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Abstract: Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a 

majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vasculariza-

tion and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility 

and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance 

by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer 

cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other 

causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. 

This review provides background knowledge on the role of tumor hypoxia and the role of the 

HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of 

the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will 

open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and 

hypoxic microenvironment.
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Introduction
Twenty-five percent of deaths in the United States are caused by cancer, and the number 

of incidences increases due to population growth, prolonged life expectancy, and an 

abundance of risk factors including smoking, a lack of activity, and obesity.1 A common 

feature of most tumors is a low level of oxygen, called hypoxia, the severity of which 

varies between tumor types (Table 1). In intensively proliferating and expanding tumor 

tissue, oxygen demand is surpassed by oxygen supply, and the distance between cells 

and the existing vasculature increases, hampering oxygen diffusion and creating even 

more hypoxic milieu.2,3 It is generally accepted that the oxygen level in hypoxic tumor 

tissues is poorer than the oxygenation of the respective normal tissues and on average 

it is between 1%–2% O
2
 and below (Table 1). However, tumor oxygen level depends 

on the initial oxygenation of the tissue, the size and stage of the tumor, the method of 

oxygen measurement, and in which part of the heterogenic tumor tissue the measure-

ment was performed (Table 1).4–7 Tissue normoxia, also known as physoxia, is the oxy-

genation in healthy tissues, which varies widely between the organs due to diversified 

blood vessel network and metabolic activity. Oxygen concentration in humans ranges 

between approximately 9.5% O
2
 in the renal cortex7 to 4.6% O

2
 in the brain with neurons 

extremely sensitive to hypoxia.8–10 These oxygen values are far from the experimental in 

vitro conditions. The oxygen concentration commonly used in the laboratory setting is 

20.9% O
2
, which means that cell culture is performed in hyperoxic rather than physoxic 

conditions of respective organs. In order to better understand principles of oxygenation 
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in vitro and in vivo, basic knowledge of the physics of gases 

is required for newcomers in the hypoxia research field which 

has been neatly described in a recently published review.11

Cancer cells respond differently to decreased oxygen-

ation leading to cell death or cell survival which partially 

depends on the time of exposure to hypoxia. The discrepancy 

and lack of consistency in experimental oncology regarding 

the definition of acute versus chronic hypoxia often with dif-

ferent biological consequences was thoroughly reviewed.12,13 

In general, it is accepted that acute hypoxia is an abrupt and 

brief exposure to short-term hypoxia which occurs when 

blood vessel occlusion lasts for at least several minutes.14 It 

is reversible and often leads to oxygen fluctuations called 

cycling hypoxia. In acute hypoxia in vitro, cells are usually 

exposed to continuous hypoxia between a few minutes and 

up to 72 hours.12 Short-term hypoxia allows cells to sur-

vive in these adverse conditions by activating autophagy, 

an apoptotic and metabolic adaptation of cells. Autophagy 

is achieved by decreasing oxidative metabolism.15,16 On 

the contrary, others have shown that cycling hypoxia led 

to increased reactive oxygen species (ROS) production, 

what contributed to tumor cell survival and progression.17,18 

Moreover, both short- and long-term hypoxia was shown 

to increase radio-resistance of cancer cells both in vitro17,19 

and in vivo.17,20 In addition, acute hypoxia was associated 

with more aggressive tumor phenotype through induction 

of spontaneous metastasis.12,21,22

Enduring changes in blood flow and low oxygen 

availability resulting in chronic hypoxia are especially 

pronounced in larger tumors and contribute to long-term 

cellular changes. In experimental settings, chronic condi-

tions are considered when the cells are incubated in hypoxia 

between a few hours and as long as several weeks.12 Longer 

exposure to hypoxia is associated with high frequency of 

DNA breaks, accumulation of DNA replication errors 

since hypoxia hampers DNA repair systems including 

homologous recombination and mismatch repair, poten-

tially leading to genetic instability and mutagenesis.23–25 Of 

note, acute hypoxia also leads to genomic instability due to 

delayed DNA damage response and rapid p53-dependent 

apoptosis.26 It was suggested that cells lacking functional 

p53 are more susceptible to genomic instability and poten-

tially tumorigenesis if they experience reoxygenation after 

acute exposure to hypoxia.26

Nonetheless, cycling hypoxia represents the situation of 

oxygenation in tumor tissues. Oxygen fluctuation occurs at 

irregular intervals in cancer with sporadic reoxygenation 

periods due to dysfunctional tumor vascularity and hetero-

genic blood supply.27,28 Undoubtedly, both chronic and acute 

hypoxic regions in tumors directly affect clinical responses to 

therapy by influencing tumor growth, ability to metastasize, 

and resistance to cell death.

Signaling pathways related  
to tumor hypoxia
Hypoxia induces a number of complex intracellular signaling 

pathways such as the major  hypoxia-inducible factor (HIF) 

pathway. Other hypoxia-associated pathways include PI3K/

AKT/mTOR,29,30 MAPK also known as ERK pathways,31–33 

and the NFĸB.34 These pathways are involved in cell pro-

liferation, survival, apoptosis, metabolism, migration, and 

inflammation.

PI3K/AKT/mTOR, MAPK, and NFĸB signaling path-

ways are also stimulated in a hypoxia-independent manner 

by a number of factors such as cytokines, chemokines, and 

growth factors which bind to receptor tyrosine kinases, 

G protein-coupled receptors, toll-like receptors (TLR), and 

alarmins receptors on the cell surface, which eventually 

may also lead to HIF-1α activation (Figure 1). In addition, 

in cancer cells epigenetic changes and acquired mutations 

of the pathways’ members and overactivation/overstimula-

tion of receptors cause uncontrollable cancer cell growth.35 

Targeting non-HIF pathways provides a promising target for 

anti-neoplastic therapy and each pathway is a vast topic on 

its own. More information regarding the role of the non-HIF 

pathways in cancer can be found elsewhere. This review will 

Table 1 Comparison of the oxygenation in organs and respective tumors

Tissue/organ Physoxia (median % O2) Reference Cancer Hypoxia (median % O2) Reference

Brain 4.6 8,9 Brain tumor 1.7 6,122
Breast 8.5 6 Breast cancer 1.5 6,123
Cervix (nullipara) 5.5 4,6 Cervical cancer 1.2 4,6
Kidney cortex 9.5 7 Renal cancer 1.3 124
Liver 4.0–7.3 125,126 Liver cancer 0.8 125,126
Lung 5.6 127 Non-small-cell lung cancer 2.2 127
Pancreas 7.5 128 Pancreatic tumor 0.3 128,129
Rectal mucosa 3.9 130 Rectal carcinoma 1.8 130

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hypoxia 2015:3 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

85

The role of hypoxia in cancer

mainly concentrate on the HIF pathway and its involvement 

in tumor progression.

HiF pathway
Cellular adaptation to hypoxia is primarily mediated by a 

family of transcriptional regulators, HIF, which was identified 

2 decades ago.36 The hypoxic induction and protein stabili-

zation of HIF-α subunits (HIF-1α, HIF-2α, and HIF-3α) 

is regulated by oxygen sensors, including PHD and FIH-1 

enzymes. PHDs and FIH-1 are upstream of HIF-α and their 

activity is oxygen-dependent.37 In oxygenated cells, HIF-α 

subunits are hydroxylated by PHDs and FIH-1, which facili-

tate the tagging of HIF-α-OH by pVHL, polyubiquitination 

and protein degradation of HIF-α by the proteasome.38 

When the oxygen level drops, the PHD enzymes lose their 

activity, the hydroxylation of the HIF-α subunit is inhib-

ited and the degradation halted. The non-hydroxylated, 

stabilized HIF-α subunits translocate to the nucleus where 

they dimerize with constitutively expressed HIF-β subunit, 

bind to DNA and initiate gene transcription of the adaptive 

pathways (Figure 1).37

Apart from hypoxia, the HIF pathway is modulated in a 

hypoxia-independent manner. HIF-α stabilization and activ-

ity is regulated by epigenetic changes and mutations, which 

lead to a loss of tumor-suppressor functions (ING4, p53, 

PTEN, VHL) and a gain of oncogene functions (Ras, Raf, Src, 

mTOR, and Myc).39–41 Hypoxia-independent HIF-α regula-

tion occurs in response to cytokines, lipopolysaccharides, and 

growth factors, mediated by PI3K/AKT/mTOR,29,30 MAPK,41 

and NFĸB pathways.42,43 In addition, mitochondrial ROS44,45 

and nitric oxide (NO)46 were shown to up- or downregulate 

HIF-1α accumulation (Figure 1).

Due to the diversified character of tumors including 

hypoxic and inflammatory phenotype, signaling pathways 

are activated simultaneously and they frequently share a 

number of target genes. HIF-1α and NFĸB together regulate 

over 1,000 genes, and thus control malignant and metastatic 

phenotype of cancer cells since they both: i) enhance cell 

RTK/

GPCRs

T
LR

/a
la

rm
in

s
re

ce
pt

or
s

ROS

Blood vessel

formation

Hypoxia

MAPK

ERK1/2

mTOR

PI3K/AKT

NFκB

VEGF, S
DF-1

 A
ng

-2
, M

MPs

B
N

IP
-3

, p
53

E
M

T
, C

X
C

R
4, E

-cad,

C
A

IX
, LO

X
, M

M
P

s

p38

Vasculogenesis

Angiogenesis

Vessel maturation
Apoptosis Metastasis

M
et

ab
oli

sm

GLUT-1, GSK

Proteasomal
degradation

HIF-OH
O2

PHDs/FIH-1
HIF-α

Normoxia – red
Hypoxia – blue

Normoxia and hypoxia – green
Gene expression and biological consequences – black

NO
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Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hypoxia 2015:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

86

Muz et al

survival via a number of growth factors and inhibition of pro-

apoptotic pathways, ii) contribute to tumor neovascularization 

via VEGF, VEGF receptors, COX-2, iNOS, iii) regulate cell 

detachment via downregulation of adhesion molecules such as 

cadherins, and iv) induce cell migration and invasion through 

matrix degrading enzymes.43 The HIF and NFKB pathways are 

controlled by a negative feedback loop mechanism and also 

intersect via alarmins. Tissue damage and necrosis, which can 

be also induced by hypoxia, increases the presence of alarm-

ins, the endogenous markers for damage, which are recognized 

by receptor for advanced glycation endproducts (RAGE) and 

some of TLRs. In addition, the expression of RAGE recep-

tor is also upregulated by HIF-1a. In turn, alarmin receptors 

strongly activate NFkB and proinflammatory gene expression. 

Moreover, the basal HIF-1a mRNA expression is regulated by 

NFKB in non-hypoxic conditions since HIF-1a promoter was 

shown to be responsive to certain NFKB subunits.39

The HIF pathway is required during physiological 

processes and is implicated in cancer biology by regulat-

ing hundreds of genes.47–49 This master regulator facilitates 

tumor growth by promoting angiogenesis via VEGF and 

SDF-1,50,51 metabolism via regulation of GLUT-1, GLUT-3, 

and glycolytic enzymes,52–54 and regulating cell apoptosis 

and cell survival via BNIP-3,55 p53,56,57 TGF-β, and bFGF.3 

Moreover, HIF-α contributes to cancer metastasis by alter-

ing cancer cell adhesion and motility through regulation 

of epithelial-to-mesenchymal transition (EMT) and E-cad, 

ZEB1, -2 and TCF3 expression,58 as well as migration and 

invasion abilities through CXCR4,59 CAIX,60 LOX,61 MMP-2, 

and MMP-9.47,62,63

The role of hypoxia in progression 
and metastasis in cancer
Pathological hypoxia is a common microenvironment factor 

in tumors that facilitates cell survival and propagation of 

the tumor. Key cellular responses to hypoxia triggered by 

overexpression of HIF-1α and HIF-2α subunits and their 

downstream targets increase blood vessel formation, aggres-

siveness, metastasis, and resistance to treatment.

Blood vessel formation
Blood vessels  create a network of tubes and capillaries which 

nourish the entire body with oxygen and nutrients. Thus, the 

way they are formed and function is crucial in embryogen-

esis and physiology. Blood vessels consists of endothelial 

cells (ECs) which create a tight barrier between the blood 

and tissue, and interact with ECM. In embryogenesis, blood 

vessels are formed de novo by vasculogenesis involving 

bone marrow-derived endothelial progenitor cells (EPCs)64 

followed by angiogenesis, a process where new blood vessels 

are created from pre-existing vasculature.65 Lastly, the vessels 

undergo maturation which includes physical interaction with 

smooth muscle cells and pericytes. Abnormal angiogenesis 

is a feature of pathological conditions including tumor 

progression, where hyperproliferating cancer cells surpass 

their blood supply and become hypoxic. Hypoxia induces the 

imbalance between pro- and anti-angiogenic factors’ produc-

tion, which leads to enhanced, rapid and chaotic blood vessel 

formation. Hypoxia and potent transcription factors HIF-1α 

and HIF-2α have been shown to be involved in all steps of 

blood vessel formation.36,64,65 i) Hypoxia and HIF-α subunits 

contribute to the EPCs’ recruitment from the bone marrow 

and induction of their differentiation into ECs by regulation 

of VEGF, a primary regulator of vasculogenesis. This is also 

mediated through stimulation of pro-angiogenic molecule 

production such as VEGF-R2 (Flk-1), members of the FGF 

family and PDGF, important in the primitive vascular network 

formation.64,66 ii) Hypoxia and HIF-α are also involved in the 

angiogenesis process by inducing enzymes’ expression (ie, 

MMPs) in order to sprout and split the pre-existing vessels. 

In turn, neovessels allows ECs to migrate in response to 

chemoattractants across ECM. Additionally hypoxia induces 

ECs’ proliferation by regulation of VEGF-R1 (Flt-1), Ang-1 

and Ang-2 expression.67 iii) Finally, hypoxia and HIF-α sup-

port vessel maturation via induction of Ang-1, PDGF, and 

TGF-β to recruit supporting cells such as smooth muscle cells 

and pericytes creating mature and stable blood vessels.67

However, in tumors, neovessels are often abnormal, 

immature, and leaky. They are either insufficient or excessive 

depending on the tumor type.65 Neovasculogenesis maintains 

blood flow to the growing tumor tissue that expands rapidly, 

providing nutrients and oxygen for thriving cancer cells; 

however, more cells means more demand causing even more 

hypoxia. Again, hypoxia in turn stimulates angiogenesis to 

ameliorate hypoxic condition, closing the vicious circle. As 

a consequence the tumor tissue ends up being highly hypoxic 

with excessive but dysfunctional vasculature.68

Folkman was the first to propose anti-angiogenic therapy 

to treat cancer in 1971.69 A successful use of monoclonal anti-

body against VEGF (bevacizumab) approved for treatment 

of metastatic colorectal cancer70 followed by multiple solid 

tumors, has stimulated development of other anti-angiogenic 

therapies. However, long-term exposure to these agents 

revealed not only reducing tumor growth, but also more 

malignant and invasive cancer phenotype increasing metas-

tasis.71 Long-term exposure to anti-angiogenic agents reduce 
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tumor; however, at the same time induce more aggresive and 

metastatic tumor phenotype.71,72

Metastasis
Enhanced angiogenesis is associated with metastasis since 

permeable and heterogeneous vasculature facilitates the 

extravasation, circulation, and relocation of tumor cells of 

tumor cells to new and unaffected tissues escaping the hostile 

hypoxic environment.68 Tumor oxygenation is a critical fac-

tor of cancer progression and the overexpression of HIF-α 

subunits in tumors and their metastases is associated with the 

aggressiveness of a majority of human cancers and correlates 

with poor overall survival.49,73,74

It was demonstrated previously that hypoxic cells are 

more aggressive and invasive with better ability to metasta-

size. For instance, multiple myeloma cancer cells cultured in 

hypoxic conditions in vitro and injected into mice were able to 

spread to the new bone marrow faster than the cells cultured 

in normoxic conditions.63,75 Also, exposing an orthotopic 

mouse model of cervical carcinoma to a dozen cycles of 10 

minutes 7% O
2
, which was followed by 10 minutes of air 

exposure daily, increased the number of lymph node metas-

tases.76 Similar observations were recorded in mice bearing 

sarcoma tumors, where exposure to acute hypoxia augmented 

the lung metastases.77

Mechanistically, hypoxia was shown to influence 

invasive and migratory behavior of cancer cells via EMT, 

a trans-differentiation of cells in order to acquire plastic and 

mobile abilities, a process which alters their gene expression 

prior to migration.78 EMT is physiologically active during 

embryogenesis and tissue regeneration, as well as in can-

cerogenesis in many types of solid tumors79 and hematologic 

malignancies.63 Hypoxia-induced EMT is characterized by 

a decrease in epithelial-associated gene expression, such 

as E-cad, β-catenin80 and an increase in mesenchymal-like 

gene expression, such as N-cad,81 vimentin, SMA,82 and 

CXCR4.63,75 EMT is promoted by a master regulator TGF-β, 

also increased by hypoxia, which activates downstream 

transcription factors such as Smads, Snail, Slug, and Twist, 

and inhibits expression of E-cad.63,83 Interestingly, radio- and 

chemoresistance was also shown to be associated with EMT 

phenotype; expression of Snail and Slug antagonizes p53-

mediated apoptosis and promotes resistance to radiation and 

chemotherapeutic agents such as paclitaxel and cisplatin in 

ovarian cancer cells.84

Moreover, HIF-1α was shown to be expressed in 90% 

of human gastric cancer biopsies at the front edge of the 

invading tumor compared to HIF-1α negative normal tis-

sues.74 HIF inhibition significantly reduced the metastasis of 

gastric cancer cells in vivo, and HIF deficient cells were less 

motile, invasive, and adhesive in vitro.74 High involvement of 

the main hypoxic regulator, HIF-α, in all steps of metastasis 

led to many trials of inhibiting this molecule to diminish 

cancer cell trafficking thus reducing metastasis. Inhibition of 

HIF-1 activity using antisense oligonucleotide (EZN-2968) 

gave effective results and a safe toxicity in a Phase I clinical 

trial in metastatic, advanced solid malignancy.85 Targeting 

hypoxic cells with a pro-drug, activated only in a hypoxic 

environment, is one of the newest and highly promising 

strategies to reduce metastasis, currently undergoing phase 

I/II clinical trials in multiple myeloma, a model of a process 

of metastasis.86

Apart from targeting HIF-α molecules, another strategy 

to inhibit metastasis is to target genes downstream of HIF-α. 

For instance, CAIX is a hypoxia-inducible enzyme widely 

present in tumors; it is crucial in regulating intra- and extra-

cellular pH, thus CAIX promotes survival and invasion of 
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cancer cells.87 It was demonstrated that, inhibition of CAIX 

decreased tumor growth and metastasis in pre-clinical breast 

tumor models.87 LOX is another protein elevated in hypoxic 

human tumor cells (such as breast, and head and neck cancer) 

and is HIF-α-dependent.61 LOX secreted by tumor cells 

accumulates at new sites and mediates bone marrow-derived 

cell recruitment which forms a “pre-metastatic niche” for 

future metastasis.88 Inhibition of LOX reduced hypoxia-

induced recruitment and metastasis in the breast cancer 

mouse model.88 Another target candidate induced by hypoxia 

in cancer cells is CXCR4 involved in cell trafficking.89,90 It 

was demonstrated that metastatic tumor cells expressing high 

levels of CXCR4 home to tissues rich in its ligand, SDF-1,63,91 

and inhibitors of CXCR4/SDF-1 axis resulted in disruption 

of the metastatic process (Figure 2).90

Radiation and drug resistance
Resistance of cancer cells to treatment-induced apoptosis is 

one of the biggest obstacles in cancer therapy.92 A vast number 

of cancer patients relapse and suffer from recurring tumors as 

a result of micro-residual disease, the resistant subpopulation 

of cancer cells, leading to local recurrence and/or metastasis.93 

Tumor hypoxia develops due to uncontrollable cell prolifera-

tion, altered metabolism, and abnormal tumor blood vessels 

resulting in reduced transport of oxygen and nutrients.13 

Hypoxia is one of the main features of solid tumors and was 

shown to correlate with poor prognosis of cancer patients.73 

While hypoxia is lethal for many cells, a subpopulation of 

tumor cells is able to not only adapt to hypoxic conditions 

but also become resistant to chemo- and radiotherapy. The 

role of hypoxia in the phenomenon of therapy resistance has 

been acknowledged for at least 60 years.94,95

Hypoxia confers treatment resistance of cancer cells by 

regulating processes such as i) inducing cell cycle arrest 

(quiescence), a state of reduced cell proliferation which pro-

tects the cells from external stress,96,97 ii) inhibiting apoptosis 

and senescence of cells, iii) controlling autophagy, p53, and 

mitochondrial activity.94,97 Apart from cellular adaptations 

influenced by hypoxia, lowered oxygenation of the tumor 

tissue confers chemoresistance by affecting iv) drug deliv-

ery and cellular uptake through associated acidity and drug 

efflux pump expression such as P-gp,98 as well as by the 

v) lack of oxygen required for the cytotoxicity of a number 

of chemotherapeutics.99

One of the most important parameters of radio-resistance 

is oxygenation, the state of cell cycle, and the nature of 

radiation, whether it is gamma, X-ray, neutron radiation, or 

linear energy transfer including alpha and beta particles.94,96 

When oxygen is abundant, the normoxic cells are sensitive 

to radiation, due to “oxygen fixation” which happens when 

available molecules of oxygen react with free radicals in 

DNA generated by ionizing radiation leading to irreversible 

DNA damage. Whereas, cells irradiated in hypoxic condi-

tions are resistant to death, due to decreased production of 

DNA radicals (which can be restored “chemical restitution”) 

caused by reduced generation of ROS and decreased DNA 

damage.95 The cell cycle phase determines the radiosensitivity 

of the tumors. It was shown that cells exposed to ionizing 

radiation are the least sensitive at the end of S phase, less 

sensitive in the G1 phase, and the most radiosensitive in the 

G2/M phase where DNA repair mechanisms are the most 

prone to malfunction.100 Hence, anticancer treatments, both 

radio- and chemotherapy, preferentially target the bulk of 

rapidly proliferating tumor cells. On the other hand, the 

cells which are most resistant to treatment are quiescent, 

low-proliferating, stem-cell-like cell fractions residing in 

the most hypoxic region.82,84,97,101 For instance, it was demon-

strated that glioblastoma cancer stem cells (CD133+) showed 

higher DNA repair and decreased apoptosis in response 

to irradiation, compared to non-stem-cell-like (CD133-) 

population.94,96,102

Hypoxia causes slow-proliferating stem-cell-like pheno-

type of cells, decreases senescence, creates chaotic and mal-

functioning blood vessels, and augments metastasis, which 

all together further induces therapy resistance.96 Currently, 

assessment of tumor oxygenation and HIF expression pattern 

helps determine tumor chemo- and radio-sensitivity.94,103 It 

was reported that head-and-neck cancer samples with high 

expression of HIF-1α and HIF-2α were more resistant to 

chemotherapy (carboplatin) compared to biopsies with low 

HIF-α expression which were chemo-sensitive.104 Patients 

with oropharyngeal cancer demonstrating high expres-

sion of HIF-1α had a lower chance to achieve complete 

remission after irradiation.103 In addition, irradiation was 

shown to induce HIF-1 activity, leading to production of 

angiogenic molecules such as VEGF which protects ECs 

from irradiation-induced apoptosis.105 Therefore HIF-1 rep-

resents a valid predictive marker and therapeutic target for 

manipulation, in combination with chemotherapeutics and 

radiotherapy, in order to sensitize the cells to treatments.73

As demonstrated by others, inactivation of HIF-1α in 

mouse embryonic fibroblasts increased their susceptibility 

to carboplatin and etoposide compared to wild-type, both 

in vitro and in vivo.106 Similarly, inhibition of HIF-2α with 

short hairpin RNA reversed the resistance to doxorubicin 

and etoposide of human clear cell renal cell cancer cells 
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(one of the most resistant tumors) by restoring p53.57 It 

was reported that treating tumor-bearing mice with HIF-1 

inhibitor (YC-1) induced radiation-induced vessel damage.105 

Similarly, treatment of glioma, squamous and pancreatic 

cancer cells with the HIF-1α inhibitor (PX-478) radio-

sensitized hypoxic cells.107 Silencing of HIF-1α with siRNA 

in mouse embryonic fibroblasts increased susceptibility to 

irradiation;106 and also, HIF-2α inhibition was shown to 

enhance radiation-induced apoptosis due to HIF-2-mediated 

increase of p53 activity and accumulation of ROS, thus DNA 

damage (Figure 2).108

Tumor microenvironment
The tumor would not thrive without the interaction, cross-

talk, and support with the tumor microenvironment including 

cellular components such as stromal cells, immune cells, ECs 

as well as non-cellular components including ECM, cyto-

kines, and other mediators.109 Thus, in hypoxic tumor tissue, 

not only cancer cells but also the tumor microenvironment 

is affected by hypoxia-inducible changes.110

Hypoxia was shown to induce metabolic and molecular 

changes in ECs, increasing expression of pro-angiogenic 

molecules, blood vessel formation, and thus providing more 

oxygen and nutrients for tumor cells. Hypoxia also regulates 

inflammatory mediators and growth factors, which then 

stimulate platelet, leukocyte, and smooth muscle cell activity. 

One of the most significant changes is increase in adhesive-

ness of ECs to neutrophils facilitating NK cell trafficking and 

local inflammatory reaction.111 Depending on the duration 

of oxygen depletion, hypoxia regulates expression of NO 

synthase expression contributing to vasoconstriction.112 Since 

blood vessels nourish tumors, targeting ECs will prevent or 

reverse tumor growth.110,113–115

Stromal cells, on the other hand, facilitate tumor growth 

and tumor dissemination mostly by regulating cancer cell 

adhesion and contributing to cell proliferation and survival. 

It was shown that hypoxia induces stromal cells to produce 

a number of factors including Ang-2, ANGPTL-4, PDGF, 

VEGF, SDF-1, LOX, and SCF (KIT-ligand), influencing ECs 

and EPCs thus promoting new blood vessel formation and 

lymphangiogenesis. Also, stromal-derived SDF-1 attracts 

cancer cells and thus facilitates metastasis.115,116

It was demonstrated that hypoxia leads to immune-

resistance and immune-suppression, which help tumor 

cells to escape from immune surveillance.117,118 Some of the 

immune-suppressive effects include: 1) shedding of immune-

recognition molecules by tumor hypoxia, which results 

in decreased sensitivity to T- and NK-mediated killing;119 

2) inhibition of T cells’ and dendritic cells’ maturation and 

cytokine production;120 3) and promotion of suppressive cells 

such as regulatory T cells and tumor-associated macrophages, 

which block immune effector cells.121

Therefore, there is an increasing importance of the 

hypoxic phenotype of stromal and immune cells in the tumor 

microenvironment providing non-cancer cells as potential 

novel targets in the fight against the tumor.110

Conclusion
Pathological hypoxia affects both cancer cells and the 

tumor microenvironment, and plays a pivotal role in the 

process of cancer progression and dissemination. Hypoxia 

regulates tumor neovascularization, metabolism, cell sur-

vival, and cell death. In addition, hypoxia contributes to 

EMT-like cancer cell migration and cancer stem-cell-like 

properties including resistance to treatment, one of the 

nightmares in the medical field. Each step of the cancer 

adaptive processes is controlled by hypoxia-activating 

transcriptional programs involving HIF, NFĸB, PI3K, and 

MAPK pathways.

Since hypoxia signifies increased tumor progression 

and aggressiveness hampering patients’ survival, direct 

and indirect methods of measuring hypoxia combined with 

clinical observations may help to predict patients’ outcome 

as well as identify patients who could benefit from hypoxia/

HIF-targeted treatments. Better understanding of hypoxic 

phenomenon and dissecting out the hypoxia-inducible 

responses and signaling pathways will grant numerous novel 

targets in the near future.
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