
© 2015 Tirassa et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

ChronoPhysiology and Therapy 2015:5 51–64

ChronoPhysiology and Therapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
51

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/CPT.S54526

Nerve growth factor, brain-derived neurotrophic 
factor, and the chronobiology of mood: a new 
insight into the “neurotrophic hypothesis”

Paola Tirassa1

Adele Quartini2

Angela iannitelli2–4

1National Research Council (CNR), 
institute of Cell Biology and 
Neurobiology (iBCN), 2Department 
of Medical-Surgical Sciences 
and Biotechnologies, Faculty of 
Pharmacy and Medicine – “Sapienza” 
University of Rome, 3italian 
Psychoanalytical Society (SPi), Rome, 
italy; 4international Psychoanalytical 
Association (iPA), London, UK

Correspondence: Paola Tirassa 
National Research Council (CNR), 
institute of Cell Biology and 
Neurobiology (iBCN), via di Fosso di 
Fiorano, 64, 00143 Rome, italy 
Tel +39 06 501 703 230 
Fax +39 06 501 703 331 
email paola.tirassa@cnr.it

Abstract: The light information pathways and their relationship with the body rhythms 

have generated a new insight into the neurobiology and the neurobehavioral sciences, as well 

as into the clinical approaches to human diseases associated with disruption of circadian 

cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely 

been used in psychiatric patients characterized by mood-related disorders, but the timing 

and dosage use of the various treatments, although based on international guidelines, are 

mainly dependent on the psychiatric experiences. Further, many efforts have been made to 

identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore 

serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-

related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, 

appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors 

suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and 

brain-derived neurotrophic factor show anatomical and functional link with the circadian 

system and mediate some of light-induced effects in brain. In addition, in humans, both 

nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, 

which correlate with the morningness–eveningness dimensions, and are influenced by light, 

suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The 

evidences of the relationship between the diverse mood-related disorders, with a specific 

focus on depression, and neurotrophins are reviewed and discussed herein in terms of their 

circadian significance, and potential translation into clinical practice.

Keywords: retinal ganglional cells, mesocorticolimbic circuits, chronotherapy, ocular eye drops 

administration, neurotrophins

Neuroanatomical correlates of time, light, 
and mood
In humans, circadian (from the Latin word “circa diem”, meaning “about a day”) 

variations characterize multiple physiological and psychological functions, includ-

ing core body temperature, endocrine and autonomic functions, sleep, mood, 

alertness, and cognitive performance (Figure 1).1,2 Sleep and wakefulness are 

the most obvious manifestations of the mammalian circadian system: during the 

day, light supports all the activities, while during the night, sleep is crucial for 

restoring the body and mind (cellular repair and mental recovery).2 The coordi-

nator center of this system is the suprachiasmatic nucleus (SCN) located in the 

ventral hypothalamus (HYP) which receives direct projections from the retina and 
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represents the master clock. All SCN neurons are coupled 

by autocrine/paracrine signals and by synaptic signals, and 

oscillate in coordinate manner to regulate the peripheral 

oscillators directly through the sympathetic and parasym-

pathetic pathways, and indirectly by hormones, cytokines, 

and growth factors secretion.3,4 Conversely, signals arising 

from the periphery reach the brain and drive feedback 

information from the entire body in order to adapt the 

SCN activity, and generate a coherent functional network 

to regulate behaviors and physiology.

Important features of the SCN clock are its resilience 

to photic cues and the shifting phase during the dark phase, 

which guarantee the adaptation to geophysical time or envi-

ronmental changes without generating a constant modifica-

tion during the light phase. This is possible because although 

light is the most potent entraining cue, not all the light signals 

from the retina are capable of phase entrainment. Indeed, 

only a restricted number of retinal ganglion cells (RGCs), the 

intrinsically photosensitive retinal ganglion cells (ipRGCs) 

in the inner retina layer, contribute to regulate the circadian 

system.5,6 These cells express the light receptor melanopsin 

also in the absence of any other retinal input, and regener-

ate their chromophore without involving other cells.7,8 They 

constitute ∼4%–5% of all RGCs, projecting to image-forming 

brain areas (M2-4-5 ipRGC types), also serving as a relay 

station for the rods and cones, and nonimage-forming (NIF) 

brain areas (M1 ipRGC type). Further, ipRGCs are most 

sensitive to short-wavelength (∼480 nm) blue light, remain 

functional in the absence of rods and cones, and are resistant 

to injury.8 These properties guarantee that even in blind-

ness or severe ocular pathological conditions, the ipRGCs 

might convey light signals to the brain, and indicate that the 

ipRGCs-mediated effects do not require the fine spatial acuity 

necessary for image formation.9

The NIF effects of light include heart rate and pupil diam-

eter, the entrainment of circadian rhythms, and modulation 

of locomotor activity, as well as high-level cognitive and 

emotional processes.10

NGF

NGF

NGF

BDNF
BDNF

BDNF

Daytime

Sleep

Cholesterol

Insulin

triglycerides

14:30

15:30

12:00

18:00

Day

Night

6:00

24:00

17:00

18:30

19:00

22:302:00

4:30

6:30

8:30

10:00

Melatonin secretion stops
7.30

Cortisol

ACTH
FSH LH

GH

Prolactin

TSH
ANP

Testosterone

Aldosterone,

Catecholamines

21:00
Melatonin secretion starts

Best coordination

Fastest reaction time

Greatest cardiovascular
efficiency and muscle strength

Highest body pressure

Highest body temperature

Bowel movement
suppressed

24-hour GH secretion

Deepest sleep

Lowest body temperature

Rise in body pressure

Bowel movement likely

High alertness

Figure 1 Circadian time structure in persons adhering to a normal routine of daytime activity (from ∼6–7 am to ∼10–11 pm) alternating with nighttime sleep and a pre- and 
post-sleeping time (blue dashed pattern areas).
Notes: The circadian rhythms of TSH, GH, prolactin, ANP in blood peak between bedtime and early hours of sleep, while ACTH, FSH, LH, testosterone, cortisol, 
catecholamines, and aldosterone peak near the end of nighttime sleep or start of daytime activity. The starting and stopping times of melatonin secretion are indicated by red 
arrows at 9 pm and 7.30 am, respectively. The lower and high levels of different body functions, including temperature, blood pressure, and cardiac and bowel activity, are 
indicated by orange arrows. The trend of ultradian NGF and BDNF levels in humans serum is also reported irrespective of sex difference.
Abbreviations: ACTH, adrenocortical tropic hormone; ANP, atrial natriuretic peptide; BDNF, brain-derived neurotrophic factor; FSH, follicle-stimulating hormone; GH, 
growth hormone; LH, luteinizing hormone; NGF, nerve growth factor; TSH, thyroid-stimulating hormone.
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Figure 2 Circadian, reward, and depression integrated network.
Notes: The major brain structures and pathways involved in light/timing signals (yellow), reward (blue), and depression (red) are shown. The SCN, the PiN, and the HB 
receive directly projections from the RGCs, but their activities are also modulated by the reward system via the vTA and the NAc. The circadian rhythm and functions 
of the hypothalamic nuclei, including awaking, alert, arousal, and feeding, are regulated by light signals through the SCN and by the reward system through the vTA/NAc 
network. In addition, ipRGCs project to the AMY, HB, and thalamus and PVN, thus influencing directly depression and anxiety. The complex network between the cortex, 
the forebrain, and the brainstem structures involved in mood, pain, timing, and reward contributes to integrate the internal and external signals into a mental/body rhythm, 
which characterizes an individual and identifies his specific physiological or pathological condition.
Abbreviations: ACC, anterior cingulate cortex; AMY, amygdala; BG, basal ganglia; DMHN, dorsomedial hypothalamic nuclei; HB, habenular nucleus; HiP, hippocampus; HYP, 
hypothalamus; ipRGCs, intrinsically photosensitive retinal ganglion cells; LH, lateral hypothalamus; NAc, nucleus accumbens; NTS, nucleus of the solitary tract; OC, optic chiasm; 
PAG, periaqueductal gray; PB, parabrachial nucleus; PFC, prefrontal cortex; PiN, pineal gland; PvN, paraventricular nucleus; RGCs, retinal ganglion cells; S1 and S2, somatosensory 
cortex; SCN, suprachiasmatic nucleus; SO, supraoptic nucleus; vLPO, ventrolateral preoptic nucleus; vTA, ventral tegmental area.

Retrograde tracing experiments in animals and neuroim-

aging analysis in humans helped to identify their neuronal 

correlates, confirming that ipRGCs project directly to the 

SCN through the retinohypothalamic tract, but also show a 

widespread brain projection pattern from and to the SCN, 

which includes other hypothalamic nuclei, thalamic, stri-

atal, brainstem, and limbic structures (Figure 2).7,11,12 Direct 

projections of ipRGCs to the amygdala (AMY) have been 

described in rodents, and a retina–AMY functional pathway, 

passing through the superior colliculus and thalamus, has also 

been found in humans.13 More, the AMY, the hippocampus 

(HIP), and the HYP are secondarily influenced by the NIF 

system by the locus coeruleus, which also receives projec-

tions from the SCN.13,14 These brain areas, which represent 

the neural circuits for the emotional and nonvisual cognitive 

information processing, and also for the circadian regula-

tion of arousal, are selectively and wavelength dependently 

activated by acute light exposure, showing an increase in 

activity following blue light.10,15

Speculatively, light inputs to SCN also involve the dopamin-

ergic mesocorticolimbic pathway, also called the reward circuit, 

which is also indicated as the common neuroanatomical and 

functional correlate of pain and depression.16 The core of the 

brain reward/aversion system is the ventral tegmental area and 

its projections to the nucleus accumbens (NAc), which sends 

the information to the subcortical limbic areas, like the AMY, 

the HIP, and the HYP, and then to the prefrontal cortex and the 

anterior cingulate cortex for processing.17 Brain endogenous 

opioids and dopamine (DA) pathways mainly regulate the activ-

ity of NAc neurons and the release of DA contributing to shape 

the behavioral response to rewarding or aversive stimuli.18

The diurnal variation of DA transmission in the meso-

corticolimbic structures is dependent on the SCN and clock 

genes expression, thus supporting a functional correlation 

between the anatomical substrates for mood and mood-related 

symptoms, reward, and light stimuli.19,20 An integrated view 

of the anatomical network of NIF, mood, and reward signals 

is reported in Figure 2.
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Brief NGF and BDNF neurobiology
The nerve growth factor (NGF) was discovered in the 1940s 

by the Nobel Price winners Rita Levi-Montalcini and Stanley 

Cohen, and it represents the first factor showing survival and 

differentiative effects on neuronal cells.21 Nowadays, NGF is 

known to be a member of a group of molecules sharing struc-

tural and functional activities, including the brain-derived 

neurotrophic factor (BDNF), and that are collectively named 

neurotrophins (NTs).22 Both NGF and BDNF are involved in 

the regulation of central nervous system development, and 

extend their survival, protective, and regenerative action on 

immature and mature neuronal cells during the entire life 

span, and even in pathological conditions.22

In mammalian brain, these two NTs and their receptors are 

distributed in all the forebrain areas. Concerning NT mRNAs, 

they were originally localized in the HIP and cortex, and lately 

in the striatum, the HYP, the brainstem, and pituitary. This dem-

onstrated the synthesis of NTs in the brain, further suggesting 

how their local production might serve, beyond other things, 

to regulate the activities of interneurons, and/or the release of 

other factors/hormones via autocrine/paracrine mechanism (as 

reviewed by Sofroniew et al,22 Aloe et al,23 and Cirulli et al24).

Specific tyrosine kinase receptors, the TrkA and TrkB, 

mediate, respectively, most of the NGF and BDNF actions 

on their targets, but all the NTs also bind to a membrane 

glycoprotein p75 receptor (p75NTR), which can activate Trk-

convergent or Trk-divergent pathways.25 Indeed, NTs binding 

to Trks alone or Trk/p75NTR conjointly trigger a complex net-

work of intracellular signaling cascades, including induction 

of transcription factors (eg, c-fos), different classes of serine/

threonine-selective protein kinases (eg, mitogen-activated pro-

tein [MAP] kinases), as well as intracellular tyrosine kinases, 

which result in survival and trophic effects.

Different intracellular signals can be mediated by 

p75NTR, which can activate survival through the nuclear 

factor-κB pathway, and antagonizes the actions of TrkA 

through the JUN N-terminal kinase and RHOA pathways. 

Moreover, it has been found that the precursor NGF and 

BDNF forms also exert biological activity, and chiefly, acti-

vate apoptotic signals in neurons by binding the p75NTR/

sortilin complex.12,26

In line with this, the increased levels of proNTs associated 

with an unbalance of Trks/p75NTR are considered as part of a 

pathological cycle, which induces neuronal degeneration and 

results in impairment of brain and cognitive functions.27,28

Besides their action as survival factors, NGF and BDNF 

affect neurotransmitter synthesis and release influencing 

the activity-dependent synaptic plasticity, but also take part 

in the reorganization of the neuronal network induced by 

memory and stress, as well as in depression and following 

drug administration.29,30

The ability of NTs to stimulate survival of neuronal pre-

cursors and neurogenesis and modulate gliogenesis further 

contributes to support the NGF and BDNF involvement in 

the regulation of new born cells and connections generated by 

experiences and adaptation, and in the repair and connectivity 

rearrangement in pathological conditions.31

It is relevant to note that NGF and BDNF are synthesized 

in an activity-dependent manner and released upon neuron 

depolarization, and that they retrogradely and anterogradely 

act on presynaptic and postsynaptic neurons, respectively, 

but also exert autocrine and paracrine influence on the sur-

rounding cells.29 Further, it has been observed that NGF is 

able to stimulate BDNF synthesis and/or release in vivo and 

to induce BDNF and NT3, another NT, release in vitro as a 

consequent of TrkA activation.32,33

On the contrary, BDNF-induced release of NT3 in PC12 

cells is mediated by p75NTR activation but not by Trks, 

indicating that the changes in one NT expression might 

affect the synthesis of the other NTs, and that NTs release 

is dependent on the relative expression of Trk/p75NTR.34 

In addition, the NTs-induced enhancement of their own 

synthesis occur in autocrine or paracrine manner implying a 

potential feedback mechanism relevant to synaptic plasticity 

and activity-dependent functions such as memory formation, 

learning, and adaptation to environmental change.

To strength this notion, the modification of NTs and 

NT receptors distribution in the brain, as well as changes in 

NGF or BDNF concentration in serum, is strictly associated 

with cognitive and emotional performance in experimental 

animals and humans, and with antidepressant (AD) and/

or physical therapies supporting the concept of the “neu-

rotrophic hypothesis” of mood-related disorders.

Furthermore, in the past years, the emerging contribution 

of visual system in the regulation of mood and cognition 

has offered the possibility to prospect a more integrated 

view of the NTs in affective neuroscience, and in the clini-

cal approach to mood-related disorders, which includes the 

anatomical and functional interplay between the sensitivity 

and body response to light and the NTs anatomical and 

functional pathways.

NGF and BDNF in the retina– 
brain pathways
A large amount of investigations demonstrated the role played 

by NTs in the development and functional maintenance of 
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the visual system.35 Both NGF and BDNF and their receptors 

are expressed in the retina, optic nerve, the visual cortex, 

and the geniculate nucleus, where they regulate the prolif-

eration, neurite outgrowth, and survival of cells.36 RGCs 

depend on the retrograde transport of NTs produced by the 

central targets, although both NGF and BDNF also exert 

paracrine and autocrine actions in the retina and the retinal 

recipient areas.37,38 Both exogenous and endogenous NTs 

can be anterogradely transported and therefore influence 

the survival of postsynaptic neurons and the development 

of synapses.38 Peculiarly, in RGCs, the NTs are not rapidly 

degraded after internalization, but they are differently sorted 

by a mechanism regulated by the Trks, so that NGF is mainly 

targeted to lysosomes, while BDNF is recycled to the surface 

membrane. NT receptors are also rapidly recycled to the 

cell surface, implying a regulation of receptor densities, and 

thus having a significant impact on the signals of survival 

or differentiation.39,40 The anterograde transport and the 

mechanism of NTs release at the postsynaptic levels also 

influence NTs produced in the retina, and in turn, the same 

retina/optic nerve pathways.

In this context, it is relevant that NGF and BDNF are 

synthesized in the SCN, and changes in circadian rhythmicity 

are observed when they are injected into the SCN or intracere-

broventricularly, suggesting to be implicated in the regulation 

of the circadian clock.41–45

Historically, the anatomical evidence that demonstrated 

a dense expression of p75NGFR in the SCN was thought to 

explain the observed NGF, and subsequently, BDNF effects.46 

Actually, the functional relevance of p75NGFR in the SCN is 

controversial, since the p75NTR in this nucleus is localized 

on the axon terminals of RGC and basal forebrain neurons 

and does not identify vasoactive intestinal polypeptide (VIP) 

neurons as initially suggested by Kiss et al.47 Null mutation 

of p75 gene in mice does not alter circadian rhythms of 

behaviors in constant dark but decreases phase shifts induced 

by brief pulses of light, indicating that the lack of p75NTR 

might be compensated by other mechanisms.48

Indeed, studies using the lesions of cholinergic projections 

to the SCN originating in the basal forebrain, and particularly 

in the nucleus basalis of Meynert and septum – the prefer-

ential NTs-responding neurons in the brain – demonstrated 

a role of p75NGF-cholinergic neurons in the regulation of 

SCN functions. However, these studies also show that residual 

p75-immunoreactive terminals from the retina – which 

might be less accessible to toxin-induced lesion – and/or 

non-cholinergic retinohypothalamic (RTH) fibers could be 

necessary to maintain a functional circadian clock.49,50

VIP and Calbidin d28k neurons, for example, are 

not affected by cholinergic toxin injection in the SCN or 

intracerebroventricular injection, but since NGF is able to 

stimulate VIP synthesis and to protect VIP neurons from 

damage, the possible involvement of Trk-mediated actions 

is conceivable.49–52

Further, glutamate and gamma-aminobutyric acid 

transmission have been demonstrated to contribute to 

the NTs-mediated effects on visual system, and to medi-

ate the light-induced activation of c-fos, extracellular 

signal-regulated kinase (ERK) 1/2, and clock genes in the  

SCN.53,54

NTs also affect the response to light by the activation 

of c-fos, and ERK1/2 in the SCN.55 These data associated 

with the evidences that both the TrkA and TrkB receptors 

are expressed in the SCN, and that the K252a – an inhibitor 

of the Trk family of NT receptors – blocks light-induced 

phase shifts when injected in the SCN, further support the 

functional involvement of Trk receptors in the light-induced 

response in brain.45,55

It is worth to note that the Trk receptor expression is 

regulated by NTs, and that in turn, Trks can determine the 

biological outcome of p75NTR signaling, implying that 

the variation of local NGF and BDNF levels in SCN might 

correspond to changes in the receptor-mediated light signal 

transmission.56

To strength this notion, Baeza-Raja et al57 have recently 

observed that the expression of NTs and their receptors 

fluctuates in SCN during the light/dark cycle. Chiefly, 

these authors show that while the expression of NGF, 

p75NGFR, and TrkA oscillates in phase with clock genes 

during the 24 hours, the TrkB levels are unchanged. On 

the contrary, BDNF shows a different pattern with higher 

expression levels during the subjective night and the 

lower ones during the subjective day. The circadian NTs 

signaling pattern is also observed in the liver, indicating a 

functional link between the SCN activity and the regulation 

of peripheral NTs.57

Interestingly, the NGF and BDNF levels in the serum 

and saliva of healthy men and women are also subjected to 

daily fluctuation, and both the saliva and serum NT levels 

can be modulated by light.58 These data further indicate a 

correspondence between the brain and the peripheral release 

of NTs, and might support their role as physiological markers 

of the light-induced rhythmicity.

Similar to what occurs in SCN, a circadian pattern with a 

night peak of BDNF protein is also observable in the retina, 

geniculate nucleus, and the visual cortex.32,59 These data 
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suggested that the low levels of BDNF during the subjective 

day might be not sufficient to activate the TrkB cascade, and 

therefore unable to transmit entraining light signals by retina 

pathways, or in other words, the BDNF secreted at night may 

be required for light-induced phase shifts.

On the other hand, the NGF trend shows a pick at the 

subjective day (CT8), and during the night (CT20), and fol-

lows the profile of clock genes, indicating a direct relationship 

between NGF and the SCN activity. In line with this, NGF 

induces a phase shift of free-running rhythms similar in both 

direction and circadian phase dependence to light stimuli, 

when injected at different time points of the circadian time 

implying that NGF stimulates neuronal pathways, which are 

coherent with light stimuli.43,44

The recent evidences that NGF administrated on ocular 

surface is able to exert effects in the brain might indirectly 

support this suggestion. Indeed, it has been demonstrated 

that when ocular administrated in form of eye drops (oNGF), 

NGF – probably through a trans-conjunctival/trans-scleral 

route – reaches the retina and the optic nerve and produces 

effects in the primary visual areas of visual cortex and 

geniculate nucleus.32

Subsequent studies revealed that oNGF can extent its 

trophic, differentiative, and regulatory actions on several 

forebrain structures, and similar to intracerebroventricularly 

injected NGF, oNGF regulates acetylcholine synthesis, 

induces recovery of damaged brain cholinergic neurons, and 

stimulates neurogenesis.28,31,32,60

Although different anatomical connections between the 

eyes and the brain, including those via nasal and nasolac-

rimal ducts, could mediate the effects of oNGF, the results 

of studies using radiolabeled NGF and c-fos expression as 

markers of neuronal activation support the involvement 

of retinal pathways. Indeed, NGF-I125 is found in the 

retina and optic nerve when administrated as eye drops 

indicating the transport through the RGC axons as also 

previously reported.32,39 The time-dependent activation of 

primary visual areas has been confirmed by the analysis 

of c-fos distribution, which also reveals the activation of 

several limbic areas, including the SCN, the supraoptic 

nucleus, and the paraventricular hypothalamic nucleus, 

demonstrating the involvement of the retinohypothalamic 

pathways.61

In parallel to increased NGF levels and the effect on 

the Trk and p75NTR expression, oNGF also stimulates 

the BDNF at both mRNA and protein levels in the retina 

and results in changes in BDNF in the HIP, septum, and 

HYP further supporting the central effects of ocular-

applied NGF, and a possible cross talk between BDNF 

and NGF signaling in the retina and retinal recipient brain 

areas.28,32,60

Although future studies are necessary to better charac-

terize the effects of oNGF on the SCN, and to disclose its 

potential role in the regulation of the circadian clock, it is 

possible to speculate that through its direct or indirect actions 

on other factors known to regulate light response, including 

BDNF, treatment with oNGF might also be useful in reset-

ting the alteration of circadian rhythms and behaviors in 

pathological conditions.

NT-related hypothesis of mood-
related disorders
In the past 30 years, a large amount of data from animal 

neurobehavioral models, human postmortem studies, brain 

imaging investigations, and genetic researches have dem-

onstrated the involvement of NTs in depression, NGF and 

BDNF in particular, and generated the “neurotrophic theory” 

of affective spectrum disorders.

This theory has initially been based on the assumption that 

the abnormal neuronal and glial densities and architecture 

observable in patients with psychiatric disturbances, includ-

ing depression, might depend on reduced neurotrophic sup-

port, and thus on the NGF- and BDNF-mediated protective 

and reparative actions.62–65

Studies on animal models support this hypothesis demon-

strating the correlation between NGF and BDNF expression 

in brain and depressive behaviors, the response to AD treat-

ments, and the sex-related differences in the vulnerability 

to depression.66

The study of pathological effects of acute and chronic 

stress, and environmental changes have also highly con-

tributed to disclose the role of NTs as markers and/or risk 

factor for mood disorders and generate an integrated model 

in which the NTs-induced brain plasticity and connectivity 

rearrangement are directly involved in the brain adaptation 

and resilience and show that stimuli of psychological nature 

might be implicated in the mechanisms triggering NGF and 

BDNF release.23,67

The model of early life stress in animals, including 

maternal separation, has also been used to demonstrate the 

role of NTs in the development of anxiety-related behaviors, 

and therefore to identify NGF and BDNF as biomarkers for 

emotional and mood disorders associated with events occur-

ring during childhood.24,62,68 Studies on humans contribute to 

consolidate the “neurotrophic model” by linking neurotrophic 

factors with the mechanisms of action of drugs used for the 
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treatment of these disorders and the epigenetic and genetic 

susceptibility to develop mood disturbances.69–71 In particular, 

patients with major depression show significant lower NGF 

and BDNF levels in serum, and changes in plasma and serum 

NGF and BDNF occur after AD treatments among major 

depressive disorder patients.72,73

Genetically, a functional variant of BDNF at codon 66 

(val66met) has been identified with the Met allele that results 

in abnormal intracellular packaging and secretion of BDNF, 

and it is associated with poorer episodic memory and reduced 

hippocampal N-acetyl aspartate.74,75 This BDNF val allele is 

reported to be a possible risk locus for bipolar disorder, but stud-

ies in Asian populations have not observed this association.76,77 

Jiang et al found that met66 variant is a risk allele for anxiety, 

while a single-nucleotide polymorphism in the BDNF exon I 

promoter that decreases promoter activity, -281 C4A, may be 

protective against anxiety disorders and major depression.78

Like BDNF met66, also, NGF val35 is thought to affect 

intracellular processing and secretion of the NGF protein, 

and NGF rs6330 is associated with changes in NGF and 

NGF receptors in the plasma relatively to the homozygotes 

CC or CT and TT genotypes, in both psychiatric patients and 

healthy subjects.79

Sex differences in the daily NGF and BDNF levels in 

serum of healthy subjects and psychiatric patients further 

support the role of NTs in the regulation of physiological 

and psychological dimensions of mood.80–82

Chronopathology and 
chronopharmacology of mood-
related disorders
The first studies on the role of the chronobiological factors 

in mental diseases were performed in the 1970s.83 However, 

just in the past 30 years, research was developed, and more 

relevant results were in the concept of seasonality and the 

demonstration of a relationship between circadian patterns 

and psychiatric disorders. Seasonal fluctuation of mood 

is observed in patients affected by the main psychiatric 

disorders, even though it is particularly evident in subjects 

affected by mood-related disorders.84 In Diagnostic and 

Statistical Manual of Mental Disorders, fifth edition, “sea-

sonal pattern” is a specifier applied to the pattern of major 

depressive episodes or to the presence of at least one type of 

episode (mania, hypomania, depression) within the diagnosis 

of recurrent major depressive disorder or bipolar disorder, 

respectively.85 Its essential feature is the onset and remission 

of the various episodes at characteristic times of the year. 

In most cases, major depressive episodes begin in fall and 

winter, directly related to day length decreasing, and remit in 

spring, as day length begins to increase.85,86 These episodes 

are often characterized by prominent energy, hypersomnia, 

overeating, weight gain, and a craving for carbohydrates.85 In 

the study by LeGates et al, a direct association between dimin-

ished light exposure and mood functions was demonstrated. 

What is more, this association was clearly mediated by the 

ipRGCs.87 With regard to bipolar disorder, a profound switch 

in mood between periods of mania and depression has also 

been reported.88 As for major depression, in most cases, 

shifts to the depressive phase have been observed to begin in 

autumn as day length decreases and often persist throughout 

the winter. By March, when day length begins to increase, 

hypomanic/manic episodes become more prevalent, a phe-

nomenon nicknamed “March madness”.86,89,90 At the basis of 

these two seasonal forms of depression, two major hypoth-

eses have been postulated: altered pineal gland melatonin 

daily rhythms and circadian phase shift (for a review, see 

LeGates et al86). Apart from seasonal forms of depression, 

monthly and circadian biological clock impairment have also 

been described in this disorder. Circadian disturbances of the 

main physiological functions have widely been reported in 

patients with nonseasonal depression, including increased 

mean core temperature and decreased period amplitude.91–93 

Compared with healthy subjects, patients with depression also 

show a circadian oscillation in plasma cortisol, norepineph-

rine, and prolactin, as well as abnormal patterns of melatonin 

secretion.94,95 With regard to depressive symptomatology, the 

majority of patients have been shown to present a daily pat-

tern of symptoms, usually more severe in the morning. Up to 

90% of these patients report an increase in nocturnal activity, 

which is accompanied by a decrease in sleeping time and the 

extended exposure to artificial light at night, while only a 

minority of them (6%–29%) report hypersomnia.96 Objective 

sleep measures are also disturbed.97 A phase-advance pattern 

of rapid-eye-movement activity and changes in dream experi-

ence are frequently observed, and as theorized by Freud, “… 

we must recognize in the dream, the guardian of sleep …”, 

a biological function and signal of psychophysical balance 

in sleep maintenance.98,99 Depressed patients also differ in 

sustained alertness over the 24-hour cycle, specifically with 

a reduced daytime alertness, compared with normal.100 More-

over, diurnal patterns of motor activity tend to differ between 

patients with mood disorders and healthy subjects.101 Reaction 

time and cognitive performance are impaired in morning test-

ing but not evening testing.102

Of note, circadian disturbances have been demonstrated to 

affect treatment response and clinical outcome, and this is not 
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only in depression.103 Indeed, many drugs show effects/adverse 

events that vary over the 24 hours of a day, and these varia-

tions represent true circadian rhythms in response (eg, they 

persist in constant environmental conditions). Besides, drug 

kinetics that govern disposition of drugs (and even target organ 

sensitivity) show circadian rhythms, and at least some of them 

are under the control of molecular clocks.104

To date, chronotherapeutics has been shown to be particu-

larly effective in the treatment of allergic rhinitis, arthritis, 

asthma, cancer, myocardial infarction, peptic ulcer disease, 

and stroke.105 In the treatment of depression, the word “chro-

notherapeutics” has taken on a broader significance referring 

not only to a treatment scheduling corresponding to a specific 

patient’s biological clock but also to a controlled exposure 

to various environmental stimuli and medications acting on 

biological (circadian) rhythms, in order to achieve targeted 

therapeutic effects.84

A circadian rhythm in the effects/adverse events of 

a number of mental health medications, including ADs and 

mood stabilizers, has been demonstrated.106 These rhythms 

seem to represent endogenous circadian rhythms resulting 

from the rhythmicity in drug susceptibility of the brain, 

which is not dependent on drug kinetics but on rhythms 

of neurotransmitters, receptors, and second messengers.106 

Back in 1978, the potent norepinephrine uptake blocker 

lofepramine was shown to present a greater AD effect dur-

ing a 3-week course of therapy when administered at 12 am 

than when administered at 8 am or 4 pm.107 In the study by 

Nagayama et al, the AD effect of the 5-HT blocker clomip-

ramine during 4 weeks of therapy varied depending on the 

time of administration.108 In this case, administration at noon 

was more effective than administration in the morning or in 

the evening. It has been observed that the norepinephrine and 

5-HT systems in the brain present diverse circadian rhythms, 

with a peak in the release of these two neurotransmitters 

during the middle dark period for the former and at noon 

for the latter. This difference could be at the basis of the 

24-hour rhythm change in the efficacy of the two tricyclic 

ADs, although the literature contains only scattered reports 

that have failed to confirm a circadian rhythm in the effects/

adverse events of the various ADs.106,109,110

NGF and BDNF as 
neuromodulators of 
chronotherapeutics of depression
As mentioned earlier, in the treatment of depression, 

chronotherapeutics also refers to interventions known to 

modulate the circadian clock. In a microarray study including 

12,000 transcripts, Li et al observed widespread changes 

in cyclic gene expression in six regions of postmortem 

brain tissue of depressed patients matched with controls.111 

Specifically, they showed an abnormal phasing of circadian 

gene expression in patients, with the most robust change 

seen in the anterior cingulate. In fact, interventions able to 

induce phase shift (generally a phase advance) in circadian 

rhythms have been demonstrated to have AD effects.112 

These interventions encompass both non-pharmacological 

and pharmacological strategies. Among the former, sleep 

deprivation therapy (keeping patients awake for ∼36 hours), 

sleep phase advance (setting sleep time earlier and advanc-

ing bedtimes over subsequent nights), and morning bright 

light therapy (10,000 lux) have been shown to have the 

most robust AD properties.112–115 Their effect is claimed to 

be rapid but transient, however, with the possibility to be 

stabilized by combinations of the different chronotherapeutic 

interventions among themselves and/or with conventional 

psychiatric treatments (for a review, see Wirz-Justice113). 

In this regard, adjunctive triple chronotherapy (combined 

total sleep deprivation, sleep phase advance, and bright light 

therapy) has recently been demonstrated to induce a rapid 

improvement in depressive symptoms in drug-resistant mood 

disorders and acutely suicidal depressed in-patients without 

early relapse.116,117 Remarkably, all these interventions have 

been shown to directly act on clock gene machinery. Studies 

of clock gene expression in the mice brain suggest that sleep 

deprivation can produce rapid (within hours) alterations.118,119 

Sleep phase advance, morning bright light therapy, and morn-

ing “blue” light stimulation have also been reported to affect 

daily clock gene expression measured in peripheral human 

blood.120,121 Regarding pharmacological strategies, there is 

evidence that the selective serotonin reuptake inhibitor drug 

fluoxetine modulates the activity of the circadian biologi-

cal clock, via phase advance in the firing of SCN neurons, 

further increasing the expression of various clock genes in 

the mice brain.122,123 Agomelatine, a novel dual melatonergic 

and specific serotonergic AD, can also cause phase-advance 

shifts in both mice and hamster brain when administered at 

specific times of day.124–126 Potential actions of agomelatine 

on clock gene expression have not been reported so far. Using 

neuronal cell cultures, low doses of the rapid-acting AD 

ketamine, a noncompetitive N-methyl-d-aspartate receptor 

antagonist, have been shown to blunt the amplitude of the 

transcription of different clock genes.127 More recently, one 

study has reported the effect of escitalopram on circadian 

genes in subjects with major depressive disorder.128 Of 

note, phase-advance shift of all these non-pharmacological 
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Figure 3 Schematic illustration of the hypothesis of NGF and BDNF involvement in the mechanism of action of ADs.
Notes: The inhibition of GSK-3 and HDACs is indicated as the two main pathways through which ADs regulate the transcription and expression of factors critically 
involved in neuroprotective, neurotrophic, anti-inflammatory, neurogenic, and angiogenic functions, thus resulting in the effective treatment of mood disorders. Along with 
these factors, NGF and BDNF might contemporaneously be regulated by, and induce, GSK-3 inhibition, and/or potentiate the effects of ADs action by activating MeK/eRK 
pathways. The ADs/neurotrophin signaling cascade is suggested to influence the different aspects of mood disorders, including circadian rhythm alteration, by stimulating 
neuronal survival and plasticity, inducing neurogenesis, and counteracting the pathological mechanisms, which may trigger and/or aggravate mood alterations, such as brain 
inflammation and drug abuse.
Abbreviations: ADs, antidepressants; BDNF, brain-derived neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; GSK-3, glycogen synthase kinase-3; 
HDACs, histone deacetylases; MeK/eRK, mitogen-activated protein kinase kinase/extracellular signal-regulated kinase; MMP, matrix metalloproteinase; NGF, nerve growth 
factor; Pi3K, phosphatidylinositol-3-kinase; veGF, vascular endothelial growth factor; vPA, valproate.

and pharmacological interventions is contrasted with those 

of the mood stabilizers lithium and valproate, which can 

induce a phase delay.129,130 However, in clinical studies, both 

lithium and valproate have their principal effect on mania 

(and prevention of manic relapse) rather than acute depres-

sive states.131 Lithium has also been shown to modulate 

multiple members of clock gene machinery.132 Noteworthy, 

glycogen synthase kinase-3β (GSK-3β), a key component 

of the mammalian circadian clock able to affect circadian 

rhythm generation by modifying the stability of circadian 

clock molecules, has been indicated as a common molecular 

target for many of the aforementioned chronotherapeutic 

interventions.133,134 Sleep deprivation response rates have 

been reported to be higher in depressed patients who carry 

a gene promoter polymorphism (rs334558) for decreasing 

GSK-3β activation.71,113 Lithium, valproate, serotoniner-

gic ADs, as well as agomelatine and low-dose ketamine 

increase GSK-3β phosphorylation/inactivation.134 Through 

the inhibition of GSK-3β via multiple signaling cascades 

such as the phosphatidylinositol-3-kinase (PI3K)/Akt and 

the MAP kinase kinase (MEK)/ERK pathways, all these 

treatments are hypothesized to regulate the transcription and 

expression of different neurotrophic, angiogenic, and neuro-

protective proteins (for a review, see Chiu et al135). Valproate 

has also been shown to act through the inhibition of histone 

deacetylase.136 Both PI3K/Akt and MEK/ERK pathways 

have, as a downstream target, the cyclic adenosine mono-

phosphate response element transcription factor (CREB). 

When activated through phosphorylation, CREB modulated 

the expression of neurotrophic and cell-protective proteins, 

such as BDNF, NGF, and Bcl-2.137,138 Interestingly, BDNF 

and NGF have been reported to function as both downstream 

molecules resulting from the inhibition of GSK-3β and 

upstream signals able to inhibit this molecular pathway.139 

Based on these evidences, it is possible to hypothesize an 

integrated AD/NTs cascade which might influence the dif-

ferent aspect of mood disorders, including circadian rhythm 

alteration, as illustrated in Figure 3. Indeed, a plethora of 

studies have reported significantly lower BDNF and NGF 

peripheral levels in patients with major depression.69,140 

Some clinical studies have evaluated the changes in plasma 

or serum BDNF and NGF levels before and after AD treat-

ments among patients with major depressive disorder, and 

most studies report increases in the BDNF levels following a 

course of AD treatment.73 With regard to NGF, almost all the 

researches have revealed no statistically significant difference 

before and after treatment.72 With regard to pharmacological 

and non-pharmacological chronotherapeutic interventions, 
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escitalopram, ketamine, lithium, and sleep deprivation have 

all been demonstrated to increase BDNF peripheral levels 

in patients with major depression.141–144 The improvement 

of depressive symptoms with escitalopram coincided with 

significant improvements in the recall of both the quantity 

and quality of dreams, and dreaming, therefore, could be 

considered a biomarker of the efficacy of AD therapy, also for 

its evidence of chronobiological trends.98,145 Animal models 

have also confirmed a BDNF change in rat HIP following 

agomelatine, while treatment with escitalopram affects 

BDNF expression in HIP and NGF in the cortex but not in 

other brain areas and serum.146,147 In a rat model of depression, 

Angelucci et al found that treatment with lithium alters the 

concentrations of NGF and BDNF in the HIP, frontal cortex, 

occipital cortex, and striatum, further supporting the role of 

NTs in the mechanism of action of ADs.148

With regard to non-pharmacological chronotherapeutic 

treatments, sleep deprivation in depressed patients has 

showed to produce a rapid increase in BDNF levels after 

a single treatment, and affect diurnal serum profile in 

responding patients.144,149 Light therapy has also showed to 

affect the diurnal trend of BDNF in the serum and saliva of 

young healthy women, and serum BDNF concentration in 

both men and women correlates with the sunshine hours per 

week throughout the year in both men and women, and with 

the seasonality of depressive symptoms.58,150 No data on the 

effects of sleep deprivation on the NGF diurnal and/or noc-

turnal profile in humans are available at present. However, 

studies in animals demonstrate that selective sleep depriva-

tion during the rapid-eye-movement sleep phase alters the 

expression of NGF and BDNF in brain of rodents, and that 

the effects of sleep deprivation on the NGF expression in 

somatosensory cortex of rats are influenced by the afferents 

input.151,152 Recently, Hight et al found that the expression 

of NGF in somatosensory cortical neurons is high during 

the dark phase, while it is low during the light phase.153 

On the contrary, high levels of NGF are expressed in the 

visual cortex during the light phase, further supporting the 

modulation of NGF expression in brain pathways activated 

by light stimuli, and therefore that changes in circulating 

or brain NGF and BDNF levels might reflex the light/dark 

cycle. Remarkably, a daily fluctuation of NGF and BDNF in 

human serum and plasma, also related to sex, has been found 

in healthy subjects.82 For example, diurnal BDNF rhythm 

was recently demonstrated in healthy men, where plasma 

BDNF and cortisol trends display highest concentrations in 

the morning, followed by a substantial decrease throughout 

the day, with lowest values at midnight.154 In women, the 

BDNF diurnal variations are also associated to the cortisol 

rhythm, but they are further influenced by ovarian function 

and contraceptive therapy.155 At variance, Piccinni et al did 

not find diurnal variation of BDNF in the plasma of women 

in either the follicular or luteal phase of the menstrual cycle, 

while variation in plasma BDNF levels was detected in men, 

with the peak at 8 am and nadir at 10 pm.156 BDNF fluctua-

tion in serum and saliva was also found in healthy women.58 

In agreement with Pluchino et al,155 this study shows that 

both the saliva and the serum BDNF levels in young women 

in their follicular phase of the ovarian cycle tend to decrease 

from morning to night and also shows that BDNF trend cor-

relates with morning–evening personality traits and habits, 

and it is affected by light therapy. These data have recently 

been reconfirmed by Tirassa and Iannitelli, in a study further 

exploring the sex difference in the daily trend of NGF and 

BDNF serum levels (unpublished). Specifically, the study 

shows that the BDNF levels in men increase from morning 

to night, while daily NGF presents the “V” shape trend 

already reported by Bersani et al,82 but serum NGF trend in 

both man and woman is affected by light exposure. While 

a number of studies are now available on diurnal variation 

of NTs levels, at present, only one study has investigated 

this same issue in patients with depression. In the work 

by Giese et al, diurnal BDNF oscillations in patients with 

major depression associated with therapeutic response (in 

both sexes) after partial sleep deprivation.144 Specifically, 

subjects identified as responders (after 2 weeks of treat-

ment) were associated with a daily change in serum BDNF 

at day 1 and even pretreatment, at baseline. This variation of 

peripheral BDNF concentration revealed characteristics of a 

diurnal pattern, whereas nonresponders did not exhibit diur-

nal BDNF variation. Together, all these findings emphasize 

the importance of a circadian NT rhythm in human health 

and well-being, while its absence seems to have a negative 

impact on successful depression treatment outcome. They 

further support a direct link between depression, biological 

clock, chronotherapeutics, and brain plasticity.

Conclusion
The data presented support the role of NGF and BDNF in 

the chronopathology and chronotherapeutics of mood, and 

therefore suggest these NTs as valuable biomarkers in human 

studies. Further, the fascinating hypothesis that ocular-

applied NTs (by stimulating the retinal pathways associated 

with NIF functions) might also reset circadian rhythms offers 

a new interesting field of investigation in neuroscience and 

psychiatry.
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