and 60 

months after treatment, while no changes were noted in the 

control group. Also, the mortality rate of the treated group 

was remarkably lower than that of the control group (0.75% 

vs 3.68% per year). This trial provided the first long-term 

evidence that cell therapy can considerably affect mortality 

in heart failure patients.94

Stem Cell infusion in Patients with  
ischemic cardiOmyopathy (SCiPiO)
SCIPIO was the first randomized, open-label, Phase I clini-

cal trial in humans to evaluate autologous c–/kit+ RCSCs in 

patients with ischemic heart failure (LVEF equal to or less 

than 40%) at an average of 3.7 years post-MI. RCSCs were 

harvested from the right atrial appendage during CABG in 

33 patients (20 RCSC-treated vs 13 control subjects), with 

1×106 cells injected per patient. The RCSC-treated patients 

received an intracoronary infusion of cells at a mean of 

113 days after CABG. In the treated group, cardiac magnetic 

resonance imaging showed an increase in LVEF at 4 months 

(from 27.5%±1.6% to 35.1%±2.4% [P=0.004, n=8]) and 

at 12 months (41.2%±4.5% [P=0.013, n=5]). Infarct size, 

measured as late gadolinium enhancement by perfusion 

magnetic resonance imaging, decreased by −9.8±3.5 g after 

RCSCs infusion at 12 months in six patients who completed 

1-year follow-up. In the treated group, the LV infarcted mass 

decreased by −14.7±3.9 g and LV non-infarcted mass increased 

by +31.5±11.0 g at 12 months’ follow-up. The study concluded 

that the improvements in LVEF, decrease in infarcted LV mass, 

and increase in non-infarcted LV mass seen at 4 months and 

persisting for up to 12 months in a subgroup of patients were 

consistent with cardiac regeneration.27

Chronic nonischemic heart failure
Transplantation of progenitor cells and recovery of 
left ventricular function in patients with nonischemic 
dilatative cardiomyopathy (TOPCARe-DCM)
This trial targeted patients who had nonischemic dilated 

cardiomyopathy with an EF of less than 40% and LV end-

diastolic diameter of more than 60 mm who were stable for 

at least 6 months of medical therapy. The patients received 

autologous an estimated 259±135×106 of BMD stem cells. The 
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researchers used intracoronary infusion by PCI. The results 

of this trial were correlated with improvements in cardiac 

contractility and intracoronary circulation flow in patients with 

dilated cardiomyopathy, as well as a significant improvement 

in natriuretic peptide serum levels, although the latter was 

noticed after the 1-year follow-up but not before.95

Cardiac tissue engineering
Cardiac muscles, present in the pericardium, heart walls, and 

valves, form a dense network of striated and cross-linked 

cells. The muscle contains sarcomeres with sliding filaments 

of actin and myosin. The electrical and mechanical gap junc-

tions permit the heart to contract and relax in a coordinated 

fashion and conduct these impulses throughout the heart 

walls through the arteries and ventricles.96

The major diseases originating from cardiac muscles include 

MI, arrhythmias, ventricular dilatation, valvular diseases, and 

heart failure. It has been reported that the lack of donor organs, 

scar tissue formation, calcification of grafts, degradation, and 

inflammation of the affected tissue microenvironment are the 

most common problems associated with cardiac diseases. 

To overcome these hurdles, cardiac tissue engineering aims 

at assembling tissue constructs that can restore basic cardiac 

function by incorporating cellular components within scaf-

folds which in turn provide a framework of optimal structural, 

mechanical, and electrophysiological properties.97,98

Initially, cellular therapy involved the injection of “naked” 

cells into the site of injury, and although this technique has 

shown some promise in experiments,80,90 low cellular reten-

tion and engraftment rate limits its potential use for complete 

restoration of cardiac function.18,99,100

Recently, much emphasis has been placed on tissue 

engineering methods that mimic the biological and biome-

chanical components of the native myocardial tissue and 
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Figure 3 Biomimetic scaffolds
Notes: (A) Synthesis of biomatrix: fibroblasts isolated from samples of adult human heart were cultured in confluent state allowing for extracellular matrix (ECM) deposition 
in vitro. Representative image obtained by immunofluorescent labeling of actin filaments (red), cell nuclei (blue), and fibronectin (green). (B) Decellularization of biomatrix: 
after nonenzymatic removal of fibroblasts, ECM was observed under fluorescence microscope. Its composition was revealed by indirect immunofluorescent staining of 
representative ECM proteins: collagen IV (red), laminin (green), fibronectin (blue), and tenascin-C (yellow). (C) immunoblotting of the decellularized biomatrix further 
confirmed the presence of these ECM-specific components in the biomatrix. Adapted from: Clotilde Castaldo, Franca Di Meglio, Rita Miraglia, et al., “Cardiac Fibroblast-
Derived extracellular Matrix (Biomatrix) as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart,” BioMed 
Research International, vol. 2013, Article iD 352370, 7 pages, 2013. doi:10.1155/2013/352370.210 (D) Decellularization of embryonic cardiac tissue and recellularization with 
e16.5 ventricular cells. The constructs create a favorable microenvironment for the cells to integrate and migrate on the scaffold. Macroscopic appearance of the supporting 
matrix changed from translucent to opaque following cell inclusion into the construct. This was further confirmed by hematoxylin and eosin (H&E) and toluidine blue staining 
of the reseeded scaffolds, revealing a highly cellular environment on the host matrix. Collagen structures also became more physically compact after incubation of the scaffold 
with the cells, as shown by electron microscopy (EM). Adapted from Cree Chamberland, Almudena Martinez-Fernandez, Rosanna Beraldi, and Timothy J. Nelson, “Embryonic 
Decellularized Cardiac Scaffold Supports embryonic Stem Cell Differentiation to Produce Beating Cardiac Tissue,” ISRN Stem Cells, vol. 2014, Article iD 625164, 10 pages, 
2014. doi:10.1155/2014/625164.211

Abbreviations: Bm-N, biomatrix from patient with a normal heart; Bm-P, biomatrix from patients with heart failure; dpc, day post conception.
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maintain transplanted cell function and survival. The three 

most common methods being investigated in this regard are 

biomimetic scaffolds, decellularized tissue scaffolds, and 

scaffold-free constructs.

Biomimetic scaffolds
Biomimetic scaffolds are made of either natural or synthetic 

polymers or a hybrid natural/synthetic copolymer. Natural 

polymers (as seen in Figure 3A), such as collagen,4,101 

fibrin,102 alginate,103 Matrigel®,104 chitosan,105 and hyaluronic 

acid106 are biodegradable protein and polysaccharide mol-

ecules with a similar structure to the native component of 

the tissue extracellular matrix (ECM), making them more 

biocompatible and less immunogenic than synthetic poly-

mers with a higher capacity for cell adhesion and influence 

on various cellular functions.106 The disadvantage of using 

natural polymer-based scaffolds is their limited mechanical 

and biodegradable properties that are not easily tailored.

On the other hand, synthetic polymers used for cardiac 

tissue engineering, such as polyethylene glycol, polyhydroxy-

ethylmethacrylate, polylactide-glycolic acid, and poly(N-

isopropylacrylamide), are easily tailored with predictable 

mechanical and chemical properties, but they may elicit an 

inflammatory response that might affect cell survival.106–109

In general, biomimetic scaffolds should be non-immu-

nogenic and mechanically stable, mimic cardiac tissue 

flexibility, allow physiological electrical propagation, allow 

sufficient oxygen and nutrient delivery to cells, and have 

a degradation rate appropriate to the rate of native ECM 

replacement.97,110

Biomimetic scaffolds are used alone, as acellular scaf-

folds, or in combination with cells.111–114 Preparation and 

delivery can be further divided into either in vitro culture 

with cells to produce 3D engineered cardiac tissues115–117 

or in vivo injection either directly in situ or with minimally 

invasive through catheter-based systems.103,118

The pathological process that leads to heart failure post-MI 

includes an initial inflammatory response, loss of cardiomyo-

cytes, and loss of the ECM, which leads to scar formation and 

ventricular wall thinning.110,119,120 Injecting acellular biomimetic 

scaffolds at the site of MI, with or without bioactive molecules, 

provides structural mechanical support,121,122 decreases the 

amount of fibrosis and ventricular dilation, and promotes 

angiogenesis and the recruitment of native stem cells.101

Scaffolds combined with cells form environmental substrates 

to replace the ECM and enhances the retention and survival of 

the transplanted cells, with one study reporting the increased 

early survival and retention of cardiomyoblasts in collagen 

scaffolds transplanted into rats in which MI was induced com-

pared with cardiomyoblasts in saline suspension.123

Selection of the cell type, scaffold material, and incor-

poration of bioactive molecules and bioreactors should be 

considered in constructing the optimal biomimetic scaffolds 

for treating cardiac diseases. “Bioreactors” are defined as 

specialized chambers designed to culture tissue-engineered 

constructs under controlled conditions.124,125 They have been 

developed to provide electrical and/or mechanical stimulation 

during tissue culture in order to promote uniform cellular 

distribution inside scaffolds, support the structure forma-

tion of 3D scaffold constructs, provide adequate oxygen and 

nutrient supply during culture, and help induce structural and 

functional cell maturation.126–128

For instance, it was found that electrical stimulation 

of neonatal rat myocyte in a collagen scaffold enhanced 

the conductive and contractile properties of the construct, 

increased cell alignment, and caused phenotypic changes 

resembling more mature myocytes compared with the non-

stimulated scaffold.129

Recent advancements in nanomaterial science have fur-

ther increased the efficiency of scaffolds. Davis et al used 

self-assembling peptides that rapidly form nanofibers and 

form a 3D scaffold at physiological pH and osmolarity.130 

After injecting these peptides and the formation of the scaf-

fold onto the free LV wall of adult male mice, the scaffold 

promoted the recruitment of endogenous endothelial and 

SMCs, and when compared with Matrigel scaffolds, fewer 

ECs were seen and they were localized around the edges. 

Furthermore, injecting neonatal mice cardiomyocytes with 

these self-assembling peptides resulted in the survival of 

these cells and the recruitment of endogenous cells that 

stained positively for myocyte progenitor markers.130

Also utilizing nanomaterial technology, Dvir et al incor-

porated gold nanowire within an alginate scaffold seeded with 

neonatal rat cardiomyocytes, which improved both electrical 

communication between cardiac cells and tissue formation, 

producing thicker tissue and better-aligned cells than cells 

in alginate scaffolds without the nanowires.131

Recently, there has been an interest in engineering 

cell-based cardiac pumps and tissue-engineered ventricles. 

Although technically challenging, such models can provide 

a potential concept for engineering a biological LV assist 

device or a biological drug pumping system. Furthermore, 

creating a hollow cardiac organoid structure can provide a 

flexible platform that can be adapted for the long-term study 

of cardiac pump function in vitro. Khait and Birla fabricated 

a cardiac pump prototype by surrounding a tubular graft with 
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a monolayer of cardiomyocytes with the resulting generation 

of intraluminal pressure,125 while Lee et al fabricated a cardiac 

organoid chamber using neonatal rat myocytes seeded in a 

collagen/Matrigel matrix then casted on a mold with a bal-

loon catheter to control chamber size. Spontaneous beating 

was observed after 7–10 days of culture and in a cryo-injury 

model of MI led to diminished global chamber pressure and 

decreased intrinsic pulse rate.132

Decellularization to build a new  
heart for transplantation
Whole-organ engineering is a promising field for the future 

of heart failure treatment.133 Since donor organs for trans-

plantation are a limited resource, creating replacement organs 

from cadaveric allogeneic or xenogeneic sources could reduce 

the need for living donors. Tissue engineering also avoids 

problems with synthetic materials or mechanical devices for 

heart failure, which are subject to foreign-body reactions and 

hardware or software malfunction. The shape and structure 

of biologic scaffolds are also superior to those of synthetic 

matrices, and their complexity is not reproducible.

Thus the use of decellularized matrices has the potential 

to overcome the need to artificially recreate the conditions for 

ECM deposition.134–138 Tissues used to prepare these biologic 

scaffolds are typically autogenic, allogeneic, or xenogeneic 

in origin.139 Thus the decellularization technique (as seen in 

Figure 3) is very crucial to the success of the treatment.

From a tissue engineering perspective, the major objec-

tives of decellularization are therefore to retain the structural 

integrity, composition and biological activity of the scaffold 

while completely removing the cellular and nuclear materials 

to eradicate any chance of unwanted immunological responses 

and other adverse side effects due to cross-presentation.140,141 

If performed properly, the decellularization technique can 

be applied not only to tissues, but also to entire organs.142 

Commonly used decellularized scaffolds in cardiac applica-

tions include adipose tissue, cartilages, and heart tissues of 

allogeneic, autologous,143–145 as well as xenogeneic origin.135,146 

Studies show rapid repopulation with cardiomyocytes in 

natural matrix obtained from porcine tissues.147–150

The optimum method of decellularization remains 

variable, as it depends on the specific requirements of the 

application, such as high density, high pressure, and stiff-

ness, which play vital roles in determining the method for 

decellularization.11,151 Chemical, enzymatic, microwave 

radiation,152 mechanical, and physical separations are 

the different methods used so far. Studies on the com-

parison of different techniques have been reported in the 

literature.153,154 It is known that a combination of physical, 

chemical, and enzymatic methods yields better results in 

the decellularization of both the whole organ and small 

tissues in cardiac applications.155,156 What is required for 

decellularization and recellularization is an organ to serve 

as a scaffold; a detergent, osmolar solution, or enzymatic 

solution to remove native cellular material; a choice of 

stem cells for repopulation; and a culture environment, 

or bioreactor, to promote new cell adhesion, growth, and 

integration.

Creating a clear scaffold for the reintroduction of stem 

cells is performed by coronary perfusion of a decellularizing 

agent. The choice of agent affects the level of antigenicity 

of the remaining tissue and its tensile strength, and an ideal 

decellularization process would remove antigenic material 

and preserve structural integrity.157 Detergents, organic 

 solvents, and enzyme solutions that solubilize cell mem-

branes can weaken the ECM. More vigorous agents, includ-

ing ionic detergents such as sodium dodecyl sulfate (SDS) 

or enzymatic digestion with trypsin, are effective at remov-

ing antigens but can cause degradation of collagen.158,159 

A  gentler decellularization technique uses hypotonic saline 

to osmotically eliminate cells, but this can leave behind some 

antigenic material.160

SDS was used to decellularize a ventricular porcine myo-

cardium, processed into hemocompatible and biocompatible 

hydrogels, and then injected into a porcine model with MI.161 

A reduction in fibrosis, lack of thrombogenicity, and growth 

of cardiac muscles were observed. This was the first time that 

such percutaneous delivery of ECM using a transendocardial 

approach was carried out.162 Recent decellularization with 

SDS perfusion has been found successful in small animal 

organs and whole organs.155 With these promising results, 

such porcine heart models are being gradually translated to 

clinical applications.142,163

The choice of allogeneic or xenogeneic organ for decellular-

ization can be difficult. Allogeneic hearts are size-appropriate 

and most structurally compatible for implantation. They are a 

limited resource and have human antigens, which can be rec-

ognized readily by immune defenses, and can transmit disease 

within the same species. Meanwhile, xenogeneic hearts have 

lesser degrees of anatomical fit but are an abundant resource 

and cause less inter-species disease transmission. Porcine 

hearts in particular are favored for a xenogeneic scaffold.164 

Glutaraldehyde can be used to prevent acute immune rejec-

tion of the xenogeneic graft by cross-linking proteins, making 

them unrecognizable to host immune defenses, but delayed 

rejection is still possible.165
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Ott et al pioneered the first bioengineered heart from 

decellularized organ matrix recellularized with stem cell 

infusion in 2008. The cellular components of rat hearts were 

dissolved in detergent solution, leaving an intact collagen 

skeleton. The hearts were injected with cardiac and vascular 

progenitor cells while supported in an organic reactor that 

simulated the preload and afterload of cardiac physiology. 

The result after 8 days of incubation was the detection of 

macroscopic contractions and overall pump strength equiva-

lent to 2% of the adult heart or 25% of the function of a 

16-week fetal heart.4

For larger models, porcine hearts have been decellular-

ized for re-injection with cells121,142,163 and a human heart 

has been tested as a scaffold for repopulation with human 

mesenchymal cells and murine cardiomyocytes.166

Decellularized injectable scaffolds and solubilized peri-

cardial gels are currently the two areas of research in which 

decellularization techniques have been found extremely 

helpful.134,167–172 Some of the other works include blends 

of natural and synthetic matrices to take advantage of both 

components.173 However, the technology of decellularization 

is still in its initial stage of development.

The future of this therapy will depend on achieving the 

correct combination of support structure and stem cells. One 

goal will be to provide a non-antigenic scaffold that will 

give durable, long-term support. Another will be to identify 

the mixture of cell lines that can provide contractility for 

adequate cardiac output and vascularity to sustain cardiac 

perfusion.

The major issue is the translation of basic research into 

clinical human use. Apart from its initial success, there have 

been reports of drawbacks with this method due to aging, 

incomplete decellularization,174 toxic effects, changes in bio-

chemical properties,137 and changes in the cell’s pathological 

immunogenicity.175–178 For instance, there has been a failure 

of clinically approved, tissue-engineered, decellularized 

porcine heart valves in pediatric patients; this was attributed 

to calcific depositions and incomplete decellularization of 

the implant.174

Scaffold-free constructs
Recent advancement in utilizing scaffolds as a substitute for 

the damaged ECM and supporting the viability and survival 

of cells used for cardiac tissue engineering is promising. 

However, the low cellular concentration inside the scaffold 

compared with the dense myocardial tissue of the native 

heart combined with the inflammatory reaction and fibrous 

tissue formation caused by scaffold degradation led to the 

consideration of building tissue engineering constructs with-

out the use of scaffolds.

Shimizu et al developed a cell sheet engineering tech-

nique to construct scaffold-free 3D cardiac tissue. Using a 

temperature-responsive culture surface, they were able to 

detach two-dimensional (2D) myocardial layers as an intact 

confluent sheets and stack them to produce a 3D cardiac 

construct.173

Cell sheets are obtained by using specialized cell-culture 

surfaces that are covalently grafted with the temperature-

responsive polymer poly(N-isopropylacrylamide).180 The 

surface is hydrophobic and allows attachment of cells when 

the temperature is 37°C; when the temperature is lowered 

to 32°C, the surface becomes hydrophilic and causes the 

detachment of the cultured cells as an intact layer without 

disrupting the deposited ECM or the cell-to-cell junction pro-

teins,181 both of which usually happen when using traditional 

enzymatic degradation substances such as trypsin.

When these 2D monolayers are stacked, they can rapidly 

attach and form cell-to-cell connections due to the presence 

of the intact deposited ECM. Shimizu et al also demonstrated 

that stacking monolayers of neonatal rat cardiomyocytes 

results in a spontaneously pulsating tissue with rapid elec-

trical coupling between the layers, which was supported by 

the observation of the rapid formation of functional gap 

junctions.182

Miyahara et al used this technique to generate a mono-

layer of adipose tissue-derived MSCs. Four weeks after induc-

ing MI in rats, they transplanted the 2D monolayer onto the 

scared myocardium. After transplantation, the sheet induced 

angiogenesis and grew to a thick striatum that included a few 

myocytes and prevented the progression of ventricular wall 

dilation and improved cardiac function.183

Similarly, Miyagawa et al transplanted 3D sheets of 

stacked monolayers of neonatal rat cardiomyocytes 2 weeks 

after inducing MI in rats. The 3D sheets became attached 

to the native myocardium, expressed connexin-43, showed 

angiogenesis and improved overall cardiac function.184

However, trying to apply such a method clinically is 

still challenging. The thickness limit for these 3D sheets 

was 80 µm, or three layers, as reported by Shimizu et al;182 

stacking more than three layers at once resulted in core tissue 

necrosis.185 Several methods have been proposed to increase 

the vascularity and thickness of these sheets. Coculture with 

ECs and treatment with VEGF and in vitro vascularization 

bioreactors, allowing for a multi-step stacking of three-layer 

sheets, are examples of methods proposed to increase 3D 

sheet thickness.186
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Conclusion
Stem cell therapy is likely to be a fundamental treatment 

strategy in the not-too-distant future. Traditional medical and 

surgical therapies have reached a point of maximal clinical 

utility and new strategies are required to treat the large popula-

tion of patients with acute or chronic heart failure worldwide. 

Encouragingly, animal models have shown that stem cell 

therapy is safe and effective. As for the human clinical tri-

als, many have demonstrated the safety and feasibility of the 

therapy; others have shown no significant effect, but, on the 

other hand, the majority of those trials have shown a trend 

of positive effect, whether on EF or on scar regression. What 

is needed now is further clinical testing and refinement to 

achieve better, more reliable, and more reproducible benefits. 

Larger randomized controlled trials could demonstrate the 

utility of stem cell therapy and comparison of studies could 

help identify the cell lineages that are the most effective, 

whether alone or in combination. With continued support, the 

proposed paracrine effects of implanted stem cells on resi-

dent stem cells could also be elucidated. Possible stem cells 

signaling factors therapy alone can potentially be employed, 

removing the time and burden of autologous stem cell harvest, 

or the antigenicity and rejection of allogeneic implantation. 

The need for the treatment of ischemic and nonischemic heart 

failure is highly demanded. Therefore, ongoing advancement 

in this new frontier is expected to continue. More organized 

infrastructure and collaborative research efforts, guided by 

evidence-based information, and adequate funding are needed 

to meet the important challenges ahead. However, the holy 

grail of tissue engineering and regenerative medicine seems 

to progressively take shape and hold tremendous promise to 

benefit humankind and treat presently incurable diseases.
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