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Abstract: Molecular dynamics simulations have evolved into a mature technique that can 

be used effectively to understand macromolecular structure-to-function relationships. Present 

simulation times are close to biologically relevant ones. Information gathered about the dynamic 

properties of macromolecules is rich enough to shift the usual paradigm of structural bioinfor-

matics from studying single structures to analyze conformational ensembles. Here, we describe 

the foundations of molecular dynamics and the improvements made in the direction of getting 

such ensemble. Specific application of the technique to three main issues (allosteric regulation, 

docking, and structure refinement) is discussed.
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Introduction
The study of the macromolecular structure is a key point in the understanding of biology. 

Biological function is based on molecular interactions, and these are a consequence 

of macromolecular structures. Since initial structure determinations in the 50s, both 

in the protein and in the nucleic acid worlds, the increase in the knowledge of how 

macromolecular structures are built has been continuous. At present, protein data 

bank (PDB)1 holds more than 110,000 entries, including more than 100,000 proteins, 

2,800 nucleic acids, alone or forming complexes, and approximately 20,000 small 

molecules complexed to macromolecules. Molecular recognition rules as defined by 

such structural knowledge powers the understanding of basic biological phenomena, 

like enzyme mechanisms and regulation, transport across membranes, the building of 

large structures like ribosomes, or viral capsids, or how DNA is read and transcription 

is controlled. The study and prediction of protein–protein interaction networks is one 

of the growing fields in modern systems biology. On a more practical note, protein 

three-dimensional (3D) structures are the basis for structure-based drug design. The 

simple visual analysis of 3D structures of protein or nucleic acids, as obtained from the 

experiments, has driven large number of successful studies in biochemistry. However, 

despite their enormous utility, structures stored at the PDB provide only a partial view of 

3D structure. Both protein and nucleic acids are flexible entities, and dynamics can play 

a key role in their functionality. Proteins undergo significant conformational changes 

while performing their function. As a rule, any complex made by any protein implies 

some structural rearrangement. This can be easily checked just by comparing a series of 

PDB entries that just differ in a small ligand bound to a given protein. Figure 1 shows a 

superimposition of experimental acetylcholinesterase structures. There are no changes 
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in the overall fold, just small rearrangements in the structure; 

however, these differences are large enough to fool ligand-

docking algorithms. Larger conformational changes are also 

present in the known protein structures.2–6 Conformational 

changes are a common part of an enzymes’ catalytic cycle.7 

For instance, loop or domain closures contribute to isolate the 

active site from solvent and, in so doing, alter the chemical 

environment around substrates, or trigger the catalytic event 

by bringing essential partners together.8–10 Also, allostery is the 

most common enzyme regulation strategy. Allosteric regula-

tion is entirely based on the possibility of a given protein to 

coexist in two or more conformations of comparable stability. 

Binding to ligands (allosteric regulators), or simply protein 

concentration, or crowding, may switch stabilities among 

conformations and trigger the shape transition. Additionally, 

some features of protein function can be understood only 

when dynamic properties are taken into account. For instance, 

diffusion of small substrates through heme-dependent enzyme 

molecules requires the transient appearance of channels in the 

protein structure.11–18 Also, cavities have transient phenomena 

that in some cases can only be revealed or analyzed following 

its dynamics.19,20

In the case of nucleic acids, conformational changes are 

even more complex. Standard B-DNA has a relatively simple 

structure in comparison with protein or complex RNAs; 

however, it is an extremely plastic molecule that undergoes 

large conformational changes to adapt to its interaction 

partners. Binding of transcription factors to DNA, for exam-

ple, is not only dependent on DNA sequence  recognition, but 

also a direct consequence of the ability of the DNA molecule 

to adapt to the protein surface.21,22

The traditional approach to understand conformation 

influence on macromolecular function is to cumulate 

experimental structures covering the conformational space. 

This has led to the generation of crystal structures for mac-

romolecules in several environments, or macromolecules 

complexed with different molecules, and contributes to 

the enormous redundancy seen in the PDB. Examples of 

this approach are the 87 structures for CK2 homologues 

(Figure 2A), where a common fold is maintained, and dif-

ferent degrees of conformational variation are clearly vis-

ible, especially in loop regions. A single experiment could 

generate conformational ensembles as those taken from 

nuclear magnetic resonance experiments (Figure 2B). In 

the latter case, the source of the variability found is rather 

a consequence of the lack of experimental data in some 

specific regions of the structure. Indeed, the study of PDB 

as source for molecular flexibility has been exploited in 

some extent.18,23–26 Taking such “experimental ensembles” 

a partial view of the macromolecule flexibility can be 

obtained, although PDB composition is necessarily biased. 

Theoretical techniques appear as the most convenient way 

to obtain a picture of macromolecular dynamic proper-

ties. Recent advances in the performance of simulation 

algorithms, including specific strategies to increase the 

conformational sampling, have popularized the concept 

of “conformational ensemble”, as the alternative to the 

analysis of PDB’s single structures. Ensembles can be 

analyzed to derive thermodynamic properties of the system, 

like entropy or free energy.27 If properly built, ensembles 

can also be used to reconstruct complex conformational 

transitions or even folding events.27–29 Ensembles are also 

a better reference to reproduce experimental results, as 

Figure 1 Structure variability within a protein family.
Notes: Structures of acetylcholinesterase (1acg, 1ax9, 1dx6, 1hbj, 1qon, 1vot, 
and 2ace) crystallized with different active-site ligands.

Figure 2 experimental ensembles.
Notes: (A) Superimposition of experimental structures of protein kinases. (B) NMR 
derived ensemble of calcium-binding protein (PDB code: 1A03).
Abbreviations: NMR, nuclear magnetic resonance; PDB, protein data bank.
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experiments measure averages of properties over a real 

ensemble.30,31

Molecular dynamics simulation
Molecular dynamics (MD) simulation, first developed in the 

late 70s,32,33 has advanced from simulating several hundreds 

of atoms to systems with biological relevance, including 

entire proteins in solution with explicit solvent representa-

tions, membrane embedded proteins, or large macromolecular 

complexes like nucleosomes34,35 or ribosomes.36,37 Simulation 

of systems having ∼50,000–100,000 atoms are now routine, 

and simulations of approximately 500,000 atoms are com-

mon when the appropriate computer facilities are available. 

This remarkable improvement is in large part a consequence 

of the use of high performance computing (HPC), and the 

simplicity of the basic MD algorithm (Figure 3). An initial 

model of the system is obtained from either experimental 

structures or comparative modeling data. The simulated 

system could be represented at different levels of detail. 

Atomistic representation is the one that leads to the best 

reproduction of the actual systems. However, coarse-grained 

representations are becoming very popular when large sys-

tems or long simulations are required (see Orozco et al38 for 

a review of such strategies). Solvent representation is a key 

issue in system definition. Several approaches have been 

assayed39–47 but, again, the most effective is the simplest one, 

the explicit representation of solvent molecules, although at 

the expense of increasing the size of the simulated systems. 

Explicit solvent is able to recover most of the solvation effects 

of real solvent including those from entropic origin like the 

hydrophobic effect. Once the system is built, forces acting 

on every atom are obtained by deriving equations, the force-

fields, where potential energy is deduced from the molecular 

structure.48–53 Force-fields are complex equations, but they 

are easy to calculate. The simplicity of the force-field repre-

sentation of molecular features: springs for bond length and 

angles, periodic functions for bond rotations and Lennard–

Jones potentials, and the Coulomb’s law for van der Waals and 

electrostatic interactions, respectively, assures that energy and 

force calculations are extremely fast even for large systems. 

Force-fields currently used in atomistic molecular simulations 

differ in the way they are parameterized. Parameters are not 

necessarily interchangeable, and not all force-fields allow 

to represent all molecule types, but simulations conducted 

using modern force-fields are normally equivalent.54,55 Once 

the forces acting on individual atoms are obtained, classical 

Newton’s law of motion is used to calculate accelerations and 

velocities and to update the atom positions. As integration 

of movement is done numerically, to avoid instability, a time 

step shorter than the fastest movements in the molecule 

should be used. This ranks normally between 1 and 2 fs 

for atomistic simulations, and is the major bottleneck of 

the simulation procedure. Microsecond-long simulations, 

barely scratching the time scales of biological processes, 

require iterating over this calculation cycle 109 times. This is 

one of the strengths of coarse-grained strategies. As a more 

simplified representation of the system is used, much larger 

time steps are possible, and therefore the effective length of 

the simulations is dramatically extended. Of course, this can 

be obtained at the expense of the accuracy of the simulation 

ensemble. Algorithmic advances, that include fine-tuning of 

energy calculations, parallelization, or the use of graphical 

processing units (GPUs), have largely improved the perfor-

mance of MD simulations.

The present generation of computers takes benefit of 

parallelism and accelerators to speed-up the process. The 

most popular simulation codes (AMBER,56 CHARMM,57 

GROMACS,58 or NAMD59) have long been compatible with 

the messaging passing interface (MPI). When a large num-

ber of computer cores can be used simultaneously, MPI can 

greatly reduce the computation time. To benefit the locality 

of interactions, the general strategy is to distribute the system 

to simulate among processors. This strategy is called spatial 

decomposition. Only a small fragment of the system has to 

be simulated in each processor. The most efficient division is 

not based in the list of particles, but in their position in space. 

Each processor deals with a region of space irrespective of 

which particles are present there. Communication between 

Epot {xi}

Fi= –∂Epot/∂xi

ai = Fi/mi  

vi  (t+dt) = v(t)i + ai  dt 

xi  (t+dt) = x(t)i + vi dt

Energy calculation
(force-field)

Forces

Numerical
integration

Trajectory

Figure 3 Molecular dynamics basic algorithm.
Notes: The simulation output, the trajectory, is an ordered list of 3N atom 
coordinates for each simulation time (or snapshot).
Abbreviations: Epot, potential energy; t, simulation time; dt, iteration time; For 
each spatial coordinate of the N simulated atoms (i): x, atom coordinate; F, forces 
component; a, acceleration; m, atom mass; v, velocity.
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processors is also reduced, as only those simulating neighbor-

ing regions have to share information (see Larsson et al60 for 

a review). As stated, the use of accelerators, mainly GPU, has 

become a major breakthrough in simulation codes. Originally 

designed to handle computer graphics, GPUs have evolved 

into general-purpose, fully programmable, high-performance 

processors and represent a major technical improvement 

to perform atomistic MD. Most major MD codes have 

already been prepared for GPUs, and even MD codes writ-

ten specifically to be used on GPUs have been developed 

(ACEMD61). Simulation on GPUs alone or combined with 

MPI is, at present, the default strategy for high-throughput 

MD simulations. Remarkably, while simulations have been 

the most popular use of HPC in life sciences, the increasing 

power and sophistication of GPUs is leading to a greater use 

of personal workstations with a comparable performance.

Strategies to improve ensemble 
generation
Pure computational brute force, just making longer simula-

tions, is not enough to extend the conformational sampling 

in biomolecular systems. The complex shape of the free 

energy landscape makes most of the simulations explore 

just a small region around the energy minimum closest to 

the initial conformation. With the availability of the present 

HPC systems, an obvious strategy is to perform a series of 

parallel simulations with several starting conformations. 

Although this could be efficient, it requires a specific knowl-

edge of the system to simulate, and cannot be applied as a 

general strategy. This approach is particularly useful when 

several crystal structures are available (for instance in the 

case of allosterically regulated enzymes). A second prob-

lem that appears when collections of parallel simulations 

are calculated, is the generation of a usable ensemble out of 

the trajectories obtained. Recently the Markov state model 

(MSM) theory has been used to this end.62–65 MSM theory 

discretizes the conformational ensemble in a collection of 

states, and constructs a matrix with the transition probabili-

ties among them. The analysis of such a matrix would allow 

reconstruction of the global behavior of the system. Since the 

transition rates converge more rapidly than the population of 

the involved states, this approach has the advantage that the 

collection of simulations is not required to be especially long. 

This approach has been used mainly in the study of folding 

processes,28,66 but also in the kinetic characterization of the 

formation of ligand–protein complexes.67 Other approaches 

have been designed to increase the sampling space in single 

simulations, like metadynamics,68–71 for instance, where 

already visited conformations are penalized; weighted 

ensembles, where additional simulations are started when 

new conformational spaces are visited;72 or accelerated MD 

where energy barriers are artificially reduced.73–75 However, 

even with a perfect sampling, MD simulations cannot sur-

mount barriers in the energy landscape higher than the total 

energy added to the system. The obtained ensemble with a 

single simulation is limited to those states that are accessible 

at the simulation temperature. Simulations at high tempera-

tures were common in the origins of MD, but they lead to 

unrealistic trajectories, and hence should be combined to 

room temperature runs. This approach, called simulated 

annealing, has been largely replaced by replica exchange 

methods.76,77 Such methods launch parallel simulations in 

different conditions. The most common variation is simu-

lation temperature. The sampling ability of the simulation 

increases with temperature. Higher temperature simulations 

can surmount energy barriers and explore new regions of the 

ensemble. Periodically, energies of the different simulations 

are compared and structures are swapped according to its 

energy rank. The resulting simulation has sampled a larger 

conformational space, due to high temperature simulations, 

and retains the ability to represent the low-temperature 

states of the system. The main difference with the simulated 

annealing approach is that a realistic ensemble of the system 

is obtained and thermodynamic information can be derived 

from simulations. The idea has been extended to other 

simulation strategies. Most remarkably, replicas based on 

differences in the Hamiltonian replica exchange, including 

alchemical free energy calculations78 or constant-pH simula-

tions,79–83 are becoming popular.

Tools to popularize MD
Preparation for simulation implies the following of a series 

of operations that are far from being just routine. First, 

the initial structure comes from the experiment. Expected 

issues include nonstructured or missing regions or residues, 

nonstandard ligands, or even structures bearing errors in the 

interpretation of experimental data. When a single system 

is simulated, all the effort in the preparation of the system 

is worth, as it assures the quality of the simulation result. 

Such setup is usually done manually, with a considerable 

human effort. A standard procedure to set up a system 

implies a number of well-known procedures: fixing struc-

ture errors; ionization of titrable amino acids; addition of 

structural water molecules, counter ions, and solvent; and 

energy minimization and equilibration of the system at the 

desired temperature. An expert modeler normally carries 
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out these procedures using a set of helper programs. Such 

an expert has the necessary knowledge to surmount specific 

problems that may arise. For instance, the workflow used in 

the MoDEL project84 was programmed to run automatically, 

but a nonnegligible fraction of over 1,500 proteins prepared 

failed at some point of the process. With this scenario, for 

newcomers to MD simulation, even a single system setup 

could represent an unaffordable problem. Even worse, non-

expert users tend to blindly use default procedures leading 

easily to artifactual trajectories, which are hard to distin-

guish from the correct ones. This strongly contributes to the 

lack of popularity of biomolecular simulations among the 

bioinformatics or the biochemical community. MD simula-

tions have been restricted to those research groups bearing the 

necessary expertise. Solving this issue requires an automatic 

setup of the simulation system. We would be looking for a 

clever black box for the nonexperts, but also for a robust 

software suite that can account for a large set of unrelated 

protein structures. All major MD codes56–59 come with a set 

of accompanying programs, which perform most steps of the 

preparation. Additionally, a number of initiatives, combining 

those tools with a user-friendly interface, have come into 

the scene to address this problem. CHARMM-Gui85 and 

CHARMMing,86 for CHARMM, or Guimacs,87 Gromita,88 

and jSimMacs,89 for GROMACS, provide automatic setup 

functionality. VMD90 provides a number of plug-ins that 

allow to launch simulations with NAMD. Most of these tools 

provide a friendly environment to prepare systems for simula-

tion without the need of a deep knowledge of the underlying 

operations, thus facilitating the access to the field for the 

newcomers. Unfortunately, due to the lack of a standard for 

the representation of molecular simulation data, most helper 

applications are restricted to a single MD package, and data 

is not easily interchangeable. Besides, although most use 

some kind of embedded scripting language, automation of 

procedures is not a straightforward task. Lessons learned 

in the preparation of the MoDEL database, by our group, 

leaded to the generation of a new set of tools, MDMoby 

and MDWeb91 that try to cover both aspects of the problem. 

On one hand, MDMoby provides a full set of web services, 

covering all setup, simulation, and analysis operations. The 

modular nature of such collection of web services allows 

incorporating them as a tool kit to the design of complex 

setup protocols and to run them programmatically. In turn, 

MDWeb, a web-based interface, provides a user-friendly 

bench where user can check for the quality of the input 

structure, tailor their own setup protocols, or use a collection 

of predefined ones.

Application: understanding allostery
Most regulation phenomena in proteins are explained within 

conformational transitions. The concept of allostery that 

translates conformational dynamics in functional implica-

tions has been analyzed since the early times of protein 

biochemistry.92–94 Conformation shift involved in allostery 

spans from small rearrangements to large quaternary shifts 

as those originally accounted by the Monod model. In any 

case, there is a general agreement that conformational shifts 

involved in allosteric transitions are simple in terms of col-

lective movements.95 For this reason, molecular simulations 

could be a natural tool to understand allostery. However, the 

ability of free atomistic simulation algorithms to follow a com-

plete transition path is limited. Most of the traditional reports 

of simulations in this field use simplified frameworks, like 

discrete MD96 or Go-Models,97 or even popular nonsimulation 

equivalents like elastic network models,98–101 and seek to find 

the transition path between known experimental structures. 

With full atom representations, it is usual to trick the algo-

rithm by using targeted,102–104 or supervised MD105 where the 

simulation is artificially driven to the desired conformation. 

In this case, the analysis of the path could give insight into 

the energetics and details of the allosteric transition. For those 

cases where allosteric regulation is known to occur, but one 

of the ends is unknown, long simulations (alone106,107 or with 

enhanced conformational sampling) are required.108,109 The 

direct use of conformational ensembles without any condi-

tioning is still out of the routine possibilities of present MD 

simulations; however, specific cases with well-defined col-

lective motions could be feasible. Figure 4 shows an example 

Figure 4 R-T transition on Bacillus stearothermophilus lactate dehydrogenase after 
50 ns simulation in explicit solvent.
Notes: inset: detail of conformational shift of active site substrate-binding Arg 
169 side chain. Simulation was initiated from a dimeric model of the protein (1ldn), and 
allowed to evolve without restrains. Protein system was prepared using MDweb,91 
and simulated using GROMACS,148 at 298 K of temperature, in explicit solvent and 
periodic boundary conditions (truncated octahedron box). Conformational shift is 
indicated as R-T shift in the main figure and with an arrow in the inset.
Abbreviation: R-T, relaxed and tense states (as defined by Monod’s model).
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where only 50 ns of simulation allowed for a conformational 

shift in Bacillus stearothermophilus lactate dehydrogenase 

(PDB code: 1LDN). This enzyme is known to exist in two 

states: a fully active, tetrameric state and a less active, dimeric 

one. Fructose-1,6-bisphosphate is a known allosteric regulator 

that allows the tetrameric state to be formed.110,111 The con-

struction of stable dimeric state by site-directed mutagenesis 

allowed for the analysis of the less active form in more detail 

and confirmed that a significant conformational shift occurs 

when the tetrameric state is formed.112,113 The simulation of 

a B. stearothermophilus lactate dehydrogenase dimer pro-

tein starting with the conformation of the tetrameric one, as 

obtained from the experimental structure, reveals a significant 

intersubunit movement compatible with the experimental 

behavior of the enzyme (Figure 4). In this case, no computa-

tional bias was introduced; however, protein setup was done 

mimicking experimental conditions where the conformational 

shift is known to occur. The use of experimental restrains (but 

not necessarily the target structure) is being exploited to guide 

the simulation.31,114 Alternatively, free long simulations may 

be replaced by shorter simulations and analyzed with MSMs 

to provide quantitative insight.63–65 However target structure 

should be at some point explored to allow reconstructing the 

full process. The power of molecular simulations to uncover 

allosteric regulations is not in any doubt; however, there is still 

a long way until it could be routinely applied to all cases.

Application: molecular docking and 
drug design
One of the most practical application of the concept of 

molecular recognition are docking strategies, either small 

molecule or protein docking. To understand how a ligand, 

typically a substrate or a regulator, binds to its macromolecu-

lar counterpart is a key issue in the understanding of function 

itself, and it is the basis of structurally driven drug design. 

The recognition process is by nature dynamic.115 Molecules 

are flexible entities, and the recognition process itself implies 

structural rearrangements, and this shape adjustment is part 

of the binding process not only from the structural point of 

view, but also from the energetics. Although this is a gener-

ally well-accepted idea, docking algorithms are far from 

considering dynamic effects as a routine. Most docking or 

virtual screening codes work on rigid structures as obtained 

from the PDB. Figure 5 shows a traditional cross-docking 

experiment where a collection of acetylcholinesterase ligands 

are docked back in the same set of receptor structures. Protein 

structures correspond to the ones shown in Figure 1. In this 

experiment, all receptor structures correspond to the same 

protein, but crystallized with a different ligand; and all 

ligands are known to bind the receptor in the same place and 

pose. In these conditions, the experiment just measures the 

impact of small receptor rearrangements caused by ligand 

binding, on the docking efficiency. The usual result, as the 

one shown in Figure 5, is that even though the protein does 

not change, a different PDB structure implies poorer dock-

ing results. Even docking of a ligand back on its original 

PDB structure (diagonal results in Figure 5) tends to fail 

due to the usual overcompression of structures derived from 

X-ray crystallography. This problem is especially relevant in 

protein–protein docking where considerable differences are 

found between bound and unbound structures. For ligand-

docking methods, ligand flexibility could be largely recovered 

by using conformer families.116–118 In the case of protein 

flexibility, solutions are not so extended. Most of them use 

algorithms to select from a limited alternative set of protein 

conformations, either precomputed or simulated.119–121 It is 

also possible to introduce flexibility a posteriori as a refine-

ment process.122 It is still not clear whether structural adjust-

ment comes from selection of available conformations or it 

is induced by the binding process itself,123,124 but in any case 

the use of structural ensembles instead of single structures 

can be expected to improve the binding prediction.125–127 

The concept of “ensemble docking” usually requires the 

selection of a representative set of snapshots coming from 

a simulation and uses them as targets in normal docking 

procedures.128–130 Integration of docking and simulation in a 

1acj

1ax9

1dx6

1hbj

1qon

1vot

2ace

1acj 1ax9 1dx6 1hbj 1qon 1vot 2ace
Protein

L
ig

an
d

0 5

RMSD docking solutions (Å)

Figure 5 Cross-docking experiment with selected acetylcholinesterase structures 
from PDB.
Notes: Performance of all possible combinations of rigid docking experiments done in 
standard conditions, using a series of seven acetylcholinesterase ligands extracted from 
left column PDB entries onto the same empty protein structures (upper row). Color 
code indicates RMSD between the best docked solution and the reference PDB.
Abbreviations: PDB, protein data bank; RMSD, root-mean-square deviation.
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single calculation is less popular, but some examples have 

been reported.16,67,121,131

The use of simulations for the improvement of virtual 

screening or docking processes has a clear advantage. 

However, due to the speed requirements of docking, most 

methods based on traditional atomistic simulations are 

too slow to be considered, when used in a real scenario. 

Coarse-grained methods or any sort of accelerated MD could 

be a way to take benefit of simulation in a near future.

Application: refining structure 
predictions
Structure prediction has been one of the most ancient prob-

lems addressed in structural bioinformatics. MD, including 

the longest simulations performed, has been extensively 

used for ab initio protein structure prediction,132–136 aiming 

to simulate protein folding from scratch, although this is not 

the preferred strategy to obtain theoretical model of protein 

structure. Instead, template-based modeling is the most 

efficient technique.137–144 In template-based modeling, one or 

several 3D structures of protein showing a reasonable degree 

of similarity to the protein of interest are taken as templates. 

Irrespective of the modeling algorithm, the end result is a 

model bearing the new amino acid sequence and a structure 

averaging the used templates. In most cases, the last step of 

the prediction procedure implies relaxation of the structure 

using normally molecular mechanics. In others, restrained 

simulations are used throughout all the process.144 The use of 

MD simulations looks like an obvious step in refining such 

models.145 Simulation would allow the structure to adapt to 

the new sequence, and in theory give a more realistic model. 

Although this point is reasonable as a concept, MD simula-

tions require systems to be close to their equilibrium (native) 

conformation. Otherwise, significant and difficult to detect 

artifacts may occur. Critical assessment of protein structure 

prediction contests,139 where prediction algorithms face 

problems with known but nonpublic 3D structures, provide 

an excellent dataset to test this issue. Applying different 

MD approaches to the refinement of such predictions has 

led to a number of conclusions. The most naive approach, a 

single simulation starting from the predicted conformation, 

tends to deviate significantly from the desired structure.145–147 

Apparently, inaccuracies in the model have a large impact in 

the quality of the simulation results. Instead, results clearly 

indicate that deviation from the original structure is directly 

correlated with the loss of quality of the model. A second 

conclusion is that the ensemble of structures taken from the 

simulations is a closer representation of the target structure, 

thus indicating that the native and original structures both lie 

within the conformational space of the simulation.146

Conclusion
MD simulations have already more than 40 years of  history. 

However, it was not until the recent years that MD has 

achieved time scales that begin to be compatible with bio-

logical processes. At present, when routine simulations are 

approaching the microsecond scale, conformational changes, 

or ligand binding can be effectively simulated. The improve-

ment of the computational equipment, especially the use of 

GPUs, and the improvements made in the optimization of MD 

algorithms, including coarse-grained ones, allow us to move 

from the analysis of single structures, the basis of the molecu-

lar modeling as we know it, to the analysis of conformational 

ensembles. Conformational ensembles are a much better rep-

resentation of real macromolecules, as they account for flex-

ibility and dynamic properties (including all thermodynamic 

information) and ease the match with experimental results. 

Although the shift in concept is clear, and the technology is 

coming along, there is still a long way until biomolecular 

simulations, the generation of conformational ensembles, 

would become a routine. Tools exist that make the setup of 

a macromolecular system much easier, and even allow the 

nonexperts to enter the simulation world. However, lack of 

representation standards, much less optimized analysis tools, 

and even the difficulties in simply storing and transmitting 

the huge amount of trajectory data that is generated are still 

issues that remain to be solved. In any case, MD is already a 

valuable tool in helping to understand biology.
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