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Abstract: Robotic-assisted systems for unicompartmental and total knee arthroplasty and total 

hip arthroplasty have been introduced in recent years. Various systems are currently in use 

ranging from passive to robotic-assisted and active systems to improve component alignment 

with the goal to improve longevity of knee and hip prostheses. The purpose of this article is to 

review contemporary robotic systems for knee and hip arthroplasty and provide an overview 

of current implant survivorships based on registry data. We conducted a PubMed search for 

robotic systems used in orthopedics with a particular focus on total joint arthroplasty, in order to 

review the success of the implementation of these systems. While some of the current systems 

are still in their infancy and costs may be considered prohibitive, robotic systems continue to 

evolve and have become an addition to the orthopedic surgeon’s armamentarium.
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Introduction
Evolution of surgery has been driven by the development of tools, and the latest 

apparatus to enter the operating room is robotic instrumentation.1 Robotics is defined 

as a field of engineering that deals with machines that manage a task by mimicking 

human behavior.2,3 Considering the favorable outcomes in other fields of work, there 

has been significant impetus to implement robotics in medicine.4 Since robotics was 

first introduced in medicine in 1985, they have been proven to be advantageous, par-

ticularly in the surgical coliseum.5 They have augmented technical improvements in 

surgical procedures, which were hitherto impossible because of the inconsistency of 

the human hand.4 Some subspecialties, such as urology, gastroenterology, oncology, 

and gynecology, have embraced this change more than others have.3,6–11 However, one 

of the first robots in surgery was the PUMA 200 – developed to help neurosurgeons 

perform stereotactic brain biopsy with 0.05 mm accuracy.12 Orthopedic surgery forayed 

into the use of robotics in the mid 1980s, pioneered by William Barger and Hap Paul 

with the development and introduction of ROBODOC (Curexo Technology Corpora-

tion, originally by Integrated Surgical Systems).13 Three-dimensional (3D) imaging 

relayed to the robot enabled more accurate placement of the prosthesis. However, the 

usage of this system was limited due to technical complications directly related to 

the robotic device.14

In the early 2000s, robotic systems that were passive and haptic began to emerge 

in the orthopedic community.15 The two primary systems that were first available 

included the active constraint robot and the RIO robotic arm (MAKO Surgical 

Corp, Fort Lauderdale, FL, USA), which were used for unicompartmental knee 
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arthroplasties (UKAs). In 2006, Professor Justin Cobb et 

al released the first clinical series of the active constraint 

robot in the UK with promising results.16 Following this, the 

RIO robotic arm received US Food and Drug Administration 

approval in the US in 2008. Robotics has provided greater 

precision in bone resection and subsequent soft tissue bal-

ancing for UKA.17 UKA for end-stage degenerative disease 

of the knee limited to one compartment is a procedure that 

has shown vast improvement in short-term results with 

the use of robotics.18 These robot-assisted systems with 

haptic guidance for bone resection during UKA are the 

focal operative technique in this paper. Robotic-assisted 

systems have been shown to provide accurate positioning 

and alignment with real-time ligament balancing.18 During 

UKA, bone resection can be more accurately performed by 

haptic guidance provided to the surgeons by the robotic-

assisted systems.19 The same RIO hardware used for UKA is 

recently being employed with MAKO hip software for total 

hip arthroplasty (THA) as a new haptic feedback system. 

The system provides increased accuracy of the acetabular 

cup implant placement.20 The improved alignment and 

contact between the implant and bone avoids impingement 

and may improve functional outcome and longevity of the 

implant.21

Current orthopedic robotic systems
The main objective of this paper is to present the past and 

current robotic systems available in orthopedic surgery with 

a primary focus on the current and evolving technologies 

available for total joint arthroplasty. In this paper, we review 

studies evaluating the implementation of robotic systems into 

the orthopedic operating room.

Materials and methods
Robotics has been in the orthopedic operating room since 

1985. We first reviewed all published articles using PubMed 

and searching using the search terms “Robotics” AND 

“Surgery” in order to establish the history of robotic sys-

tems used in the surgical setting. We then only included 

articles in English. Following this, we narrowed the search 

to include “Orthopedics” to allow us to develop a timeline 

for the implementation of robots into this specific area of 

surgery. Finally, we narrowed our search by adding either 

total knee arthroplasty (TKA), THA, or UKA to the search 

criteria in order to investigate the specific history in relation 

to the systems of greatest interest to the authors. We then 

reviewed the data specific to each of these procedures and 

analyzed it accordingly, with a primary focus on human 

studies comparing the robotic systems to the corresponding 

conventional manual technique. No statistical analysis was 

performed in this review.

Active robotic systems
Active robotic systems are systems that complete the opera-

tion without surgical assistance. The manner in which this 

is achieved is by using preoperative computed tomogra-

phy (CT) scans and formulating an operative plan, which 

is input into a corresponding surgical software that instructs 

the robot exactly what to do and when.22 The procedure is 

monitored by the surgeon and can be stopped at any time 

for safety purposes.

The first active robotic system in orthopedics was 

the ROBODOC (Curexo Technology Corporation) in 

1992.23,24 The ROBODOC was initially designed in order 

to decrease the incidence of an inappropriately prepared 

implant cavity during a THA.25 This system consisted of a 

preoperative planning workstation (ORTHODOC) and the 

ROBODOC surgical system. The preoperative planning 

using ORTHODOC created a 3D image using CT scans and 

allowed for appropriate surgical scenarios to be foreseen. 

The ROBODOC has since seen an expansion in its appli-

cations to include assisting with TKAs as well. However, 

some feel that it has fallen out of favor within the orthopedic 

community due to conflicting data seen in regard to clini-

cal outcomes and the large initial investment required.26,27 

However, recently there has been a resurgence of interest 

and they are developing new software and hardware to fulfill 

the need of surgeons.

In 1997, another active system was introduced, the 

computer-assisted surgical planning and robotics (CASPAR) 

system.5 The CASPAR system automatically performed bone 

drilling from a preoperative plan based on CT data. This 

system is no longer available; however, it was considered 

to be a direct competitor to ROBODOC due to its similar 

function.

Haptic robotic systems
Haptic systems are also known as synergistic systems that 

combine the skills of the surgeon with the capabilities of the 

robot to give the surgeon control of the operation.24 Like the 

active systems, the haptic systems use preoperative CT scans 

to create a 3D model of the patients’ native anatomy. This 

allows the surgeon to plan the surgical procedure, includ-

ing which components to use and what sizes are required. 

Intraoperatively, certain predetermined reference points are 

identified that allow the software to orient the robot to the 
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anatomy of patients and compare it to the 3D representation 

created preoperatively. The difference between the haptic 

system and the active system is that the surgeon has complete 

control of the robot during the procedure, and the robot only 

intervenes by making suggestions and assisting in creating 

exact cutting zones.

There are currently two haptic robotic systems available 

for use in orthopedics. The first of these is the RIO robotic 

arm. The RIO was released in 2008 and is used to assist 

with the implantation of UKAs. The RIO arm is designed 

to allow the surgeon to execute the preoperative plan, whilst 

restricting the surgeons cutting zone by resisting any move-

ment outside of the planned cutting area during the milling 

procedure.5,24

The other haptic device that is currently available in ortho-

pedics is the Navio PFS (Blue Belt Technologies, CE Mark 

2012). The Navio PFS is similar to the RIO system in its use; 

however, the Navio PFS robot does not require a preoperative 

CT scan. Instead, this system uses intraoperative planning by 

tracking the drill tool during the procedure and having the 

drill bit retract when it leaves the planned cutting volume. 

However, there is limited information currently available in 

regard to this newly developed system.5,28 The other haptic 

system that has been developed but is no longer available 

is the Stanmore Sculptor (Stanmore Implants Worldwide 

Ltd), which was a direct competitor of the RIO system due 

to similarities between them.

Passive robotic systems
Passive robotic systems are also known as navigation 

systems. These navigation systems assist the surgeon 

with preoperative planning, simulation, and intraoperative 

guidance. The main difference between these systems and the 

aforementioned active and haptic systems is that there is no 

direct action taken by these systems.5 Furthermore, the main 

purpose of these systems is to help create 3D visualization of 

the patient’s anatomy to assist with the preoperative planning 

and provide detailed information intraoperatively, such as 

feedback on joint biomechanics to make recommendations, 

as well as provide information on the accuracy of the bone 

cuts that have been made.22,24

Discussion
Robotic unicompartmental knee 
arthroplasty
The abovementioned are the robotic systems that are currently 

increasingly used in the orthopedic community, although as 

of yet they are not the standard of care. To date, there are 

250 RIO robotic arms in use that have assisted with over 

50,000 UKAs and 8,300 THAs in the US since its inception 

in 2007. Whether or not this will lead to better outcomes 

will only become evident with time. However, short-term 

results published by Conditt et al have shown a promis-

ing 2-year failure rate of only 1.1% in 701 robot-assisted 

UKAs.29 Similarly, Plate et al reviewed the outcomes of 746 

robotic-assisted UKA and the influence of body mass index 

on revision rate.30 The overall revision rate to TKA was 5.8% 

at a mean follow-up of 34.6 months, which was comparable 

to the outcomes of conventional UKA in selected national 

registries (Table 1).30–33 These survivorship figures compare 

favorably to those found by Conditt et al29 and Goddard et al34 

when using robotic assistance while performing UKAs.

The other major supposed advantage of the RIO system is 

soft tissue balancing. Whiteside showed us that the success of 

knee surgery heavily relies on proper soft tissue balancing.35 

Furthermore, Plate et al demonstrated with 52 consecutive 

medial UKAs that real-time dynamic ligament balancing 

using robotic assistance reproduced the preoperative planned 

ligamentous balance with a variation of ,1 mm in 83% of 

their cases, and thus concluded that high level of accuracy 

and repeatability can be achieved using robotic assistance.18 

Utilizing virtual surgery allows the surgeon to fine-tune the 

prosthesis and bone resection to allow for change in soft tissue 

balancing. Multiple authors have also suggested that robotic-

assisted UKA leads to improved component positioning.19,36 

Lonner et al compared the radiographic outcomes of 31 con-

secutive robotic UKAs and 27 manual UKAs.19 The results 

showed that the average error in the coronal plane when 

Table 1 Outcomes of UKA in national registries compared to robotic-assisted UKA

Registry Years analyzed Number of UKAs 3-year revision rate (%) Revision rate at longest follow-up
Australia 1999–2012 36,971 6.0 16.3% (11 yrs)
New Zealand 2000–2011 6,621 4.7 12.1% (10 yrs)
Norway 2000–2010 3,928 ∼6.5 9.6% (10 yrs)
Sweden 2001–2010 3,195 ∼6 12.5% (10 yrs)
UK 2003–2011 11,125 4.72 10.82% (8 yrs)
Plate et al 2008–2011 746 5.8
Note: Adapted from Springer and the Knee Surgery, Sports Traumatology, Arthroscopy, 2015:doi: 10.1007/s00167-015-3597-5, Plate JF, Augart MA, Seyler TM, et al, Table 6. 
with kind permission from Springer Science and Business Media.30

Abbreviations: UKA, unicompartmental knee arthroplasty; yrs, years.
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using manual instruments was 2.7°±2.1° more varus for the 

tibial component, relative to the mechanical axis of the tibia 

compared to 0.2°±0.8° with robotic assistance. Furthermore, 

the varus/valgus root mean square error was 3.4° manually 

and 1.8° with robotic assistance. Malposition of components 

by as little as 2° during UKA has been shown to lead to fail-

ure because normal joint biomechanics are altered without 

achieving proper ligamentous balance, possibly leading to 

increased polyethylene wear and accelerated progression of 

degenerative disease of the uninvolved compartment.18,19,37–43 

We think that these aspects are particularly important for 

functional outcomes of UKA and will enable longer term 

survival of prosthesis.

There has been some concern that the introduction of 

robotic hardware into the operating room may affect its ste-

rility. However, despite the fact that robotics have been used 

relatively common since the early 2000s, there has been no 

increase in wound problems or infection rates. Kuper and 

Rosenstein44 reported in 2008 the incidence of infection 

following primary total joint arthroplasty to be between 

0.3% and 2%, and a more recent study by Mcann45 quotes 

the infection rate for total hip and knee replacements to be 

between 0.67% and 2.4%. Therefore, it appears that these 

concerns are probably unfounded. There is no doubt that 

introduction of a robot into the operating room creates bulky 

equipment into the operating milieu, but with the develop-

ments and advances taking place in this evolving technology 

era, they will continue to miniaturize the hardware and this 

would negate this concern. As a matter of fact, there are 

already companies working on the development of handheld 

robotic systems without the need for the bulky parent robot. 

Additionally, some have suggested that the improvements 

seen with robotic assistance are minimal and hence not worth 

the large economic investment.46 These arguments are valid; 

however, we believe that with the increasing use of these 

systems, surgeons will become more comfortable with them 

leading to greater improvements in radiographic and clinical 

outcomes. Furthermore, Pearle et al believe that the learning 

curve for the use of these robots may be shorter, especially 

for surgeons in the early stages of their training.47

Robotic THA
We have found that the largest limitation to THA is the 

improper implantation of the acetabular cup.20 This can lead 

to several complications, including dislocation, impinge-

ment, leg length discrepancy, accelerated wear, and revi-

sion surgery.48–53 Dorr et al suggested that the main reason 

why acetabular cup malposition is common is due to the 

 assumption and application of normality to the THA.54 

 Several authors have proven that hip anatomy is individual, 

and hence, applying general rules to each individual patient 

can result in improper cup positioning, leading to all the 

above-stated complications.55–59

Robotics was thought to be the ideal way of solving this 

problem. THA was one of the first orthopedic procedures 

that used robotics with the introduction of ROBODOC in 

1992.15,25 This was an active system that fell out of favor with 

surgeons due to their limited involvement in the surgery as 

well as results showing higher dislocation and revision rates 

than conventional methods.25,60 After this, there was a long 

period where only THAs were performed. More recently, 

there has been the introduction of a haptic feedback system 

by MAKO™ using the same RIO® hardware that is used 

for their UKAs, but utilizing MAKO™ robotic hip system 

software.

Dorr et al believe that the RIO® system will eliminate 

the improper implantation of the acetabular cup by pro-

viding the exact center of rotation of the acetabulum with 

preoperative planning and intraoperative robotic navigation.54 

This information will allow the correct femur bony neck cut 

to reconstruct the desired leg length and offset.

Leg length discrepancy is currently one of the most 

common orthopedic complications associated with medical 

litigation, and is associated with adverse short- and long-

term outcomes if .1 cm.61,62 El Bitar et al retrospectively 

analyzed 61 robotic-assisted THAs radiographically to assess 

for leg length discrepancy.63 In this study, the authors found 

the mean radiographic postoperative leg length discrepancy 

to be 2.5 mm, with 89.8% of measurements at 5 mm or less 

and 100% at 100 mm or less. Owing to these results, the 

authors concluded that the use of robotic assistance allowed 

for accurate and reproducible THA while minimizing the leg 

length discrepancy.

Domb et al performed a matched-pair control study 

to compare in a 1:1 ratio manual THA (50) and robotic 

THA (50) performed by a single surgeon.20 The authors 

analyzed the acetabular cup placement using TraumaCad™ 

software (build number 2.2.5350.0, 2012; Voyant Health®, 

Petach-Tikva, Israel) to calculate the number of hips in 

the safe zones of Lewinnek et al50 (inclination, 30°–50°; 

anteversion, 5°–25°) and Callanan et al52 (inclination, 

30°–45°; anteversion, 5°–25°). The results of this study 

showed that 100% (50/50) of the robotically placed acetabular 

cups were in the safe zone of Lewinnek et al,50 compared to 

only 80% (40/50) in the manual THA group. Furthermore, 

92% (46/50) of cups in the robotic THA group were in 
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the safe zone of Callanan et al52 compared to 62% (31/50) 

of the acetabular cups in the conventional THA group. Given 

these outcomes, the authors concluded that using robotic 

assistance for THA will produce more accurate and reproduc-

ible radiographic outcomes and hence lead to less short- and 

long-term adverse effects.

Despite the promising early radiographic results seen 

using the haptic robotic guidance for THA, further studies 

must be done. There are currently no clinical studies to the 

author’s knowledge evaluating the short- and long-term 

outcomes of robotically assisted THA; therefore, this is the 

obvious next step in order to begin to form a well-informed 

opinion on this system’s ability to improve clinical outcomes 

and longevity.

Limitations of robotics in surgery
Despite the promising results seen using robotics in the oper-

ating room, there are several limitations that must be taken 

into account. The first of these includes the increased opera-

tive setup time because of the need to prepare the robot and 

all of the associated accessories. One study (Hansen et al46) 

found that the use of robotic UKA versus manual UKA 

increased operative time by an average of 20 minutes. 

According to Hansen et al,46 this could represent an increased 

cost of US $2,466–$9,220. However, our experience using 

the robotic system has actually found the use of the robot 

to improve operative efficiency and decrease the average 

operative time. We believe this is due to the surgical team’s 

familiarity with the robot at our institution, and hence, the 

authors suggest that a rule to go by when the robotic system 

is first introduced is to always assure a clear unobstructed 

path be left between the robot and infrared markers during 

critical points of the procedure.

Robotic-assisted orthopedic surgery is currently only 

available at selected institutions. The implementation of 

this technology may warrant a structured training program 

for residency who may utilize robotic-assisted surgery in 

the future. It is the authors’ belief that the startup cost of a 

robotic system is justified with our experience; however, for 

smaller low volume surgical centers, the startup cost may be 

prohibitive. We believe that more consistent and long-term 

data favoring the use of robotic systems are required before 

the cost can be uniformly justified.

Limitations to review
The main limitation of this review is that the research that 

has been evaluated involves short- to medium-term data, 

with no long-term results. However, this is an unavoidable 

consequence to researching the newer innovations in the 

orthopedic community. Hence, the authors recommend that 

further studies with long-term results be completed when the 

data are available. A further limitation in this review is the 

sole use of PubMed as our database; therefore, it is possible 

that we excluded relevant studies. Although, we feel that the 

pertinent subject matter was analyzed.

Conclusion
Robotics has been a welcomed and inevitable addition to our 

armamentarium into the surgical milieu. As with all innova-

tions, the cost is of concern, but with wider acceptance and 

use, these concerns should certainly dissipate. Since so much 

of surgery is dependent on accuracy and repetition, we think 

it is inevitable that robotics will become a familiar asset in 

the operating room. The true value of robotics, however, will 

only be realized if we can show improved outcomes in the 

long term. We must continue to critically analyze our results 

to reach a definitive conclusion.
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