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Abstract: Dendritic spines are actin-rich structures that form the postsynaptic terminals of 

excitatory synapses in the brain. The development and plasticity of spines are essential for 

cognitive processes, such as learning and memory, and defects in their density, morphology, and 

size underlie a number of neurological disorders. In this review, we discuss the contribution 

and regulation of the actin cytoskeleton in spine formation and plasticity as well as learning 

and memory. We also highlight the role of key receptors and intracellular signaling pathways in 

modulating the development and morphology of spines and cognitive function. Moreover, we 

provide insight into spine/synapse defects associated with several neurological disorders and 

the molecular mechanisms that underlie these spine defects.
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Structure and function of dendritic spines
Santiago Ramón y Cajal first described dendritic spines, using Golgi staining, near 

the end of the 19th century and proposed that these spines were sites of axonal and 

dendritic contact.1,2 Decades later, with the advent of electron microscopy, these spines 

were indeed shown to be sites of excitatory synaptic contact between neurons, prov-

ing that Cajal’s hypothesis was correct.3,4 These and subsequent studies highlight the 

importance of dendritic spines and pose interesting questions as to the specific func-

tions of these structures.5,6 Dendritic spines most likely have functions other than to 

simply connect axons and dendrites. This is supported by the observation that many 

inhibitory synaptic inputs occur on dendritic shafts in the absence of spines; however, 

it should be noted that recent data indicate that some inhibitory neurons have func-

tional spines, and inhibitory synaptic inputs can occur on spines of cortical pyramidal 

neurons.7–10 A widely held theory is that spines serve as biochemical compartments 

in the cell.5,11 The unique morphology of spines, which consists of an enlarged head 

and a thin neck, makes them ideal structures to function as postsynaptic biochemical 

compartments that separate synaptic terminals from dendritic shafts.11,12 In addition, 

spines could serve as electrical compartments, which can maintain membrane poten-

tials that are distinct from those of the parent dendrites.13–15 The electrical isolation 

of individual spines might provide a mechanism to allow neurons to integrate and 

independently regulate the strength of a large number of synaptic inputs.14 Moreover, 

the compartmentalization of spines most likely contributes significantly to the effi-

ciency of synaptic transmission and plasticity.15–17 Intriguingly, the spine neck width 

is reported to be an important factor in regulating compartmentalization.16 Other roles 
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for dendritic spines have been proposed,6,17,18 and the specific 

functions of spines are an active area of interest and debate 

that warrants continued research.

The functions of dendritic spines are governed, at least in 

part, by their morphology. They range in morphology from 

filopodia-like protrusions, which are thought to be spine 

precursors, to more mature stubby, thin, or mushroom-shaped 

structures.19 Stubby spines do not have a neck whereas thin 

and mushroom-shaped spines consist of long necks that are 

connected to small and large bulbous heads, respectively; 

filopodia-like protrusions are extensions from the dendrite 

that lack a bulbous head. Spine morphology is malleable, and 

their shape can change over time, even on a time scale of min-

utes or less20–22 (Figure 1). In the case of dendritic filopodia, 

the dynamic, exploratory nature of these structures could be 

beneficial in forming connections with axons.23 After an initial 

interaction between dendritic filopodia and axons, synapses 

can assemble on a relatively rapid time scale (hours).24,25 For 

most mammals, spine and synapse formation is widespread 

during early postnatal development and is followed by a 

pruning phase during adolescence that eliminates unneces-

sary or improper synaptic connections.26,27 In adults, dendritic 

spine formation and elimination are at an equilibrium with 

a fraction of spines being consistently added or removed.26 

 Morphological changes, which are usually  activity-dependent, 

also occur in more mature spines and are associated with 

synaptic plasticity.28 Synaptic plasticity, which entails the 

strengthening or weakening of synapses over time as well 

as synapse formation and elimination  (structural plasticity), 

is widely believed to be the cellular basis of learning and 

memory.28–30 In vivo imaging in the cerebral cortex of mice 

has shown that spine dynamics/remodeling is associated 

with different forms of learning.30–33 Synaptic plasticity is 

also thought to be necessary for the encoding and storage of 

memory.34 The foundation of this theory dates back to Donald 

Hebb, who postulated a link between alterations in synaptic 

activity and memory storage.35

Experimental attempts to model Hebb’s theory led to 

the discovery of long-term potentiation (LTP), which typi-

cally uses high frequency stimulation to increase synaptic 

transmission.28 In order to encode information efficiently, 

an increase in synaptic strength must be counterbalanced 

by a weakening of synapses by a process termed long-term 

depression (LTD). LTD can be provoked experimentally with 

low frequency stimulation, causing a prolonged decrease in 

synaptic transmission.29,36 These experimental models, LTP 

and LTD, have been invaluable in generating a wealth of data 

showing the essential function that synaptic plasticity has in 

learning and memory. Another line of evidence that supports 

this link is the well-documented association between abnor-

malities in dendritic spine/synapse formation and plasticity 

and numerous neurological disorders, including autism, 

Alzheimer’s disease (AD), schizophrenia, and intellectual 

disability.37,38

This review focuses on the function and regulation of 

dendritic spines and excitatory synapses, and their role in 

human health and disease. We discuss the molecular mecha-

nisms modulating dendritic spine development, morphology, 

and function, as well as the defects associated with these 

structures in certain neurological disorders.

Actin regulation in dendritic spine 
development and plasticity
Actin is the major cytoskeletal element in dendritic spines 

where filamentous actin (F-actin), which results from the 

polymerization of monomeric actin (G-actin), is found at 

high concentrations. F-actin within spine heads is organized 

into a branched network that is highly dynamic and regulated 

by neuronal activity.39–41 Fluorescence recovery after photo-

bleaching experiments with green fluorescent protein-tagged 

β-actin showed that 85% of the actin turned over in less than 

1 minute, and LTD stabilized a significant portion of the 

dynamic actin.39 Super-resolution imaging of spines also 

showed fast actin turnover (ie, on a time scale of seconds to 

minutes) and suggested that the F-actin network comprises 

Figure 1 Dendritic spines are dynamic structures. A three-color temporal overlap 
of a hippocampal neuron expressing green fluorescent protein-tagged β-actin.
Notes: in general, green and magenta indicate dynamic spines whereas white 
depicts more stable spines.
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mostly short filaments that undergo both retrograde and 

anterograde actin flow.40 Actin turnover does, however, vary 

within regions of spines; spine tips have a higher turnover 

rate than at the base where actin seems to be more stable.42 

A dynamic actin cytoskeleton is critical for the morphologi-

cal malleability of spines, which underlies the formation and 

plasticity of these structures. Microtubules are also found in 

at least a subset of spines where they modulate spine mor-

phology and maturation, most likely through their interplay 

with the actin cytoskeleton.43 However, a detailed discussion 

of the role of microtubules in regulating dendritic spine func-

tion is beyond the scope of this review.

Actin remodeling is regulated by the Rho family of 

small GTPases that includes Rho, Rac, and Cdc42. These 

small GTPases are molecular switches that exist in an 

active (guanosine-5′-triphosphate-bound) and an inactive 

(guanosine-5′-diphosphate-bound) state. The cycling of the 

GTPases between the active and inactive states is regulated by 

three types of proteins, ie, guanine nucleotide exchange fac-

tors (GEFs), GTPase activating proteins (GAPs), and guanine 

dissociation inhibitors. GEFs promote the exchange of GDP 

for GTP, activating the GTPase; GAPs increase intrinsic GTP 

hydrolysis, returning these proteins to an inactive state; and 

guanine dissociation inhibitors form soluble complexes with 

the GTPases and sequester them in an inactive state.44

Rac and Cdc42 induce dendritic spine formation, whereas 

Rho promotes the retraction and loss of spines.45–47 Rac can 

promote spine formation through its downstream effector, 

p21-activated kinase (PAK).48 Cdc42 stimulates spinogenesis 

and enlargement of spine heads via activation of the actin-

binding protein neural Wiskott-Aldrich syndrome protein 

(N-WASP) and the Arp2/3 complex, which localizes to the 

postsynaptic density (PSD) and mediates the formation of 

branched actin filaments.46,49 Moreover, loss of Cdc42 in mice 

results in deficits in synaptic plasticity and remote memory 

recall.50 Rho family GEFs and GAPs also have important 

roles in spine development and function. Mice lacking the 

Rac GEF karilin-7 exhibit defects in cortical spine density 

and in working memory.51 The Rac GEF Tiam1 is required for 

dendritic spine formation, and knockdown of Tiam1 causes 

a decrease in spine and synapse density.52,53 β-PIX, another 

GEF, regulates spine formation through activation of Rac and 

subsequently PAK.48 GEF-H1, a Rho family GEF, inhibits 

spine formation and negatively regulates spine length through 

a Rho pathway.54 Rho family GAPs also contribute to the 

development of dendritic spines and synapses. Expression 

of the Rac GAP α1-chimaerin leads to a loss of spines by 

inhibiting new spine formation and by mediating the pruning 

of existing spines.55,56 Oligophrenin-1, a Rho-GAP, regulates 

the maturation and plasticity of excitatory synapses by inhib-

iting Rho activity.57 Furthermore, p190 RhoGAP modulates 

spine morphogenesis by regulating Rho GTPase activity.58 

The function of guanine dissociation inhibitors in regulating 

spine development and plasticity is currently unknown and 

represents an exciting avenue for future investigation.

Contribution of ABPs to dendritic 
spine formation and plasticity
Actin binding proteins (ABPs) also play a large role in modu-

lating actin dynamics. Therefore, a number of ABPs, which 

can localize to the PSD, are known to regulate spine/synapse 

formation and plasticity via their ability to modulate actin. 

As already discussed, N-WASP, which promotes polymer-

ization of branched actin filaments through activation of the 

Arp2/3 complex, induces spine formation and enlargements 

of spine heads.46 Knockout of ArpC3, a subunit of the Arp2/3 

complex, in forebrain excitatory neurons in mice led to a 

loss of spines and defects in synaptic plasticity and episodic 

memory.59 WAVE1, another WASP family member and an 

effector of Rac, regulates spine morphology and density as 

well as synaptic plasticity, and loss of this protein results in 

deficits in learning and memory.60,61 Knockdown of cortactin, 

which also activates the Arp2/3 complex, similarly led to 

alterations in spine number and morphology.62 Formins are 

another class of actin nucleators that are implicated in spine 

regulation. Formins can be activated by Rho GTPases, but 

unlike the Arp2/3 complex, formins produce unbranched 

actin filaments.63,64 One study demonstrated that mammalian 

diaphanous-related formin 2 promotes filopodia formation;65 

however, future studies are needed to further explore the role 

of formins in spine formation and plasticity. Proteins contain-

ing WASP homology 2 actin binding domains are a third class 

of actin nucleators that were most recently identified.66 Mice 

lacking Spir-1, the founding member of the WASP homol-

ogy 2 protein family, have reduced spine density on cortical 

neurons and exhibit increased fear memory.67

Actin remodeling is mediated by other proteins, such 

as profilin, cofilin, and gelsolin. Profilin promotes actin 

polymerization by acting as a nucleotide exchange fac-

tor, catalyzing ADP to ATP exchange on G-actin, and by 

binding G-actin and increasing its incorporation into actin 

filaments.68,69 Profilin II, a brain-enriched isoform, is associ-

ated with stabilization of spine morphology, and blockade 

of profilin targeting to spines leads to destabilization of 

spine structure.70  Interestingly, fear conditioning in rats 

resulted in profilin redistribution into spines in the lateral 
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amygdala, which corresponded with an increase in the size 

of their postsynaptic densities.71 Mice deficient in profilin II 

unexpectedly do not have defects in LTP/LTD or learning 

and memory; however, the number of perforated synapses 

is increased in the striatum of these mice when compared 

with wild-type controls.72 Moreover, conditional knockout 

of profilin I in the mouse forebrain did not result in signifi-

cant defects in excitatory synaptic transmission or in spine 

density or morphology.73 Because profilin I and II could have 

overlapping functions, a double knockout will be necessary to 

decipher the functions of profilin in regulating spine/synapse 

development and plasticity. Cofilin, which localizes to the 

PSD,74 is another key regulator of actin dynamics that binds to 

and severs actin filaments.75 Cofilin-mediated actin turnover 

is important for controlling spine length and morphology.65 

Furthermore, suppression of cofilin activity is important for 

the stabilization of mature spines.76 Cofilin localization and 

activity in spines is modulated by synaptic plasticity.77,78 In 

addition, cofilin-mediated actin turnover regulates the size of 

spine heads during LTP and LTD, and loss of cofilin impairs 

synaptic plasticity and associative learning.77,79–81 The activity 

of gelsolin, which also severs actin filaments, is important 

for regulating actin turnover during LTD.39

Neurabins and developmentally regulated brain pro-

tein (drebrin) are additional ABPs that contribute to spine 

development and plasticity. Two neurabins have been iden-

tified to date, ie, neurabin I (NrbI) and neurabin II (NrbII), 

which is also called spinophilin. NrbI is only expressed in 

the brain whereas NrbII is expressed in a variety of mam-

malian tissues, including the brain.82,83 NrbI regulates den-

dritic filopodia length, spine formation and maturation, and 

synaptic plasticity.84–86 Mice deficient in NrbI have defects 

in contextual fear memory and LTP, but not in LTD, and 

display an increase in synaptic transmission.87,88 In contrast, 

NrbII-deficient mice have defects in LTD, but not LTP.87,89 

These mice also exhibit a transient increase in spine density 

during development, resistance to kainate-induced seizures, 

and an impairment in conditioned taste aversion learning.89,90 

Drebrin is an F-actin binding protein, the expression of 

which changes from an embryonic (E) isoform to an adult 

(A) isoform via an alternative splicing mechanism dur-

ing postnatal development.91 Drebrin A is highly enriched 

within dendritic spines in the adult brain where it regulates 

synaptic transmission.92 Drebrin is also an important regu-

lator of spine morphology and development.91,93,94 Drebrin 

modulates actin dynamics by influencing the interaction of 

other ABPs, such as cofilin and α-actinin, with actin and by 

impeding actin-myosin interactions.95–97 Indeed, controlling 

the balance between drebrin and cofilin is proposed to be 

essential for regulating actin dynamics in spines.98 Other 

ABPs and regulators also play important roles in dendritic 

spine development and plasticity, and we refer the reader to 

other reviews to gain additional insight into their function in 

spine formation and plasticity.99–101

Key receptors and intracellular 
signaling pathways that modulate 
dendritic spine morphology  
and development
Glutamate receptors are key regulators of excitatory syn-

aptic transmission and synaptic plasticity in the brain and 

have critical functions in learning and memory.102 Most 

excitatory synaptic transmission is mediated by two types of 

ionotropic glutamate receptors, ie, the N-methyl-D-aspartate 

receptor (NMDAR) and the α-amino-3-hydroxy-5-methyl-4-

isoxazole propionic acid receptor (AMPAR). Activation of the 

NMDAR leads to activation of downstream effectors, such as 

calcium-calmodulin-dependent protein kinase II (CaMKII), 

reorganization of the actin cytoskeleton, and phosphorylation 

and insertion of AMPARs into the plasma membrane.103–105 

AMPAR membrane insertion and removal as well as AMPAR 

trafficking are regulated by the actin cytoskeleton via myosin 

motors and ABPs, such as cofilin and PICK1, indicating 

the important role that actin plays in modulating AMPAR 

localization and function.80,106–108 AMPAR insertion into the 

plasma membrane occurs during synaptic strengthening, such 

as during LTP, whereas AMPAR removal results in weaken-

ing of synapses during LTD.105 Interestingly, LTP promotes 

the expansion of spine heads whereas LTD leads to spine 

shrinkage,109 suggesting a link between spine morphology 

and synaptic efficacy.

A second class of glutamate receptors, metabotropic 

glutamate receptors (mGluRs), also contribute to spine 

morphology and development. The mGluRs are G-protein 

coupled and subdivided in three groups: group 1 includes 

mGluR1 and 5, group 2 consists of mGluR 2 and 3, and 

group 3 contains mGluR 4, 6, 7, and 8.110 PSD scaffolding 

proteins, including Homer and Shank, interact and regulate 

the activity of group 1 mGluRs.111,112 Moreover, stimulation 

of group 1 mGluRs results in a significant increase in den-

dritic spine length, indicating these receptors regulate spine 

morphology.113 The role of mGluRs in spine formation is 

currently not clear. In one study, mGluR5 knockout mice 

exhibited a decrease in spine density in cortical layer IV 

neurons whereas in another study mGluR5 knockout mice 
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had an increased number of spines.114,115 Future studies are 

needed to determine the  function of mGluRs in modulating 

spine formation.

Calcium signaling within dendritic spines is an important 

mechanism for regulating spine morphology as well as syn-

aptic plasticity and function.116 Spines can maintain different 

concentrations of free intracellular calcium than those found 

in dendritic shafts, indicating that they can serve as individual 

calcium compartments.117,118 The calcium concentration in 

dendritic spines can be regulated by NMDAR channels, by 

voltage-gated calcium channels, and by release of calcium 

from internal stores.6 Intracellular calcium can transduce a 

signal by activating a number of calcium-dependent kinases, 

including CaMKII. CaMKII is a major component of the 

PSD within spines and has a central role in synaptic plastic-

ity as well as learning and memory.119 Moreover, a CaMKII 

isoform, CaMKIIβ, can bind directly to F-actin within 

spines,120 providing a link between CaMKII signaling and 

the actin cytoskeleton.

Other membrane receptors are found in spines and influ-

ence their morphology and development. Plexin B1 and its 

ligand semaphorin 4D promote spine formation and changes 

in spine morphology through a RhoA/Rho-associated kinase 

pathway.121 Semaphorin 3F, and its receptors neuropilin-2 and 

Plexin A4, regulate spine morphogenesis and spine size.122 

EphB receptor signaling is also critical for spine formation. 

Mice deficient in EphB1, EphB2, and EphB3 have decreased 

spine density, abnormal spine morphology (ie, very small or 

no spine heads), and reduced dendritic filopodia motility.123,124 

EphB receptors regulate spine development through a 

kalirin (GEF)/Rac/PAK pathway and an intersectin (GEF)/

Cdc42/N-WASP pathway.125,126 The neuregulin (Nrg)-1 

receptor ErbB4 regulates spine size and AMPA-mediated 

synaptic transmission.127 Loss of ErbB2/B4 in mice causes 

defects in spine maturation and behavioral abnormalities 

that include increased aggression and decreased prepulse 

inhibition, which are observed in schizophrenic patients.128 

These phenotypes are rescued by treatment with clozapine, 

an antipsychotic drug used to treat schizophrenia.128 Nrg-1/

ErbB4 signaling also modulates spine formation by a kalirin-

dependent mechanism.129

Dendritic spine and synapse  
defects associated with  
neurological disorders
A number of neurological disorders, including schizophrenia, 

AD, autism spectrum disorder, and Down syndrome, are 

associated with abnormalities in the number, morphology, 

and plasticity of dendritic spines and synapses. Schizophrenia 

is a spectrum disorder, which usually develops in late ado-

lescence or early adulthood, and is characterized by impair-

ments in cognition, perception, and motivation.130 In patients 

with schizophrenia, a reduction in spine density is observed 

within various brain regions such as the prefrontal cortex, 

the temporal cortex, the striatum, and pyramidal neurons 

in the hippocampus.131–135 On the other hand, an increase in 

spine density is seen in the caudate and putamen patch of 

patients with schizophrenia.136  Interestingly, alterations in 

some of the genes/proteins that regulate spine morphology 

and development, as discussed above, are associated with 

schizophrenia. NRG1 and ErbB4 are susceptibility genes for 

schizophrenia, and multiple postmortem studies show aber-

rant Nrg-1/ErbB4 signaling in the brains of schizophrenic 

patients.137–139 Disrupted in schizophrenia 1, which regulates 

Rac activity through its interaction with the GEF kalirin-7, 

is also a schizophrenia susceptibility gene (Figure 2).140,141 

Moreover, patients with schizophrenia have reduced kalirin 

messenger (m)RNA levels in their dorsolateral prefrontal 

cortex, and missense mutations in kalirin have been identified 

in schizophrenic patients.142,143 Cdc42 mRNA levels are lower 

in patients with schizophrenia, whereas mRNA levels of the 

Cdc42 effector protein 3 (Cdc42EP3) are increased.142,144 

Cdc42EP3 binds septins and regulates septin organization, 

and Cdc42 inhibits this interaction.145 Therefore, the aber-

rant expression of Cdc42 and Cdc42EP3 in schizophrenia 

is proposed to affect opening of the septin barrier in spine 

necks, in response to glutamate stimulation, which alters 

molecular diffusion and trafficking between spines and the 

parent dendrites and leads to impaired synaptic plasticity 

and spine loss.144 The expression of PSD95, an important 

scaffolding protein in spines, is also altered in schizophrenic 

patients.146 Intriguingly, dysbindin, a schizophrenia suscepti-

bility gene, was recently reported to modulate spine dynamics 

and maturation.147

AD is a neurodegenerative disease that results in cogni-

tive decline, and usually begins at around 65 years of age. In 

patients with AD, a significant loss of spines and synapses is 

seen in the hippocampus and cortex, which are areas of the 

brain that are significantly affected by AD pathology.38,148 

Current data indicate that spine and synapse loss is an early 

event in AD that precedes neuronal death.38,149 As with schizo-

phrenia, actin regulators and binding proteins are linked to 

AD. Cofilin aggregates and actin-cofilin rods are found in the 

brains of AD patients; these abnormal structures could hinder 

molecular transport and trafficking in neurons, which could 

contribute to synaptic loss.97,150 Moreover, AD patients have 
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reduced hippocampal levels of drebrin, which could disrupt 

the balance between drebrin and cofilin and lead to aberrant 

actin dynamics and synaptic dysfunction.93,151 In AD, Rac and 

Cdc42 are upregulated, and their effector PAK is mislocalized 

or dysregulated in AD patients (Figure 2).97,152,153 Furthermore, 

kalirin-7 expression is altered in the hippocampus of AD 

patients, which could also contribute to the aberrant spine 

and synapse phenotype.154

Rett syndrome (RTT) is an X-linked autism spectrum 

disorder associated with intellectual disability that affects 

neurodevelopment beginning in early childhood.155 RTT 

is caused by loss-of-function mutations in MeCP2, which 

encodes the transcriptional regulator methyl CpG bind-

ing protein 2 (MeCP2), as many patients with RTT harbor 

MeCP2 mutations.156,157 Moreover, deletion of MeCP2 in 

central nervous system neurons results in an RTT-like phe-

notype in mice.158 Defects in spines may contribute to RTT, 

as a decrease in spine number is observed in cortical regions 

of the brains of RTT patients.159 In addition, a significant 

decrease in spine density is seen in hippocampal pyramidal 

neurons in RTT patients.160 The aberrant spine development in 

RTT may be linked to MeCP2, because mice lacking MeCP2 

exhibit a reduction in spine density in the motor cortex and 

hippocampus.161 One of the transcriptional targets of MeCP2, 

brain-derived neurotrophic factor (BDNF), and its receptor 

TrkB, also regulate spine development and plasticity.162,163 

Furthermore, RTT patients have decreased levels of BDNF 

mRNA, and overexpression of BDNF can rescue some of 

the neuronal and behavioral phenotypes seen in MeCP2 

knockout mice, suggesting a function for BDNF signaling 

in RTT.164,165 Although the specific mechanisms by which 

BDNF signaling contributes to RTT are currently unknown, 

it is tempting to speculate that Rho GTPases are involved 

(Figure 2). BDNF modulates spine formation and plasticity 

BDNF

T
rk

B

A
M

P
A

R
A

M
P

A
R

A
M

P
A

R

A
M

P
A

R

N
M

D
A

R

N
M

D
A

R

N
M

D
A

R
N

M
D

A
R

E
rb

B
4 Nrg-1

Kalirin-7

DISC1

Rac

Cdc42

Septins

Drebrin
Cofilin

PAK
Rac

MeCP2

Cdc42

Kalirin-7 Kalirin

PSD

PSD95

Rac
Cdc42EP3

Dyrk1A
DSCR1

N-WASP Calcineurin

CofilinF-actin

p

Figure 2 Schematic of molecular pathways underlying spine defects in several neurological disorders. The neurological disorders include Down syndrome (blue circle), 
schizophrenia (red circle), Alzheimer’s disease (green circle), and Rett’s syndrome (gray circle). Star shapes indicate upregulation of mRNA and/or protein levels or increased 
activation of proteins. Ovals represent susceptibility genes (Nrg-1, erbB4, and DiSC1), downregulation of mRNA and/or protein levels, loss-of-function mutations (MeCP2), 
or mislocalization/dysregulation (PAK). Dashed lines show proteins that regulate actin dynamics through downstream effectors. p-cofilin indicates phosphorylated-cofilin 
(inactive cofilin). 
Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor; BDNF, brain-derived neurotrophic factor; DiSC1, disrupted in schizophrenia 1; 
Dyrk1A, dual-specificity tyrosine-phosphorylation-regulated kinase 1A; MeCP2, methyl CpG binding protein 2; NMDAR, N-methyl-D-aspartate receptor; N-wASP, neural 
wiskott-Aldrich syndrome protein; PAK, p21-activated kinase; Nrg-1, neuregulin-1; Cdc42eP3, Cdc42 effector protein 3; PSD, postsynaptic density; PSD95, postsynaptic 
density protein 95; DSCR1, Down syndrome critical region 1.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Cell Health and Cytoskeleton 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

127

Regulation of dendritic spine development

by a Rac-dependent mechanism, and regulation of the activity 

of the Rho GTPases by bacterial cytotoxic necrotizing factor 

1 dramatically improves the behavioral phenotypes, including 

cognitive defects, in a mouse model of RTT.166,167 However, 

future investigation will be necessary to determine if Rac or 

other Rho family GTPases are involved in RTT.

Down syndrome is an intellectual disorder that results 

from a partial or full additional copy of chromosome 21. 

A region within chromosome 21, termed the Down syn-

drome critical region (DSCR), is thought to be responsible 

for some or possibly all of the features associated with Down 

syndrome.168 Two genes, DSCR1 and DYRK1A, within this 

region are of particular interest because their increased 

expression in mice can recapitulate some Down syndrome 

phenotypes.169 DYRK1A encodes dual-specificity tyrosine-

phosphorylation-regulated kinase 1A (Dyrk1A), which 

regulates spine formation and actin dynamics  (Figure 2). 

Overexpression of Dyrk1A in hippocampal neurons causes a 

significant decrease in spine density by inhibiting N-WASP-

mediated actin polymerization.170 Furthermore, cortical 

neurons from Dyrk1A transgenic mice exhibit a reduction in 

spine density and aberrant spine morphology due to altered 

actin  dynamics.171 This is consistent with the reduction in 

spine number and altered spine morphology seen in patients 

with Down syndrome.172,173 DSCR1 encodes DSCR1 protein 

(also termed RCAN1), which interacts with Fragile X men-

tal retardation protein to regulate spine morphogenesis.174 

In addition, DSCR1 inhibits the calmodulin-dependent 

phosphatase calcineurin, and DSCR1 knockout mice have 

increased calcineurin activity and defects in spine density, 

synaptic plasticity, and learning and memory.175 DSCR1 

transgenic mice display Down syndrome-like defects in learn-

ing and memory, impaired synaptic plasticity, and reduced 

spine density.176 Alterations in actin dynamics may underlie 

the spine defects as calcineurin dephosphorylates and acti-

vates cofilin, which severs actin filaments.75,177

Remaining knowledge gaps  
and ongoing research
Although progress has been made over the last few decades 

in understanding spine development, function, and plasticity, 

many questions remain. For example, what are the molecu-

lar mechanisms that designate a spine to be maintained or 

pruned? Are the signaling cascades in individual spines 

that modulate their remodeling and plasticity conserved or 

unique? What are the key players that regulate spine dynamics 

as synapses are forming and maturing? Much of our knowl-

edge regarding spine development has been obtained using 

fixed samples; however, to answer these and other important 

questions, spine development must be investigated as a real-

time process. Moreover, the importance and potential differ-

ence in individual spines is increasingly being recognized, 

making it essential to study spines on an individual basis to 

understand how they integrate to form circuits. As imaging 

and other technologies advance, the possibility of investigat-

ing individual spines is becoming more feasible. Optogenetic 

approaches, for instance, may permit selective spine activa-

tion to study individual spine dynamics.178  Hopefully, these 

and other technological developments will pave the way to 

understanding how individual spines contribute to complex 

neuronal circuits and ultimately behavior.

Conclusion
In this review, we have summarized some recent insights into 

spine formation, function, and plasticity. We have highlighted 

the significance of actin remodeling in these processes and 

discussed some key actin regulators in dendritic spines. We 

have also discussed the contribution of crucial synaptic recep-

tors and intracellular signaling pathways to spine development 

and plasticity. Because of the central role that spines play in 

cognitive function, defects in their development are associated 

with a number of neurological disorders, such as schizophre-

nia, AD, autism spectrum disorder, and Down  syndrome. We 

have outlined the spine/synapse defects associated with these 

disorders and what is known about the underlying molecular 

mechanisms that contribute to them. Finally, we have provided 

insight into some important unanswered questions regarding 

spines and how addressing these questions will shape the 

future of dendritic spine research.
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