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Abstract: Spinal cord injuries (SCIs) can have catastrophic effects on individuals resulting 

in loss of physical abilities and independence. Loss of the ability to perform activities of daily 

living reduces the quality of life. Furthermore, decreased ability to perform physical activities 

decreases overall fitness and increases the risk of diseases related to sedentary lifestyle. Activity-

based restorative therapies (ABRTs) provide an option to help optimize rehabilitation through 

the restoration of function and the introduction to physical activities via adapted equipment. 

ABRT programs are typically located in SCI centers, which limit long-term access to those not 

living near the facilities. Typical rehabilitation clinics not specializing in SCI care are able to 

provide modified ABRT programs, but lack the staffing and adaptive equipment provided in the 

larger SCI rehabilitation centers. For long-term rehabilitation and wellness needs, the placement 

of adaptive equipment in the homes of those with SCI has proven to be beneficial, although 

costly as highly technical equipment such as functional electrical stimulation cycles usually 

cost over US$20,000. Community fitness centers offer some possible options for long-term 

exercise through inclusive fitness programs but many still lack full accessibility for those who 

are wheelchair reliant and most do not provide specialized adaptive equipment or trained staff to 

meet the special needs of individuals with SCI and other paralytic conditions. It is important for 

health care providers to continue to advocate for useful and less expensive adaptive equipment 

that may provide exercise to paralyzed muscles and greater access and accommodation of 

wheelchair-reliant individuals by community fitness centers.

Keywords: activity-based restorative therapies, functional electrical stimulation, body-weight-

supported treadmill training

Introduction
Spinal cord injury (SCI) can result in full or partial paralysis, which limits mobility-

producing muscular activation. Reduced mobility decreases the body’s ability to com-

plete functional activities resulting in decreased capacity to complete typical activities 

of daily living. Dysfunction related to activities of daily living often negatively impacts 

quality of life (QOL) through decreased independence. Compounding the problem of 

decreased function, decreased mobility can be an impediment toward maintaining the 

requisite amount of physical activity for maintaining health. Individuals with disabilities 

have been reported to have physical activity levels that are approximately 60% below 

that of the able-bodied population.1 Considering these factors, it is not surprising that 

individuals with SCI have been found to have an increased incidence of conditions 

associated with physical inactivity. These conditions include heart disease, atheroscle-

rosis, metabolic syndrome, diabetes mellitus, obesity, and osteoporosis.2–4
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Functional limitations after SCi
An SCI results in a complex series of events that include 

a lesion within the spinal cord, glial scarring around the 

lesion, release of chemicals that inhibit axonal growth in 

the damaged area, and axonal demyelination of nearby but 

initially unaffected neurons.5 Disability related to SCI depends 

on the completeness of injury and the level of injury. When 

there is preservation of sensation and/or motor activity below 

the neurological level of insult that includes the lowest sacral 

segments (S4–S5), the injury is termed incomplete. When the 

lowest sacral levels are without sensory and motor activity, the 

injury is termed complete.6 The more complete the injury the 

greater the level of impairment. Likewise, the higher the level 

of injury within the spinal cord the greater the impairment. 

Impairment increases with the involvement of each successive 

spinal nerve segment advancing cephalically.

The terms tetraplegia (injury to cervical segmental levels) 

and paraplegia (injury below cervical neural segmental 

levels) are commonly used but less precise than the American 

Spinal Injury Association Impairment Scale (AIS).6 The AIS 

is a more accurate and specific approach of categorizing 

both motor and sensory impairment. This scale identifies 

the sensory and motor levels as indicated by the most rostral 

spinal levels with unimpaired function.6,7

American Spinal injury Association 
impairment Scale
A. (Complete) – no sensory or motor function is preserved 

in the sacral segments S4–S5.

B. (Sensory incomplete) – sensory but not motor function is 

preserved below the neurological level and includes the 

sacral segments S4–S5 (light touch, pin prick at S4–S5, or 

deep anal pressure), AND no motor function is preserved 

more than three levels below the motor level on either 

side of the body.

C. (Motor incomplete) – motor function is preserved below 

the neurological level and more than half of key muscle 

functions below the single neurological level of injury 

have a muscle grade less than 3.

D. (Motor incomplete) – motor function is preserved below 

the neurological level and at least half of key muscle 

functions below the neurological level of injury have a 

muscle grade of 3 or greater.

E. (Normal) – if sensation and motor function as tested 

with the International Standards for Neurological Clas-

sification of Spinal Cord Injury are graded as normal in 

all segments, and the patient had prior deficits, then the 

AIS grade is E.

Particular segmental areas of interest regarding functional 

loss includes injury to the sacral segments S4–S5 leading 

to complications involving the loss of control of bowel and 

bladder causing urinary tract dysfunction, which increases 

the risk of infections.8,9 Urinary tract infections are the most 

frequent secondary medical complication among those with 

SCI.10

Injury to the thoracic region of the spine results in 

impairment of the trunk in addition to the legs and pelvis. 

The higher the injury in the thoracic region, the greater the 

impairment to trunk musculature resulting in increasingly 

less ability to maintain trunk posture and sitting balance. 

When the injury level is at or above the T6 segmental level, 

autonomic control may be involved resulting in the pos-

sibility of uncontrolled outflow of the sympathetic nervous 

system in response to a stimuli that would ordinarily not 

cause an adverse reaction, that is, autonomic dysreflexia. 

The perceived noxious stimulus can be as simple as a 

kinked catheter, tight shoe lace, or sitting on a wrinkled seat 

cushion and can result in life-threatening reflex bradycar-

dia, bradyarrhythmia, and hypertension.9 While injuries to 

the lumbosacral and thoracic regions involve the trunk and 

legs, they do not involve the arms; whereas, injuries to the 

cervical spine involve the arms, shoulders, and neck as well 

as everything innervated by spinal segments below. Over 

56% of the ∼11,000 new SCI cases each year in the USA 

are categorized as tetraplegia.11 Complete tetraplegia and 

resultant impairments in the arms, trunk, and legs produce 

catastrophic disabilities. The ability to perform activities 

of daily living such as eating, brushing teeth, dressing, and 

the like are limited or absent. Serious respiratory conditions 

can arise from a cervical spine injury that may have major 

implications on the quality and length of life. In fact, a 

primary cause of death among those with SCI is due to 

respiratory complications.11,12 Any injury to the cervical 

region may affect transmission to thoracic and abdominal 

musculature decreasing respiratory efficiency; however, 

phrenic nerve innervation of the diaphragm is through the 

C3–C5 spinal segments, thus damage at these levels results 

in various levels of paralysis of the diaphragm, which can 

greatly impair respiration possibly requiring mechanical 

respiratory assistance. Injury above this level will eliminate 

voluntary ventilation.9,11

Paralysis results in dramatic reductions in functional 

abilities and can have a devastating effect on an individual’s 

health and QOL. However, the chronic effects of  paralysis can 

further produce physiological secondary medical conditions 

for individuals with SCI.
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Physiological effects after SCi
While SCI produces a number of effects on the various 

bodily systems, this paper will focus on the musculoskeletal 

system. Many changes due to paralysis are easily recognized 

and measured in the muscular system due to rapid atrophy 

over the first year postinjury. The degenerative effects on 

muscle below the level of injury stems from partial or total 

disruption of neural transmission across and below the level 

of injury. The elimination of nervous stimulation to skeletal 

muscle results in major disorganization and breakdown of the 

structure of contractile fibers.13 The ratio of slow-twitch oxi-

dative to fast-twitch glycolytic muscle fibers shifts toward the 

less fatigue resistant fast-twitch fibers.14–18 Decreased muscle 

mass is typically a visible and measureable result. Using mag-

netic resonance imaging, loss of muscle cross-sectional area 

below the level of injury has been reported to be 18%–46% in 

just 6 weeks.19 Decreases in muscle cross-sectional area have 

been reported to be between 45% and 80% after 6 months 

postinjury.19–21 Gorgey and Dudley20 also reported an increase 

in intramuscular fat by 126% just 6 weeks postinjury and a 

threefold buildup of intramuscular fat 6 months after SCI. 

This indicates that muscle not only decreases in mass, but 

also deteriorates with respect to muscle quality.

Skeletal muscle atrophy has been linked to a number of 

unhealthy conditions, which may stem from the resulting 

changes in the proportion of muscle to fat ratio of the body. 

Decreased muscle mass is associated with a lowering of basal 

metabolic rate, which disrupts the energy balance equation 

(energy consumed – energy burned = stored energy). Thus, 

decreased energy use due to decreased available metabolic 

muscle disrupts the equation causing increased energy stor-

age giving rise to obesity. Prevalence of obesity within the 

SCI population is estimated to be as high as 66%.22–25 Obesity 

is a well-known risk factor for cardiovascular disease, meta-

bolic syndrome, diabetes mellitus, and all-cause mortality.3,22 

Duckworth et al26 reported that nearly 50% of the 45 partici-

pants in a study of individuals with chronic SCI had problems 

related to type 2 diabetes, while Bauman and  Spungen27 

reported that individuals with SCI had a greater than threefold 

risk of type 2 diabetes compared with controls.

Likewise, chronic SCI can have a dramatic deleteri-

ous effect on bone. Bone mineral density (BMD) varies 

throughout life and is largely impacted by the ratio of bone 

productive osteoblast activity and bone destructive osteoclast 

activity. The dynamic process of bone synthesis typically 

begins with continued positive net bone formation through 

childhood and early adulthood until BMD peaks before 

giving way to a gradual negative net BMD in the late 20s or 

early 30s, which is generally associated with aging.28 While 

factors such as sex, race, diet, and physical activity impact 

BMD, muscle paralysis has been shown to have a major 

impact, which frequently leads to pathologic levels of BMD. 

 Individuals may experience a rapid bone loss of between 20% 

and 50% in the lower extremities within the first few years 

post-SCI.29–32 Garland et al33 reported a 33% loss of BMD in 

the legs within 3–4 months post-SCI, while as much as 50% 

loss in BMD was reported in 3 years post-SCI. Thereafter, 

bone loss plateaus and reaches steady state approximately 

4 years post-SCI.34 Bone loss after SCI is regional with the 

greatest areas of loss being below the level of injury and in 

the trabecular bone-rich areas of the proximal epiphysis and 

metaphysis of the femur and proximal and distal tibia.30,34–36 

Individuals with SCI are at greater risk of osteoporosis and 

osteopenia. Otom and Al-Ahmar37 reported that 83.6% of 

55 SCI study participants had demonstrated abnormal BMD 

with 40% being osteoporotic and 43.6% being osteopenic.29 

Osteoporosis has been shown to increase the risk of bone 

fracture including a greater risk of low trauma or fragility 

fractures.30 Fragility fractures can be defined as a bone frac-

ture from a trauma that would ordinarily not cause a fracture 

such as a fall from standing height or less. In fact, most 

fractures after SCI occur during normal activities of daily 

living such as transferring, bathing, and dressing. Risk of 

fracture has been shown to increase with the length of time 

after injury with some fracture rates reported to be as high 

as 14% within 5 years of injury, 28% within 10 years, and 

39% within 15 years of injury.38 The method for determining 

osteoporosis and increased bone fracture risk was established 

from data using able-bodied individuals and is less accurate 

for those with SCI. For the general population, BMD is 

measured at the lumbar spine, hip, and nondominant wrist 

via dual energy X-ray absorptiometry. However, because the 

region of bone most commonly fractured differs between the 

able-bodied population and those with SCI, Shields et al39 

devised a method to reliably measure the distal femur and 

proximal tibia using dual energy X-ray absorptiometry. This 

procedure may assist in more accurately assessing fracture 

risk for those with SCI.

Because of the complexity of functional and physiologi-

cal effects after SCI, the rehabilitation of individuals with 

SCI is also complex.

Physical rehabilitation after SCi
Over the past couple decades, there has been a gradual 

paradigm shift of the philosophy guiding SCI rehabilitation. 

There was once a belief that the central nervous system was 
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 hardwired with no hope of restoration of function. This 

produced the notion that once injured, individuals should 

concentrate on compensation for lost function with braces, 

wheelchairs, and other assistive devices as restoration of 

lost function was not viable. While compensation for lost 

motor activities is a necessary part of physical rehabilita-

tion training, today it is typically coupled with attempts to 

restore as much function as possible through neuroplasticity. 

Neuroplasticity can be defined as the ability of the nervous 

system to reorganize itself by forming new neural connec-

tions in the brain and spinal cord. Neuroplasticity allows the 

neurons to compensate for injury and disease and appears to 

be driven at least in part by physical activity.

A therapy format that attempts to optimize neuroplas-

ticity for restoration of function using skilled rehabilita-

tion techniques through improved movement skills with 

or without assistive devices and promotes overall wellness 

reducing the risk of secondary medical conditions is referred 

to as activity-based restorative therapies (ABRTs). This 

high-intensity and high-volume approach has developed 

over the past decade and depends on five key components: 

1) weight-bearing activities, 2) functional electrical stimula-

tion (FES), 3) task-specific practice, 4) massed practice, and 

5) locomotor training (body weight supported via overhead 

harness or via buoyancy of water in a therapeutic pool) to 

optimize results.5,40,41

Weight-bearing activities include a wide variety of 

activities such as assisted or braced standing, sitting with or 

without arm support, quadruped (arms and legs engaged), 

and kneeling. Weight-bearing activities are preferred in order 

to maximize neurostimulation above and below the level 

of injury.5 Weight-bearing activities such as standing not 

only enhances the actual standing ability, but also has been 

shown to positively impact QOL, decrease risk of pressure 

ulcers, and improve bowel and bladder health.42 FES activi-

ties are physical training activities that use external electri-

cal stimulation to assist weak muscles or induce activity in 

paralyzed muscles. These FES activities may include cycling, 

ambulation, standing, transferring, rowing, or other specific 

movements.5 FES activities in rodent studies have produced 

the birth of tripotential endogenous neural progenitor cells 

in the spinal cord as well as axonal regeneration of damaged 

neurons.5,43,44 Regarding body composition, FES exercise has 

been shown to increase muscle mass, decrease fat mass, and 

improve BMD below the level of injury.45–47 Dermchak et al47 

found a 63% increase in the cross-sectional area of the vastus 

lateralis muscle in individuals with SCI after FES cycling for 

30 minutes three times per week for 13 weeks. Along with 

increased muscle mass, Petrie et al48 found that a minimal 

dose (∼10 minutes per day) of electrically induced exercise 

to the soleus muscle continued for over a year prompted the 

restoration of oxidative slow-twitch phenotypes, which may 

assist in decreasing the risk of diabetes and other metabolic 

diseases. Adams et al49 found similar results in regulating 

muscle fiber type by inducing a reduction of ten mRNAs 

that mediate fast-twitch muscle  contractions and increasing 

69 mRNAs that mediate slow-twitch oxidative contractions 

with electrical stimulation training to the soleus muscle over 

6 years. Likewise, Shields and Dudley-Javoroski50 found 

positive body composition  restoration with a 31% increase 

in BMD of the distal tibia after using electrical stimulation 

to the soleus muscle at 1.5 times body weight five times 

weekly for 2–3 years. Additional benefits found in humans via 

externally stimulated muscle contractions include increased 

cardiovascular fitness and decreased risk of gluteal pressure 

ulcers after FES cycling three times per week for at least 

2 months.51–55

Task-specific practice is a critical element as it targets 

activities that are specific to the rehabilitation goals of the 

patient such as walking, moving from a lying position to 

sitting, sitting to standing, and the like. It allows the patient 

to work on specific tasks that they feel are important to their 

recovery.5 Massed practice refers to the large number of 

repetitions that are performed during the 5 or more hours of 

therapy per day. Locomotor training is the final component 

and is often the most desired because restoration of ambula-

tion is typically a goal for those that have lost the ability to 

walk. Locomotor training can take many forms depending on 

the specific abilities of the patient. Body-weight-supported 

treadmill training is an activity in which the patient is partially 

supported by an overhead cable as specially trained techni-

cians use hand placement for tapping and applying pressure 

to specific muscle tendons or bellies to illicit muscle contrac-

tions needed for walking. One key factor is that as many as 

four technicians or therapists must coordinate their activities 

with each other and the patient’s efforts to produce a correct 

walking gait. This is a labor-intensive activity for the patient 

and the staff members. Body-weight-supported treadmill 

training can also be performed in a therapeutic pool using the 

buoyancy of the water to decrease weight bearing and by hav-

ing the technicians use their feet to assist with muscle activity 

facilitation. Patients are advanced to overground walking with 

various assistive devices and assistance from staff members 

as the patient progresses.5 Body-weight-supported treadmill 

training and water treadmill training have both been reported 

as promoting enhancement of walking ability in individuals 
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after SCI.56–58 ABRT is labor intensive and requires greater 

staffing than many rehabilitation facilities can provide, thus 

ABRT programs are usually modified to match the available 

staffing and equipment resources of the facility.

ABRT is a way to optimize recovery and initiate physical 

activity needed to promote wellness and reduce the risk of 

secondary conditions associated with chronic SCI and chroni-

cally low physical activity levels. However, clinically based 

treatments such as ABRT cannot last forever and once the 

program has ended individuals with SCI frequently encounter 

external barriers to community-based physical activities.

Inclusive fitness
After clinical rehabilitation services have ended, patients are 

typically provided a home exercise program to continue train-

ing for rehabilitation and wellness purposes. This works well 

for the rehabilitation of many conditions, however for those 

with SCI, paralysis can present limitations in the performance 

of self-exercise. Individuals with SCI and other paralytic 

conditions require specialized adaptive equipment to meet 

their needs. One option is to have the patient purchase this 

equipment, however, adapted equipment can be quite costly 

as mentioned earlier and individuals with SCI are typically 

more sedentary than their able-bodied peers. However, in 

a study designed to measure the exercise adherence rate of 

17 individuals with chronic SCI when FES cycles were placed 

in the home, exercise adherence rates were much higher than 

the reported 35% of able-bodied individuals who adhere to 

daily recommended physical activity levels for maintaining 

health.4 Participants were asked to cycle for 40–60 minutes 

three times per week over 16 weeks. Exercise adherence 

rates were 71.7% for the first 8 weeks and 62.9% for the 

second 8-week period.4 Nevertheless, with the cost of FES 

cycles exceeding US$20,000, the feasibility of placing this 

type of specialized equipment in the homes of those who 

would benefit is low. As technology concerning adapted 

equipment for those with paralysis advances, it is hoped 

that the development of adequate lower cost functional FES 

equipment will emerge.

Another option is to utilize community fitness centers, 

however, even with the Americans with Disabilities Act 

(ADA) of 1990, which mandates equal access to public 

facilities for all, there appears to be a lack of accessibil-

ity and accommodation for wheelchair-reliant individu-

als. Figoni et al59 examined the ADA compliance rates of 

community fitness centers in the Kansas City, MO area 

and found that no facilities were 100% compliant, with a 

major problem being the lack of free passage to and around 

exercise equipment and the absence of full accessibility to 

restrooms and locker rooms. In a more recent similar study 

in the southeastern USA, community fitness facilities were 

found to be lacking in access to exercise equipment and 

beyond ADA requirements, few provided specialized adaptive 

equipment or staff members who were knowledgeable in the 

special needs of individuals with paralytic conditions.60 Thus, 

a key for the advancement of inclusive fitness for those with 

SCI and other paralytic conditions is to encourage and assist 

community fitness centers to move from partially accessible 

and accommodating to fully accessible and accommodating 

for those who are wheelchair reliant.

Conclusion
The catastrophic effects of SCI can be far reaching, resulting 

in loss of independence and increased risk of inactivity-based 

medical conditions. ABRT provides one option to help opti-

mize rehabilitation through the restoration of function and 

the introduction to physical activities via adapted equipment. 

Rehabilitation centers that specialize in SCI treatment are at 

best regionally based, thus can be difficult for all individuals 

with SCI to access. Typical rehabilitation clinics not special-

izing in SCI care are able to provide modified ABRT pro-

grams but lack the staffing and adaptive equipment provided 

in the larger SCI rehabilitation centers. Community fitness 

centers offer some possible options but many still lack full 

accessibility for those who are wheelchair reliant and most 

do not provide specialized adaptive equipment or trained staff 

to meet the special needs of individuals with SCI and other 

paralytic conditions. It is important for health care providers 

to continue to advocate for useful but less expensive adaptive 

equipment that may exercise paralyzed muscles and greater 

access and accommodation of wheelchair-reliant individuals 

by community fitness centers.
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