
© 2015 Parker and Gilbert. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Advances in Genomics and Genetics 2015:5 239–255

Advances in Genomics and Genetics Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
239

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/AGG.S57678

From caveman companion to medical innovator: 
genomic insights into the origin and evolution  
of domestic dogs

Heidi G Parker
Samuel F Gilbert
National Human Genome Research 
institute, National institutes of Health, 
Bethesda, MD, USA

Correspondence: Heidi G Parker 
National Human Genome Research 
institute, National institutes of Health, 
50 South Drive, Building 50, Room 5347, 
Bethesda, MD 20892, USA 
Tel +1 301 402 8625 
Fax +1 301 594 0023 
email hgparker@mail.nih.gov

Abstract: The phenotypic and behavioral diversity of the domestic dog has yet to be matched 

by any other mammalian species. In their current form, which comprises more than 350 popu-

lations known as breeds, there is a size range of two orders of magnitude and morphological 

features reminiscent of not only different species but also different phylogenetic families. The 

range of both appearance and behavior found in the dog is the product of millennia of human 

interference, and though humans created the diversity, it remains a point of fascination to both 

lay and scientific communities. In this review, we summarize the current understanding of 

the history of dog domestication based on molecular data. We examine the ways that canine 

genetic and genomic studies have evolved and look at examples of dog genetics in the light of 

human disease.
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The origin of the domesticated dog
The origin and history of the domestic dog has been a topic of interest to humans for 

centuries. As the earliest domesticated animal, our association with the dog far predates 

our historical records; therefore, the circumstances surrounding our initial meeting 

and collaboration must be deduced from data that we can obtain through scientific 

means. The archeological record places the remains of dogs or proto-dogs in sites in 

Belgium and Siberia more than 30,000 years ago (ya).1,2 Evidence from mitochondrial 

DNA (mtDNA) sequences suggests that these findings represent domestic lines that 

died out and do not contribute to our modern dogs; however, analysis of the morpho-

metrics of the skulls suggests that they are extinct wolf lineages rather than dogs.3–5 

Fossils that are molecularly or phenotypically more similar to modern dogs have been 

found in the Middle East and Europe dating 14,000–17,000 ya.3,6 This creates a gap 

in the archeological record to time the first domestication event. The conditions may 

have been right for canine domestication as much as 30,000 ya, and it was achieved 

at least 15,000 ya. Experiments with selection on tameness in foxes have shown that 

under rigorous selective pressures, phenotypic changes can be accomplished within 20 

generations.7 Phenotypic changes may have happened quickly in the dog if we assume 

that humans had an active role in the domestication process. However, if we assume 

the domestication of the dogs came from a more gradual move into the human niche, 

it may have taken much longer to significantly alter their appearance. Because it is 

possible that the process was repeated multiple times and in multiple locations, the 

exact temporal placement of the episode or episodes that created our modern dogs is 

most likely somewhere in between 15,000 ya and 30,000 ya.
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Molecular studies have attempted to date the divergence 

of dog from wolf using multiple data sets and  methodologies. 

mtDNA analyses have timed the divergence of the dog from 

wolf between 5,400 ya and .100,000 ya.3,8–10 Two recent stud-

ies that examined whole-genome sequences of both dogs and 

wolves estimate the divergence time at 13,000–32,000 ya.11,12 

The difficulty in establishing an exact time of domestication 

stems from multiple sources of conflict. First, the mutation 

rate of the dog genome is not known. The divergence times 

are often estimated based on assumed mutation rates, which 

vary with each study (ie, 1.4×10–8 vs 2.2×10–9 mutations per 

base pair per generation).11,12 Additionally, wolf–dog intro-

gression must be factored into the calculations. During early 

domestication, dogs and wolves would have been in close 

contact and fully capable of interbreeding. Examination of 

mitochondrial haplotypes and nuclear microsatellite mark-

ers in a collection of dogs and wolves from the Caucasus 

in Georgia indicates that 13% of dogs and 10% of wolves 

show evidence of  hybridization.13 Pervasive hybridization 

throughout the natural history of the domestic dog confounds 

attempts at precise estimates of divergence, making dogs 

and wolves appear more similar and therefore more recently 

diverged. Finally, the genome of the domestic dog, as a close 

companion of humans, has been consistently altered through 

intensive selective pressures to obtain specialized traits.14,15 

Thus, while the molecular clock works well in determining 

species divergence in wild populations, assuming a steady 

rate of mutation could produce misleading results for a 

genome in which large regions are being driven to fixation and 

purifying selection is prevented.16 As we continue to gather 

more complete genomic information about the full range of 

dogs and their wild progenitors, we will be able to take all of 

these factors into account in our search for a precise answer 

to the time of first domestication.

In the mean time, there are other directions that can be 

explored to understand early domestication. The large influx 

of whole-genome sequence data that are currently being 

produced offers the opportunity to examine the functional 

genetic alterations that have developed between domesti-

cates and their closest wild relatives. Recent studies have 

taken this route to identify the genes that were disrupted 

when dogs became domesticated from wolves.11,17–23 In a 

comparison of 60 domestic purebred dogs and 12 pooled 

wolf DNAs, 36 regions of the genome containing 122 genes 

were found to be under strong selection in the dogs. By 

mining the gene ontology database, three main gene groups 

were significantly highlighted: nervous system development, 

sperm competition, and metabolism/digestion.17  Specifically, 

under the metabolism heading, three genes involved in starch 

metabolism stood out. One of these was a copy number 

increase in dogs (4–30 compared to two in wolves) that 

increased the expression of the AMY2B (alpha-2B-amylase) 

gene. The authors hypothesized that the change in diet 

from largely meat to more plant-based food sources was a 

primary contributor to domestication, supporting the idea 

that wolves were first domesticated by scavenging around 

human agricultural settlements.18 Further investigation of the 

AMY2B locus, however, shows that the copy number variant 

(CNV) is not increased in all dog breeds and is polymorphic 

in some wolves.11 Rather than driving domestication, the 

AMY2B CNV may be a marker of more recent adaptation to a 

high-starch diet. A similar, though less dramatic, association 

has been identified in humans from high starch-consuming 

populations and the AMY1 genes.19

A second study comprising whole-genome data from 

three wolves and ten dogs identified fixed clusters of single-

nucleotide polymorphisms (SNPs) in each species. Using 

this method, the study found 204 genes with at least six 

fixed sequence changes and significantly reduced nucleotide 

 diversity.20 The gene ontology terms that were most signifi-

cantly overrepresented in this set of genes were behavioral, 

including response to stress, fear, and defense. These  findings 

were verified in a second set of three wolves and three indig-

enous dogs. The overrepresentation of behavioral genes in 

the fixed differences between dogs and wolves suggests that 

a reduced fear response may have been the driver of early 

domestication allowing the proto-dog to live comfortably in 

close contact with early humans.

Finally, an analysis of the sequence of four purebred dogs, 

four wolves, and four indigenous dogs identified 311 genes 

under positive selection in the dogs.12 These genes largely 

represent three gene ontology groups that are identical or 

nearly identical to those identified in the first study: repro-

ductive, neurological processes, and metabolism/digestion. 

The authors compared these genes to those under selec-

tion in humans and found 32 in common, including genes 

involved in neurological processes, metabolism, and cancer. 

The common sites of selection across the genomes of both 

species indicate similar selective pressures, which is likely 

the result of our shared environments and constant close 

interaction. This parallel selection can be seen in the sequence 

comparison of dogs from high, mid, and low altitudes in the 

People’s Republic of China.21 The dogs that come from the 

highest altitudes differed from those of low-altitude regions 

over the EPAS1 gene and a beta-hemoglobin cluster. EPAS1 

is a transcription factor that activates in response to hypoxic 
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conditions or oxygen deprivation and has been identified as 

a target of selection in the Tibetan highlanders.22,23

Selection on both the AMY2B polymorphism and the 

EPAS1 gene highlights the convergent selective pressures 

found in dogs and humans and encourages the further use 

of dog genetics to inform human evolutionary history. The 

finding that disease-associated genes, such as those that lead 

to cancer development, are under selection in both species 

further strengthens the commonly held hypothesis that dis-

ease mutations mapped in dogs will be directly applicable 

to human-disease studies.24

Techniques used in the study of 
canine genetics and genomics
The techniques researchers have used to study canine genom-

ics have evolved with the field. Early insights into canine 

genetics came from pedigree analysis and trait observation. 

These methods were used to determine the inheritance pattern 

of physical traits. Physical characteristics of dogs such as 

blood pressure, pupil diameter, and rectal temperature were 

attributed to heredity through studies of different breeds of 

purebred dogs. In a pioneering study, such methods were used 

to demonstrate that genetic factors, and not just environment, 

are main contributors to diversity across dog breeds.25

Karyotyping and cytological methods became popular in 

the 1960s and were used to study a number of aspects about 

the dog including, but not limited to, sexual abnormalities,26 

reproduction,27 and disease.28 Cytogenetics found a resur-

gence in molecular biology with the advent of more specific 

probes that allow for chromosome painting and fluorescence 

in situ hybridization. These methods were used to compare 

the arrangement of the dog’s small, acrocentric chromosomes 

to the human genome and showed that gene order is highly 

conserved between the two.29,30 Further refining the probes 

has also allowed for more precise identification of chromo-

some abnormalities and genomic rearrangements.31

Proteins were the focus of canine studies during the 

1970s. Many investigations focused on blood diseases or 

traits such as the clotting disorder von Willebrand disease. 

Further information on canine biology and its similarities to 

human was gained through comparison of protein functions 

across species such as the catalytic properties of enolase,32 

retinol transport in plasma,33 and pituitary dosage curves of 

prolactin,34 which implied a similar structure and function 

between the dog and human proteins.

New molecular techniques in the 1980s allowed for 

direct assays of the DNA sequences improving the ability 

to make comparisons between dogs and humans. Southern 

blot analysis using cDNA from human leukocyte antigen 

genes as a probe was able to detect dog leukocyte antigen 

gene regions, indicating a high level of similarity in the 

gene sequences of both species’ major histocompatibility 

complex35 and highlighted the importance of the canine in 

modeling human diseases. The similarity in dog and canine 

immune systems was irreplaceable in developing strate-

gies to overcome graft-versus-host disease in bone marrow 

transplantation and will likely play a future role in disease 

therapeutics.36–38 It was not until sequencing methods became 

more automated, however, that large-scale homology studies 

between dog and human became feasible.

Genetic maps of the dog were created once marker geno-

typing and analysis methodologies improved in the 1990s.39 

Microsatellites, or short tandem repeats, are sequences of 

DNA that can be identified through restriction enzyme assays 

or polymerase chain reactions and are the backbone of link-

age maps.40–42 The identification of a large number of highly 

polymorphic microsatellites enabled the construction of the 

first genetic maps of the dog genome.43,44 These genetic maps 

made possible the discovery of many genes involved in dis-

ease and phenotype determination (reviewed in Parker et al24) 

and produced the scaffold for assembly of the first complete 

genome sequence of the dog. The most recent comprehensive 

linkage map was developed based on the completed sequence 

specifically to determine recombination rates, given the small 

size of the dog chromosomes.45

The release of the 7.5× whole-genome sequence of the 

dog in 2005 represented the culmination of the preceding 

work on characterizing the dog genome.39 The assembled 

reference sequence was that of a Boxer and was done through 

a whole-genome shotgun approach, in which the DNA was 

fragmented into smaller, clonable segments that allowed 

for Sanger sequencing. With the assembly of a dog genome 

sequence, over two million SNPs were identified enabling 

genome-wide association studies (GWASs). These became a 

high-powered tool to study dog disease and morphology.

GWASs compare a large number of SNPs across the entire 

genome of two disparate groups, usually affected cases and 

unaffected controls for categorical traits, or a range of phe-

notype values for quantitative traits. Statistical methods are 

used to identify differences between the groups that associate 

with the affected status. Such studies have been successful 

in identifying variants in a number of genes as well as in 

suggesting candidate regions for specific traits (reviewed in 

Parker et al24 and Karlsson and Lindblad-Toh46).

SNP genotyping has also been a key in allowing for other 

genome-wide analyses such as homozygosity mapping and 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances in Genomics and Genetics 2015:5submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

242

Parker and Gilbert

identity-by-descent mapping, in which areas of the genome 

are compared across multiple individuals to identify common 

regions of shared alleles.15,47 Both methods can be success-

fully used to identify genomic regions that are under selection 

for specific traits or to identify recessive disease traits. For 

example, homozygosity mapping of six Spinone Italiano with 

spinocerebellar ataxia and six healthy controls of the same 

breed identified a disease locus on chromosome 20 that was 

further narrowed to a repeat expansion in ITPR1.48 This gene 

has also been associated with ataxias in humans (Table 1).

Haplotype mapping is another powerful tool that employs 

SNPs to establish a pattern of variants that are commonly 

inherited. A combination of homozygosity mapping and 

haplotype comparisons was used to fine map the region 

associated with chondrodysplasia in a multi-breed GWAS.49 

A 24 kb region on canine chromosome 18 (CFA18) was 

found to be homozygous in 26 dogs from eight chondrodys-

plastic breeds. All breeds carried an identical haplotype 

indicating a common ancestral source of the mutation, an fgf4 

retrogene inserted in the homozygous region. This technique 

has been used successfully multiple times in both disease and 

morphology mapping (Figure 1).

There are now many canine sequences available due to 

the advent of next-generation sequencing technologies. The 

new sequences have been used to identify additional SNPs 

such as the 4.6 million found by comparing the Korean 

Jindo sequence to the publically available Boxer and the 

1.5× Poodle sequences,50 and to identify insertion/deletions 

and structural variants.51 The relative low cost and general 

availability of next-generation sequencing allow for large-

scale sequencing to supplement GWASs and linkage studies 

when searching for disease-associated variants. For instance, 

a GWAS of patellar luxation in Flat-Coated Retrievers 

identified four distinct regions of association.52 Instead of 

fine mapping each of the loci or picking candidate genes, 

custom genomic hybridization arrays were used to enhance 

the coding regions in all loci for targeted resequencing in 

15 cases and 15 controls. SNPs with the largest difference 

in frequency between cases and controls were genotyped on 

a larger panel revealing eight genes that appear associated 

with the disorder.

Similarly, targeted next-generation sequencing was used 

to investigate a region on CFA4 that was associated with 

ataxia in both GWASs and linkage analyses of Old English 

Sheepdogs.53 The sequencing combined with genotyping and 

haplotype comparisons in additional affected breeds identi-

fied a missense mutation in the RAB24 gene. In contrast, 

whole-genome sequence of a single Chinese Crested dog with 

neuronal ceroid lipofuscinosis was compared to the sequence 

of 101 unaffected dogs of other breeds to identify what was 

predicted to be a rare disease-causing variant. A deletion was 

identified in the MFSD8 gene that was homozygous in the 

diseased dog, absent from the other 101 dogs, and predicted 

to alter protein structure.54

Next-generation sequencing can enhance the ability to 

identify variants that are resistant to traditional sequenc-

ing or genotyping methods. Targeted next-generation 

sequencing of a locus from a GWAS in Tibetan Spaniels 

with late-onset progressive retinal atrophy identified a short  

interspersed nuclear element (SINE) insertion in an intron 

of the FAM161A gene that creates a reading frame shift 

and exon skipping.55 SINE insertions are not annotated in 

the public sequence databases and can only be identified 

through exploratory sequencing. Targeted sequencing of the 

entire associated region proved instrumental in finding this 

causative mutation.

As it stands today, the dog reference genome is on its third 

and most updated derivation, CanFam3.1, which includes 

approximately 2.41 billion base pairs across the 38 autosomal 

chromosome pairs, the X chromosome, and the mtDNA. 

The available data have led to the development of highly 

informative tools for genome analysis in the dog including a 

high-density SNP chip, expression chips, and a whole-exome 

enrichment array, which offers a less-expensive alternative 

to whole-genome sequencing.47,56 The addition of RNAseq 

data from ten canine tissues has improved the annotation 

of the canine genome with the current version displaying 

20,700 protein-coding genes, 4,600 antisense transcripts, and 

7,200 noncoding RNA transcripts positioned confidently and 

available for mutation analysis.57 Some of the most common 

resources discussed above can be found in Table 2. The next 

step in genome annotation will be to identify the regulatory 

regions, as there is likely to be a subset unique to the dog 

that will be invaluable for disease studies.

Phenotypic diversity among breeds
By far, the most intriguing aspect of canine genetics is the 

chance it offers to understand the source of extreme pheno-

typic diversity (Figure 2). The dog, as we know it today, is the 

result of centuries of controlled breeding to obtain specialized 

traits and behaviors. The physical differences between the 

breeds have long been recognized, but it is through genomic 

analysis that we have been able to understand the differences 

at a genetic level. Shortly after the first microsatellites were 

discovered in the dog, they were being used to assess differ-

ences between the breeds. These early studies, often analyzing 
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small numbers of markers and dogs, revealed differences that 

appeared breed related.58–60 In 2004, a study was released that 

examined nearly 400 dogs from 85 breeds at 96 microsatellite 

markers. This study showed definitively that the breeds, with 

the exception of a single pair, were genetically distinguish-

able.61 In addition, the study showed that there were four 

primary clusters of breeds that shared genetic similarity with 

one another. The first was a group of breeds that were devel-

oped in Asia and Africa, the second consisted of mastiff-type 

breeds, the third cluster combined sighthounds with herding 

breeds, and the fourth (and the largest) was that of sporting/

hunting and companion dogs. These breed clusters grouped on 

similar physical traits, behavioral traits, or geographic origin. 

When the study was expanded to over 100 breeds, a fifth breed 

cluster of large mountain dogs was identified.62

With the development of large-scale SNP genotyping 

technologies came a large multi-breed study that examined 

breed relationships and phenotype diversity.63,64 Nearly 

50,000 SNPs were genotyped on 912 dogs and 225 wolves 

collected worldwide. Using a phylogenetic analysis of the 

SNP genotypes and haplotypes built from the SNPs, the 

authors confirm that the breeds cluster by phenotype or 

functional ability (Figure 3). They further refine the breed 

relationships by defining additional clusters within the estab-

lished groupings such as scent hounds and spaniels within the 

fourth cluster, and sighthounds separate from herding dogs 

in the third cluster. This same data set was instrumental in 

mapping phenotypes that are specific to breed development. 

Recently, another study examining 1,375 dogs and 19 wolves 

at the same loci confirmed the separation of the Asian/African 

breeds from the modern breeds. The authors postulate that 

this division is likely the result of isolation of these breeds 

during the explosion of breed creation in Europe preventing 

hybridization between the breed types.65

Some of the earliest phenotype mapping in dogs was done 

through candidate gene studies of coat color, primarily in the 

MC1R/ASIP pathway (reviewed in Schmutz and Berryere66). 

These studies showed that most mutations affecting canine 

phenotypes were shared across breeds indicating that they 

arose once and were then maintained in the breeds where the 

result was desirable. However, in a minority of cases, multiple 

mutations could be found in the same gene with no breed 

specificity.67 For example, three mutations were identified in 

the TYRP1 gene that creates brown coat color. Combinations 

of these mutations were identified within the same breed and 

even within the same dog that suggest that the phenotype has 

arisen multiple times independently in the history of the dog, 

likely before the advent of the breeds.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Advances in Genomics and Genetics 2015:5 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

245

Genomic insights into the origin and evolution of domestic dogs

A

0.4

0.3

0.2

O
b

se
rv

ed
 h

et
er

o
zy

g
o

si
ty

0.1

0.0

23281978

Scale
chr15:

Gap

Conservation

Human
Mouse

Rat
SINE
LINE
LTR
DNA

Simple

Other
RNA

Low complexity
Satellite

32,835,000| 32,840,000|
10 kb

32,845,000| 32,840,000| 32,855,000| 32,860,000|
Gap locations

Refseq genes

N-scan gene predictions

Dog/Human/Mouse Rat Multiz Alignments and phastCons scores

Repeating Elements by RepeatMasker

canFam2

23422559

Position on chromosome 18

23446056 23622780

B A
B

C
D N

64
8

6
6

Figure 1 examples of homozygosity and haplotype mapping from studies of morphology and disease phenotypes.
Notes: (A) Complete loss of heterozygosity in nine chondrodysplastic breeds (red) is observed across 50 SNPs in a 24 kb region. Observed heterozygosity remains 
unchanged throughout the region in the eleven control breeds (black). The x-axis shows the position on chromosome 18 (canfam2), and the y-axis shows observed 
heterozygosity. Copyright © 2015. Courtesy of JSTOR.  Reproduced from Parker HG, vonHoldt BM, Quignon P, et al. An expressed Fgf4 retrogene is associated with breed-
defining chondrodysplasia in domestic dogs. Science. 2009;325(5943):995–998.49 (B) Comparison of haplotypes found in 84 Standard Poodles with squamous cell carcinoma of 
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Abbreviations: SNP, single-nucleotide polymorphism; CNv, copy number variant; UCSC, University of California, Santa Cruz; LD, linkage disequilibrium.

The development of linkage and radiation hybrid 

maps of the dog genome allowed researchers to begin 

looking for novel gene variants that lead to major phe-

notypes. Using a linkage strategy in a crossbred pedigree 

of dogs, a new locus was identified that associated with 

solid black and brindle coat colors.68 Sequencing and 

haplotype analysis across multiple breeds found that the 

beta-defensin gene (CBD103), a gene usually associated 

with the immune system, was responsible for dominant 

black coat.69

The first GWAS performed in the dog analyzed very 

small numbers to identify trait-associated loci of large 

effect.70 Less than ten cases and ten controls were chosen to 

represent segregating coat types in Boxers and Rhodesian 

Ridgebacks and were genotyped at 27,000 SNPs. Complete 

sequencing of the associated haplotypes identified a 100 kb 
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Table 2 A list of common internet resources available for 
accessing canine genome information and tools

Resource Source Reference

Canine genome browsers UCSC 185
ensembl 186
NCBi 187

Transcript annotations Broad institute 188
ensembl 189

Canine BAC libraries CHORi (Boxer) 190
CHORi (Doberman) 191

Canine SNP genotyping illumina, inc. 192
Affymetrix 193
Broad 194

Canine expression array Agilent 195
Canine CGH array NCSU 196

Agilent 197
Canine linkage maps NHGRi 198

UCDavis 199
Canine RH maps NHGRi 200
Comparative genome maps Rennes 201

Abbreviations: BAC, bacterial artificial chromosome; CGH, comparative genomic 
hybridization; CHORi, Children’s Hospital Oakland Research institute; NCBi, 
National Center for Biotechnology information; NCSU, North Carolina State 
University; NHGRi, National Human Genome Research institute; Rennes, University 
of Rennes; RH, radiation hybrid; SNP, single-nucleotide polymorphism; UCDavis, 
University of California, Davis; UCSC, University of California, Santa Cruz.

region around MITF as the source of white spotting in Boxer 

and Boxer-related breeds. A follow-up analysis found that a 

large CNV on CFA18 was responsible for the hair ridge in 

the Rhodesian Ridgebacks.71 The success of these association 

studies confirmed the power of the canine GWASs to uncover 

simple genetic traits.

Many of the most interesting traits found in dogs are 

those that define the breeds. These cannot be traced through 

pedigrees because they do not segregate within breeds 

(Figure 2). In order to identify these genes, large multi-breed 

mapping sets were developed. Brachycephaly, the foreshort-

ened skull and snout, is a complex trait found in many breeds 

such as Bulldogs, Pugs, and Pekingese. Multi-breed GWASs 

have identified up to eight loci significantly associated with 

the skull phenotype.64,72,73 Homozygosity mapping and 

haplotype comparisons at one of these loci identified a mis-

sense  mutation in BMP3 that was shown to have biological 

relevance through zebrafish knock-down and rescue assays.73 

The combination of multi-breed GWAS and homozygosity/

haplotype analysis has been used successfully to identify 

mutations responsible for traits such as leg length, coat type 

and color, skull shape, and body size.47,49,64,74–76

A comprehensive study of canine skeletal traits came 

from the collection of a large cohort of Portuguese Water 

Dogs (PWDs) with extensive morphologic data.77 Based 

on radiographic measurements, genome regions were 

associated with skeletal traits such as skull length, pelvic 

width, bone width, and overall body size. Body size was 

associated with two markers on chromosome 15, one of 

which was near the insulin-like growth factor 1 (IGF1). 

This finding was extended using a multi-breed approach to 

identify the causative alleles. The initial 4 Mb associated 

region was fine mapped by SNP genotyping both large 

and small PWDs as well as dogs from small (,9 kg) and 

large (.30 kg) breeds. A single haplotype was identified 

in all 14 small breeds that included the IGF1 gene. This 

same haplotype was present in the small PWDs clearly 

displaying that studies carried out in a single breed could 

be significant in other breeds, especially in the case of 

highly selected morphologic traits.

Variation in canine body size is a particularly popular 

subject in mapping studies.64,78,79 From the smallest breeds 

like the Chihuahua to the giant English Mastiff, there can be 

a tenfold increase in height and a 50-fold increase in weight.80 

This variation is almost entirely inherited as it is maintained 

within breed structures where variation in size and weight 

is extremely low (Figure 4). A recent study shows that seven 

variants in six genes can explain 50% of size reduction in 

dogs.76 The smallest breeds carry all seven of the mutations, 

while breeds averaging 41 kg (90 lbs) or more rarely carry 

any of the mutations (Figure 5). In comparison, the mapping 

of height in humans has identified 180 loci and yet explains 

approximately 10% of observed variation.81 This is an excel-

lent example of how canine population structure can help 

simplify the genetics of a complex phenotype. The constant 

selective pressure on desirable traits while maintaining cur-

rent standards can fix the most effective mutations while 

eliminating the steady build of lesser deleterious mutations. 

If this axiom holds true across phenotypes, it will prove 

especially important when applied to disease mapping.

The dog as a model to study human 
genetic disease
Dogs share more genetic similarity with humans than do 

traditional model organisms such as the mouse39 and an 

 estimated 360 naturally occurring analogous diseases.82 

Further, many of the traditional gene discovery methods 

discussed above (linkage analysis, GWAS) can be difficult 

and costly in humans due to the need for large numbers of 

samples to make up for short stretches of linkage disequi-

librium and extensive disease heterogeneity. These same 

studies can be enhanced in dogs due to the predisposition 

to certain diseases within breeds where the unique popula-

tion structure limits heterogeneity and increases linkage 
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Figure 2 Domestic dogs display a range of morphologies some of which are represented here.
Notes: Profiles of an (A) Afghan Hound and (B) Pug display two of the most prominent skull morphologies – dolichocephalic and brachycephalic, respectively. (C) The irish 
wolfhound standing side by side with the Border Terrier are examples of the range in sizes found in full-grown dogs of different breeds. (D) The group of Bernese Mountain 
Dogs display the phenotypic homogeneity that is found within a breed.

disequilibrium.82,83 As such, the dog offers an alternative and 

parallel system in which human diseases can be studied, both 

for discovering information about susceptibility and disease 

development and for predicting the course of a disease and 

optimal treatments.

Simple, monogenetic diseases in dogs often have the same 

genetic causes in humans (Table 1). One such example of this 

is progressive rod–cone degeneration (prcd) in dogs and its 

analogous disease in humans, retinitis pigmentosa (RP).84 In 

one of the first linkage-mapping studies, prcd was mapped to 

canine chromosome 9, orthologous to human chromosome 

17q where a human RP locus was suggested to reside. Using 

haplotype analysis and a retinal cDNA library, a novel gene 

(PRCD) was identified that harbored a mutation segregating 

perfectly with the canine disease. The identical mutation was 

found in a woman diagnosed with autosomal recessive RP.85 

This is a perfect example of how canine disease genetics 

mimics human and in this case allowed for the identification 

of a previously unknown gene and mutation. There are many 

other examples in which genetic mapping of diseases in dogs 

has led to the discovery of mutations in a homologous gene 

in humans, some of which can be found within the list of 

gene mutations in Table 1.

Single-gene disorders have played an important part in 

establishing the canine system as an exemplary counterpart 

to human studies; however, complex diseases are the area 

of greatest need. Because of the nature of the disorder, 

complex diseases are difficult to model in a laboratory as 
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Abbreviations: SNP, single-nucleotide polymorphism; PBGv, Petit Basset Griffon vendéen.

they require interactions or correlated action from multiple 

genes as well as some degree of environmental interaction. 

As an intermediate, the dogs provide an intriguing option to 

traditional models or human studies. They develop disease 

naturally through inheritance and interactions with our 

environment, yet their breed structure creates independent 

and unique strains in which heterozygosity is reduced and 

mapping is less complex.

One of the best examples of the canine role in elucidat-

ing genetic contributors to a complex human disorder can be 

found in the sleeping disorder narcolepsy. Canine narcolepsy 

with cataplexy was one of the first diseases mapped in the dog 

using microsatellites in a colony of narcoleptic  Doberman 

Pinschers and Labrador Retrievers where the disorder segre-

gated as an autosomal recessive trait. Extensive fine mapping 

and resequencing identified a SINE insertion in the HCRTR2 

gene.86 This finding revealed a family of neurotransmitters 

that had not been previously associated with sleep. Shortly 

following this discovery, a mutation was identified in a 

human early-onset narcolepsy case, and more importantly, 

a deficiency in the hypocretin system was identified in the 

majority of cases of narcolepsy with cataplexy showing the 

importance of the gene family in the human disease and 

altering the future of sleep studies.87

Many of the most prevalent complex diseases in people 

are also very common in dogs such as diabetes, epilepsy, 

heart disease, and cancer. In 2005, a canine GWAS identi-

fied a repeat expansion in NHLRC1 (previously known as 

EPM2B) as the cause of a canine version of epilepsy in 

Dachshunds that is similar to Lafora disease.88 This finding 
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coincided almost exactly with the discovery of mutations in 

the same gene in the human disease.89 Since then, mutations 

in ten different genes have been identified as causative for 

forms of epilepsy in ten different breeds of dog (reviewed in 

Ekenstedt and Oberbauer90). The availability of many breeds, 

each with independent disease inheritance, allows for the dis-

covery of complex disease pathways, one gene at a time.

Cancers in dogs offer a unique opportunity to inform 

human disease. As a result of the founder effect, canine 

cancers are often breed specific or overrepresented in par-

ticular breeds. For instance, 25% of Bernese Mountain Dogs 

(BMDs) are estimated to develop histiocytic sarcoma, and 

12.5% of Rottweilers develop osteosarcoma.91 That certain 

cancers tend to segregate within specific breeds reduces the 

genetic and environmental noise that is associated with those 

cancers, and allows for a genetic association to be made more 

readily than would be in human cases.

One example is histiocytic sarcoma, a rare, lethal cancer 

in humans that often strikes juveniles. It is also a rare tumor 

in dogs but is very common in BMDs allowing for mapping 

studies that can elucidate genetic factors that may be informa-

tive in both species. The first GWAS on histiocytic sarcoma 

was undertaken in BMD and revealed an association with 

the MTAP-CDKN2A locus on CFA11,92 a locus homologous 

to human 9p21 which is implicated in many human diseases 

including cancers.93 Similarly, squamous cell carcinoma of 

the digit in Standard Poodles, Giant Schnauzers, and Briards 

is associated with a CNV on CFA15 near KITLG.94 These 

studies capitalized on the minimal genetic heterozygosity 

of cancer inheritance in the dog. Lymphomas are common 

in both dogs and humans and represent an area of oncology 

study that would immediately benefit both species. A recent 

GWAS in Golden Retrievers has identified two loci on CFA5 

that are associated with both lymphoma and hemangiosar-

coma in the breed.95 Different forms of cancers associated 

with the same locus suggest that there are mutations that 

affect tumor formation in general and comparing different 

tumor types with the same causative mutations may help to 

ferret out the genetics behind tissue specificity.

Conclusion and future prospects
The promise of dog genetic studies lies in translation of our 

findings to improved treatments in both dogs and people. For 

instance, Golden Retriever muscular dystrophy, a homologue 

of Duchenne muscular dystrophy (DMD), is caused by exon 

skipping followed by early truncation of the dystrophin (dmd) 

gene, the same gene that is mutated in two thirds of human 

beings with DMD.96 Because dmd is one of the longest genes 

in the genome, new genetic approaches to treat DMD have 

been to promote in-frame exon skipping of the mutated 

area of dmd to produce a more functional, partial protein 

leading to a less severe phenotype. To find a tolerable and 

long-lasting therapy, a small nuclear RNA delivered through 

a recombinant adenovirus was tested on Golden Retrievers 

with muscular dystrophy.97,98 The success of these trials has 

recently led to a delivery and safety trial specifically staged 

to prepare for human trials.99

Muscular dystrophy is not the first area in which gene 

therapy has been used successfully in the dog leading to 

human trials. Multiple forms of canine progressive retinal 

atrophy have been successfully treated using gene supple-

mentation (reviewed in Petersen-Jones100). Clinical trials on 

RPE65-deficient RP, Leber congenital amaurosis type 2, 

treated with gene augmentation therapy, showed stable vision 

improvement and no adverse effect over 3 years.101 Recent 

success in treating X-linked RP in the dog shows similar 

promise for translation to human.102

In addition to inherited mutations, studies are showing 

that canine diseases share many somatic alterations with 

human diseases. For example, the Philadelphia chromosome, 

a common translocation between human chromosomes 9 and 

22 found in chronic myelogenous leukemia, is also found in 

dogs with the same disease (translocation between canine 

chromosomes 9 and 26).103 A similar translocation has been 

found in human and canine Burkitt lymphoma (between 

human chromosomes 8 and 14 and between canine chromo-

somes 13 and 8), and the RB1 gene locus is deleted in both 

human and canine chronic lymphocytic leukemia. These 

findings suggest that there are inherently fragile regions of the 

genome that support tumorigenesis and further comparison 

of human and canine tumor DNA may enable the discovery 

of novel cancer genes and mutations. Studies investigating 

osteosarcoma in dogs have suggested some candidate genes 

that may be important in the human disease. A comparison 

of the expression profiles of human and canine osteosarcoma 

found that overall, the expression profiles were indistinguish-

able, but a closer inspection of individual genes identified 

two genes that were expressed in all dogs but only a subset 

of humans. These genes, IL-8 and SLC1A3, are associated 

with a more aggressive form of the cancer.104

Highly similar mutation loads will allow for the testing of 

targeted treatments and therapies in dogs that have the potential 

to benefit humans as well. The goal of personalized medicine 

is to tailor treatment strategies to fit the individual patient. 

Sequencing of the transcriptome of canine invasive bladder 

cancers has recently identified the common human BRAFV600E 
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mutations in .85% of tumors.105 Because the BRAFV600E 

mutations are present in 8% of all human cancers, they have 

been the focus of multiple clinical trials using targeted drug 

therapies.106 Identification of identical mutations in a naturally 

occurring dog tumor puts the dog at the forefront of preclinical 

trial strategies for highly specific therapies enabling the deter-

mination of dosage amounts, testing combination therapies, 

and determining efficacy prior to costly human trials.

Tremendous advances have been made in canine genetic 

and genomic studies since the first backcrosses were per-

formed and proteins isolated. As a system for scientific 

discovery, canine genomic researchers now have the neces-

sary tools and the ability to answer questions of inheritance, 

association, and causality. Novel treatment strategies have 

been introduced based on canine genetic studies, and the 

population structure encourages the development of assays 

to interrogate the effects of environmental and genetic 

background on inherited mutations. With modern molecular 

techniques, canine genomic information is booming, adding 

to our knowledge of the dog, how we have shaped its history, 

and how it, in turn, is helping us to improve our future.
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