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Abstract: Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, 

and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and 

engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxic-

ity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments 

have resulted in modest effects in the clinic. There is increasing interest in their combination 

with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic 

viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor 

immunity through the induction of immunogenic cell death of cancer cells. Combining these 

two treatment modalities has to date resulted in significant potential in vitro and in vivo syner-

gies through various mechanisms without any apparent additional toxicities. Chemotherapy 

has been and will continue to be integral to the management of advanced cancers. This review 

therefore focuses on the potential for a number of common cytotoxic agents to be combined 

with clinically relevant oncolytic viruses. In many cases, this combined approach has already 

advanced to the clinical trial arena.

Keywords: oncolytic virotherapy, chemotherapy, immunogenic cell death

Introduction
The conventional cancer treatments of surgery, chemotherapy, and radiotherapy 

remain the mainstay of current therapeutic approaches to cancer. They have been 

used successfully in combination with one another in the neoadjuvant, concomitant, 

and adjuvant context for many years. However, despite their utility and curative 

potential, each modality has its limitations in terms of limited efficacy, significant 

toxicity, lack of durability of response, and in the case of chemotherapy the emer-

gence of drug resistance. In addition to the release of neoantigens after tumor-cell 

destruction, exposure of cancer cells to cytotoxic agents may induce innate and 

adaptive immune responses against the cancer in other ways. Certain modes of 

cancer cell death are associated with immunogenicity through the induction of 

immunogenic cell-death (ICD) proteins, such as calreticulin, HSP70, ATP, and 

HMGB proteins.1 A number of cytotoxic agents have been shown to induce ICD,2 

while others are capable of modulating the tumor microenvironment by reducing 

the function or number of suppressive immune cells (regulatory T cells [T
regs

] and 

myeloid-derived suppressor cells [MDSCs]) or generating inflammatory cytokines 

(Table 1).3–137 Tumors treated with chemotherapy have also been shown to be more 

sensitive to cytotoxic T-lymphocyte (CTL) killing.51 Most of the evidence for ICD has 

been derived from murine models of human cancer. Relatively little is known about 
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Table 1 Mechanisms of immunomodulation caused by chemotherapy (chemo) alone, and synergy seen when combined with oncolytic virus

Chemotherapy  
drug

Mechanism of immunomodulation caused by chemo alone Immunomodulation  
reference

Oncolytic virus– 
chemo synergy

Cyclophosphamide Triggers TRAiL CD8+ T cell-mediated apoptosis 3
Induces proinflammatory production/induction of ICD marker  
calreticulin/HMGB1

4–6

Decreased Treg function 7–9 10,11
CD8+ T cell-specific tumor activity 7
induces T-helper type 1 or 17 immunity 12 11
Decreases complement function 13
Suppression of immune cell types 14,15
inhibits or delays viral neutralization response 14–23
increases MDSCs 24,25
enhances DC function 26
Synergy, but unknown immune function, if any 27,28

Gemcitabine Decreases MDSCs 29 29–31
Decreases neutralizing antibodies 29 29
induces iCD marker calreticulin 4
induces iCD marker HMGB1 32,33
Depletes B cells 34 35
Synergy, but unknown immune function, if any 32,36–45

Bortezomib enhances DC function 46
iCD and DAMP release 14
Antitumoral immunity 47
CD8+ T cell-mediated inhibition of tumor growth 46
Synergy, but undefined immune function, if any 48,49

Doxorubicin induces iCD marker calreticulin 4 50
Granzyme B released by CTLs 51
induces type i iFN response 52
increases Treg cells and significantly decreases NK cells 53
Decreases B7-H1/PD-L1 from cell surface 54
Synergy, but undefined immune function, if any 55–59

Mitoxantrone Induces DC/T-cell tumor infiltrate 60
Releases ATP 60
ecto-CRT, ecto-HSP70, and HMGB1 61,62
Tumor antigen-specific CD8+ and CD4+ T-cell activity 60,63,64 65
enhances DC function 66

Temozolomide Decreases Treg function 67
Tumor-specific T-cell responses 68 68
Synergy, but undefined immune function, if any 69–74

Docetaxel Decreases MDSCs, increases CD8+ T cells 75
enhances DC function 75
Synergy, but unknown immune function, if any 76–82

Paclitaxel Granzyme B released by CTLs 83
induces iCD marker calreticulin 4
induces MHC 84
Decreases Treg function 85–87
induces T-helper type 1 immunity 12
Type i iFN and HMGB1 release in vitro 88
NK cells essential for strong synergy 10
Slows neutralizing antibodies (with carboplatin) 89
Synergy, but unknown immune function, if any 90–99

5-Fluorouracil CD8+ T cell-mediated apoptosis 100
induces carcinoembryonic antigen (CeA) 101
Decreases MDSCs 102
Synergy, but unknown immune function, if any 103–105

Cisplatin Decreases Treg function 106
CD8+ T cell-specific tumor activity 106
Granzyme B released by CTL 50

(Continued)
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the immunogenicity of chemotherapy in cancer patients. 

The combination of “immunogenic” or ICD-inducing 

chemotherapy with other anticancer treatment modalities 

capable of priming and/or propagating immune responses 

is now being evaluated. While the obvious candidates for 

combination are cancer vaccines, low doses of radiotherapy 

and immune-checkpoint inhibitors, there is an increasingly 

compelling case for combination of chemotherapy with 

oncolytic viruses (OVs).138

Despite being recognized as having the potential to 

treat cancer since the beginning of the 20th century, OVs 

are only now entering the clinical arena for certain can-

cers, following the successful evaluation of talimogene 

laherparepvec (T-vec) in malignant melanoma.139 OVs 

are live viruses that are selectively toxic to cancer cells. 

The basis of selectivity for cancer versus normal cells 

is based on cell entry (tumor cells expressing a receptor 

the virus uses to gain entry), impaired IFN response in 

cancer cells, or dysregulation in key signaling pathways, 

such as the RAS pathway, which would otherwise (eg, 

through the phosphorylation of PKR) allow the cell to 

negate the virus. Clinical trials involving OVs as single 

agents have largely been safe, demonstrated minimal tox-

icity, and in certain studies shown signs both of efficacy 

by radiological evaluation and the presence of live virus 

in tumor biopsies a week or more after treatment.140,141 

However, the overall efficacy of single-agent OV therapy 

has at best been modest. The true potential of OVs may 

yet be realized through their combination with other 

treatment modalities, such as chemotherapy. As well as 

synergistic mechanisms of tumor-cell killing, combina-

tion with chemotherapeutics through careful sequencing 

may help to overcome some of the barriers in the tumor 

microenvironment thought to limit the efficacy of OVs. 

These include large tumor size,142 poor vasculature,143 

elevated interstitial pressure,144 and physical barriers.145 

One potential limitation of OVs that is regularly debated 

is the rapid generation of antiviral antibody responses a 

week or so following OV administration. There have been 

attempts to attenuate this response using such agents as 

cyclophosphamide (CPA; discussed later), but it is clear 

that despite high levels of neutralizing antibodies, further 

administrations of the same OV can traffic to the tumor 

environment and cause tumor kill. The OV is most likely 

protected from neutralizing antibodies by carriage (hitch-

hiking) on granulocytes, lymphocytes, and platelets to 

tumor cells in metastatic deposits.146 Recent preclinical and 

clinical studies have shown that combining chemotherapy 

with OVs may potentially be highly synergistic, improving 

on the efficacy of each modality alone (Table 1).

In this review, we explore the many ways in which che-

motherapy and OVs have been considered in combination. 

The methods used by researchers have been based on 

cell lines using classical isobologram analysis, murine 

models, and in humans with a number of completed 

clinical trials.

Table 1 (Continued)

Chemotherapy  
drug

Mechanism of immunomodulation caused by chemo alone Immunomodulation  
reference

Oncolytic virus– 
chemo synergy

enhances DC function, cytokine release, and cytotoxic T-cell activation 107
Synergy, but unknown immune function, if any 108–118

Mitomycin C enhances DC function 71,119
Synergy, but unknown immune function, if any 120–124

Azadeoxycytidine enhances DC function 71
irinotecan Decreases Treg function 125

NK cells essential 126 126
Synergy, but unknown immune function, if any 126–129

Rapamycin/everolimus inhibition of T-cell proliferation 130 131
Decreases DC maturation 130
increases Treg cells 130
Decreases cellular iFN 132
Decreases cytokine release 131
Decreases antiviral antibody production 131,133
Synergy, but unknown immune function, if any 132–136

5-Aza induces cancer testis antigen 137
induces MHC 137

Abbreviations: iCD, immunogenic cell death; Treg, regulatory T cell; MDSCs, myeloid-derived suppressor cells; DC, dendritic cell; DAMP, danger-associated molecular pattern; 
CTLs, cytotoxic T lymphocytes; NK, natural killer; MHC, major histocompatibility complex; TRAiL, TNF-related apoptosis inducing ligand; ecto-CRT, ecto calreticulin.
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Cell-death mechanisms: 
immunogenic cell death is vital 
for cancer therapy
OV-mediated cell death does not fit exactly into one of the 

three classical categories of cell death (apoptosis, necrosis, 

and autophagy), and likewise cell-death pathways induced by 

chemotherapy can vary from agent to agent. Due to the physi-

ological consequences associated with cell death, enormous 

effort has been invested into understanding the three main 

mechanisms. Apoptosis is vital for development and the main-

tenance of tissue homeostasis, and is generally considered to be 

a nonimmunogenic form of cell death, while necrosis, which is 

less coordinated and results in the release of proinflammatory 

cytokines, has been regarded as immunogenic.147 However, it 

is now clear that the boundaries between each classical cell-

death pathway are not defined and there is often overlap. This 

has been demonstrated by the discovery of “immunogenic” 

apoptosis in tumor cells, which can be induced by specific 

chemotherapies, such as the anthracyclines and oxaliplatin 

(Figure 1).148,149 Similarly, OV-mediated cell death does not fit 

into either apoptosis or necrosis, but displays features of both, 

with variations between oncolytic viral types. In general, the 

immunogenic death (apoptosis, necrosis, autophagy, etc) of 

cancer cells involves a multistep process, beginning with the 

recognition of pathogen- associated molecular components, 

such as viral components, which cause such molecules as 

fractalkine, nucleotides, and ATP to be released, which in turn 

attract phagocytes or dendritic cells (DCs), and the expression 

of such signals as phosphatidylserine and calreticulin that aid 

recognition by phagocytes or DCs. Finally, danger-associated 

molecular patterns (DAMPs), such as HMGB1, are expressed. 

This enables dying tumor cells to lose the ability to induce 

tolerance and to stimulate powerful anticancer immune 

responses (Figure 1). Scientists have investigated many ways 

to increase the immunogenic effects seen with OVs, but it 

is becoming clearer that one way to complement the ICD 

mechanisms and the immunomodulatory effects (Table 1) 

seen with either therapy alone is to combine both OVs and 

chemotherapy to achieve either at least an additive or (even 

better) a synergistic result.

Combining chemotherapeutic  
drugs with OV therapy
Cyclophosphamide
CPA is an alkylating agent that causes cross-linking of DNA, 

and is used in the management of countless tumor types. 

Tumor-specific
T-cell priming

PAMPs

Activate
PRRs

Activates APCs/DCs

Activating cytokines:
Type I IFN, TNF

Cancer cell
debris

TAAs/

neoepitopes

ER stress

Genotoxic stress

PAMPs:

Viral components

(capsids, DNA, dsRNA,

ssRNA, proteins)

ROS

HMGB1
Heat-shock proteins
Calreticulin exposure
ATP
Uric acid

Chemotherapy (anthracyclins,
platin-based agents)
Cyclophosphamide
Bortezomib
EGFR-binding Ab

Release/presentation
of DAMPs:

Other ICD inducers:
Immunogenic cell death

Oncolytic virus

NDV
Reovirus
Ads
HSV
MV
VV
H-1PV

Cancer cell

PAMPs
TAAs/
neoepitopes

Figure 1 A summary of immunogenic cell death (iCD) caused by oncolytic virus and/or chemotherapy.
Note: Reproduced from woller N, Gürlevik e, Ureche C-i, Schumacher A, Kühnel F. Oncolytic viruses as anticancer vaccines. Front Oncol. 2014;4:188. doi: 10.3389/fonc. 
2014.00188.148

Abbreviations: Ads, adenoviruses; APCs, antigen-presenting cells; DAMPs, danger-associated molecular patterns; DCs, dendritic cells; dsRNA, double-stranded RNA; 
eGFR, epidermal growth factor receptor; eR, endoplasmic reticulum; HSV, herpes simplex virus; iFN, interferon; MV, measles virus; NDV, Newcastle disease virus; PAMPs, 
pathogen-associated molecular patterns; PRRs, pattern recognition receptors; PV, parvovirus; ROS, reactive oxygen species; ssRNA, single-stranded RNA; TAAs, tumor-
associated antigens; TNF, tumor necrosis factor; VV, vaccinia virus.
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In itself, CPA is not an active drug. It requires  metabolic 

 activation by aldehyde dehydrogenase, producing the active 

compound 4-hydroxycyclophosphamide. The release of 

HMGB1 and ecto-CRT is seen with CPA treatment, which 

results in DC activation, proinflammatory cytokine produc-

tion, and T-cell proliferation.5,6 Synergy in vivo has been 

shown using a variety of OVs and CPA, including herpes 

simplex virus (HSV)-1, adenovirus, vaccinia,27,28 reovirus, 

measles, myxoma virus,15 and vesicular stomatitis virus 

(VSV).23 The combination of CPA with reovirus has been 

investigated in in vivo models, and these studies have dem-

onstrated safety and efficacy using a carefully titrated CPA 

schedule, including administration 24 hours before reovi-

rus.20 However, significant normal-tissue toxicity was seen 

at higher doses, similar to the administration of reovirus to 

B-cell knockout mice.20 Therefore, careful titration of any 

immunomodulatory effect is required to optimize efficacy 

without augmenting viral replication and toxicity in normal 

tissues. Studies with oncolytic HSV-1 and adenovirus in 

combination with CPA have shown a fall in the magni-

tudes of antiviral immune cells, which prevents, inhibits, 

or delays viral neutralization.14,17,19,21 CPA has been shown 

in vivo to deplete the complement response to HSV.13 With 

oncolytic measles virus and VSV, CPA has been shown to 

strongly damp down the antiviral host immune response,23,150 

but in the case of a VSV combination resulted in reduced 

therapeutic efficacy compared to CPA alone.150 Zemp et al 

showed that the removal of the tumor-resident macrophage 

population in an orthotopic glioma model by CPA substan-

tially increased the survival of mice with myxoma virus 

post-treatment.15

Additional studies imply that a CPA/viral combination 

can also boost antitumor immunity by inhibiting T
regs

.10,11 

These data were confirmed in a Phase I clinical trial that 

showed that metronomic dosing of CPA decreased T
regs

 

in solid tumors treated with adenovirus granulocyte mac-

rophage colony-stimulating factor, without compromising 

the stimulation of antitumor responses.11 In contrast, Phase 

I clinical trials showed that reovirus (where CPA dose was 

escalated from 25 to 1,000 mg/m2) or Seneca Valley virus 

coadministration with CPA were safe, but did not attenuate 

host antiviral responses.151,152

Gemcitabine
Gemcitabine is a fluorinated deoxycytidine analog that has two 

forms: the gemcitabine diphosphate form, which impedes the 

ribonucleotide reductase enzyme, resulting in a reduction in the 

pool of deoxynucleotide available for DNA synthesis; whereas 

the second form, gemcitabine triphosphate, is incorporated into 

DNA, causing chain termination and resulting in apoptosis 

and cell death. Gemcitabine has also been shown to deplete 

MDSCs and promote  antitumor immune responses.153 Both 

gemcitabine and CPA can decrease neutralizing antibodies in 

cancer patients.29 An increase in antitumor activity was seen 

with a wide array of OVs in combination with gemcitabine, 

including adenovirus,38–44 parvovirus,32,33 reovirus,30,37 VSV,35 

HSV,31 vaccinia,45 and myxoma virus.36 Gemcitabine alone 

fails to trigger HMGB1 release; in contrast, parvovirus does 

induce HMGB1.32 Combination treatment of both parvovirus 

and gemcitabine results in a high level of tumor cytotoxicity 

without impeding ICD activities.32

In vivo studies with either HSV or reovirus in combi-

nation with gemcitabine improved the survival compared 

with either treatment alone.30,31 These therapeutic combina-

tions also demonstrate that gemcitabine limits the reovirus/

HSV-1-induced accumulation of MDSCs in the tumor 

microenvironment.30,31 Gemcitabine treatment in a Phase I 

clinical trial showed greatly reduced levels of reovirus-neu-

tralizing antibodies, and 80% of patients exhibited either a 

partial response or stable disease.29

Bortezomib
Bortezomib is a peptide-based, reversible proteasome inhibi-

tor. Potent immunomediated antitumor effects were seen 

after treatment with bortezomib in the form of enhanced 

DC function and upregulation of the HSP60 and HSP90 

proteins.46 Bortezomib has been shown to generate reac-

tive oxygen species, which are believed to cause ICD and 

DAMP release, increasing cellular stress.154–157 A number 

of OVs have been studied in combination with bortezomib, 

including HSV-1,60 reovirus,49 adenovirus,47 and VSV.48 Both 

HSV-1 and reovirus have shown synergy, but the contribution 

of immunomodulatory effects of bortezomib and antitumor 

immune responses in vivo was not examined.49,156 Combining 

VSV and bortezomib resulted in antagonism in vitro, but 

in contrast synergy was seen in vivo.48 This may have been 

due to immune cells in vivo that were not present in the 

in vitro setting. The authors of this study cited an ovarian 

tumor mouse study that showed reduction in tumor growth 

facilitated by CD8+ T-cell function with bortezomib alone.46 

In a hepatocellular carcinoma in vivo model, treatment with 

bortezomib and an adenovirus expressing human telomerase 

reverse-transcriptase resulted in caspase-dependent apoptosis 

and a reduction in the antiviral immune responses.47

Doxorubicin
Doxorubicin (Dox) is an anthracycline antibiotic that 

intercalates into the DNA double-helical structure. This 
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intercalation process hinders unwinding and resealing of 

DNA for transcription, and thus inhibits cellular DNA rep-

lication. Dox also stimulates the rapid production of type I 

IFNs by tumor cells after activation of TLR3, resulting in 

the release of chemokine (CXCL10).52 A type I IFN gene 

signature-predicted response to Dox therapy has been seen 

in breast cancer patients.52

These data suggest that Dox-mediated immune responses 

mimic those induced by viral pathogens. In addition to 

inducing ICD4 and type I IFN secretion, Dox and other che-

motherapeutics also increase the susceptibility of tumors to 

CTLs by increasing tumor-cell permeability to granzyme B 

released by the CTLs.51 The addition of Dox to adenovirus 

resulted in significantly increased expression of calreticulin 

in vitro.50 Synergy between Dox and other OVs, such as HSV-

1,55 measles,56 vaccinia,57 Coxsackie virus 21,50 and VSV59 

has been seen in vitro and in vivo, but no immunocomponent 

effects have yet been defined.

Mitoxantrone
Mitoxantrone (MTX) is a synthetic anthracenedione 

antineoplastic agent derived from the anthraquinone dye 

ametantrone,158 which is frequently used to manage prostate, 

leukemia, and breast cancer.159,160 It is structurally similar to 

Dox, with both drugs having a planar aromatic ring struc-

ture that enables them to interact with DNA by intercalation 

between base pairs. MTX can inhibit the activity of the 

nuclear enzyme DNA topoisomerase (II), interfere with RNA 

and cause the cross-linking of DNA and strand breaks, and 

produce reactive oxygen species. MTX is believed to lack 

cell-cycle phase specificity, because it has cytocidal effects 

on both proliferating and nonproliferating cells.161 MTX also 

has immunosuppressive properties, resulting in the inhibi-

tion of proinflammatory cytokines, such as TNF, IL-2, and 

IFNγ. It is therefore used in the management of multiple 

sclerosis.162 Cancer cells undergoing immunogenic apoptosis 

and autophagy after treatment with MTX express various 

DAMPs, such as ecto-HSP70, ATP, and HMGB-1,160,161 and 

stimulate the peripheral relocation of CRT.163 MTX treat-

ment also increases uptake of tumor-associated antigens 

by antigen-presenting cells, resulting in establishment of 

antitumor activity by antigen-specific CD8+ and CD4+ T 

cells.59,63,64 Both in murine models76,77 and in human patients 

with cancer,146 antitumor immune responses induced by 

cancer cells undergoing ICD are associated with better clini-

cal responses. A combination of HSV-1 with MTX failed to 

increase cytotoxicity or halt virus replication in vitro.65,164 In 

contrast, in vivo, the same combination provided significant 

survival benefit when administered locally to HER-2/neu 

subcutaneous tumors.65 This protective effect was facilitated 

by enhanced levels of tumor antigen-specific CTL cells and 

an increase in intratumoral infiltration of neutrophil cells.65 

These results were confirmed by depleting CD4-, CD8-, and 

Ly6G-expressing cells from the model, showing that these 

cells are essential for enhanced efficacy.65

irinotecan
Irinotecan is an antineoplastic enzyme inhibitor and shows 

activity against colorectal, lung, esophageal, and gastric 

cancers, leukemia, and lymphomas. Irinotecan inhibits the 

topoisomerase I-DNA complex and causes double-strand 

DNA breakage that results in cell death. In the clinic, irino-

tecan is used in combination with fluorouracil and leucovorin 

(FOLFIRI) in colon cancer patients.125 Treatment with the 

FOLFIRI combination significantly reduced the amount of 

CD4+FoxP3+ T
regs

 in patients, without altering the total number 

of lymphocytes or the population of CD4+ T lymphocytes.125 

Irinotecan has been shown to inhibit HSV-1 viral replication 

and lytic oncolysis in colon cancer cell lines.164 In contrast, 

other groups show synergy with OVs/irinotecan, including 

HSV-1 encoding CYP2B1,127 reovirus,128 and Sindbis virus.126 

However, only the study on Sindbis virus looked at immune 

components in irinotecan synergy, concluding that natural 

killer cells are essential for the process.126

Temozolomide
Temozolomide (TMZ) is an alkylating agent currently used 

as first-line therapy for glioma treatment, due to its DNA-

damaging effect.165,166 Advanced melanoma patients treated 

with low-dose TMZ followed by DC (autologous tumor 

lysate) vaccination showed a reduction in circulating immu-

nosuppressive FoxP3+ T
regs

.67

Synergy has been recorded between TMZ and both 

HSV69,71 and adenovirus.68,72–74 An unconventional patient 

study on various cancers treated with oncolytic adenovirus 

and a low dose of TMZ showed an upregulation of ICD 

signal HMGB1 and specific tumor T-cell responses, which 

resulted in disease control in 67%68 of cases. These results 

are interesting, but are difficult to interpret, due to the large 

number of different types of adenoviruses used in this study 

and differences in doses of TMZ.

Pi3K–Akt–mTOR pathway inhibitors
The PI3K–Akt–mTOR signaling cascade is well characterized 

and plays a crucial role in a variety of physiologic processes, 

including cell-cycle progression, differentiation, transcription, 

translation, apoptosis, motility, autophagy, anabolic pro-

cesses (including protein and lipid synthesis), and metabolic 
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 processes (including normal glucose homeostasis). Activation 

of the PI3k–Akt–mTOR signaling pathway is implicated in 

tumorigenesis, and PI3K–Akt–mTOR is the most frequently 

mutated pathway in cancer. PI3K/Akt inhibitors show synergy 

with HSV-MG18L71 and adenovirus ZD55-TRAIL166, but 

immunocomponents were not studied. mTOR is a master 

regulator of cellular translation and also impacts translation 

of viral proteins. Rapamycin is able to inhibit mTOR167,168 by 

forming a complex with FKBP12.141,169 This inhibits prolifera-

tion, which results in the induction of autophagy in cancer 

cells.130,170 T and B lymphocytes also show a decrease in cell 

function in the presence of rapamycin.171–175 Also, rapamycin 

exhibits significant antiangiogenesis and anticancer proper-

ties.133 Studies with an oncolytic HSV show that rapamycin 

enhances viral replication in vitro.134 A possible mechanism 

for this enhanced viral replication may be the reduction of 

cellular IFN, which has been seen with VSV/rapamycin in 

an in vivo glioma model.136 Studies with adenovirus have 

shown that rapamycin/everolimus can suppress the adenovirus 

innate response (TNF, IL-1β, IL-6, IL-8, IL-10, IL-12, and 

IFNδ) reduce T-cell infiltration and decrease anti-Ad anti-

body production and T-cell function.131,133 This suppression 

by rapamycin/everolimus of the host viral immune response 

may explain the improved efficacy of oncolytic HSV,134 

VSV,136 adenovirus,131,135 and myxoma virus15 in a number of 

in vivo models.

Mitomycin C
Mitomycins are a group of antineoplastic antibiotics, of 

which mitomycin C (MMC) is the most studied. MMC is 

an alkylating agent that cross-links DNA and is produced by 

Streptomyces caespitosus. Apoptosis can be induced by MMC, 

either by the caspase 3- and 8-dependent Fas–FasL pathway or 

via the activity of the NFκB pathway.176 MMC has also been 

shown to maintain innate and adaptive immune responses in 

a major subpopulation of human blood DCs (slan DC). This 

has encouraged the design of clinical trials for tumor patients 

that are based on the simultaneous administration of tumor 

antigen-loaded DCs and MMC.119 Intracellular adhesion mol-

ecule-1 and decay accelerating factor, the viral entry receptors 

for Coxsackie virus A21, have been shown to be upregulated 

in the presence of MMC, leading to synergy between virus 

and drug.120 HSV-1,121–123 vaccinia,124 and adenovirus177 have 

all shown synergy with MMC, but these studies have not 

identified any immune-function mechanism.

Docetaxel
Docetaxel (Doc) has been shown to have a number of inhibi-

tory functions on tumor cells, including inducing apoptosis, 

angiogenesis, and impeding gene-expression processes,178 

but its primary anticancer function is via microtubule stabi-

lization. Doc has been shown to decrease MDSCs and thus 

increase CD8+ T-cell activity in a murine model of breast 

cancer.179 Oncolytic adenovirus,76–79 reovirus,80,81 and HSV-182 

have all shown synergy with Doc, but these studies have not 

identified any immune-function mechanism. Doc had no 

effect on the production of neutralizing antibodies to reovirus 

in a Phase I clinical trial.81

5-Fluorouracil
5-Fluorouracil (5-FU) is an antimetabolite drug that inhibits 

the enzyme thymidylate synthase and the incorporation of 

its metabolites into RNA and DNA.180 5-FU did not suppress 

the production of neutralizing antibodies against G207, but 

increased viral spread in subcutaneous hamster gallbladder 

tumors.105 Antitumor effects of 5-FU are mediated, at least in 

part, by its selective cytotoxic action on MDSCs.102 Exposure 

of colon and pancreatic cancer cells to 5-FU significantly 

antagonizes both wild-type HSV-1 replication and lytic 

oncolysis.164 In contrast, an HSV-1 mutant missing one copy 

of its ICP0, ICP4, and ICP34.5 gene (NV1066) resulted in 

enhanced viral replication.

Cisplatin
Cisplatin is a well-characterized alkylating agent used for 

the management of a wide range of cancers. As with other 

alkylating agents, its main mode of action is its ability to 

cross-link with the purine bases on the DNA. Cisplatin also 

interferes with DNA-repair mechanisms, which causes DNA 

damage, and subsequently induces apoptosis in tumor cells.181 

Cisplatin can decrease T
regs

 and enhance antigen-specific 

CD8+ T-cell activity in murine models,106 and almost com-

pletely abrogate the inflammatory cytokine gene upregulation 

induced by reovirus.115 In contrast, a parvovirus–cisplatin 

combination induced higher cytokine release than either 

agent alone, and also resulted in pronounced DC maturation 

and cytotoxic T-cell activation.107

Discussion
OVs have been shown to be safely combined with conventional 

cytotoxic agents and evaluation in clinical trials justified on the 

basis of potential synergy through direct cytotoxicity, indirect 

immunogenicity, and/or alteration of the tumor microenvi-

ronment. The number of agents in clinical trials reflects the 

potential for this approach, which has recently focused away 

from delivery of live viruses to tumor sites, tumor lysis, and 

debulking to the induction of antitumor immunity through 

local induction of ICD, which ultimately will result in abscopal 
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effects on distant metastases. Although not yet formally 

addressed in studies, there would most likely be low likelihood 

of cross-resistance to either treatment modality.

A number of human studies have already exploited 

this potential, as exemplified by the US Food and Drug 

Administration approval of the agent T-Vec for the treat-

ment of malignant melanoma. Ongoing human studies are 

 evaluating both DNA and RNA viruses and wild-type agents, 

as well as modified agents expressing immunostimulatory 

gene products. Combination with immune-checkpoint inhibi-

tors has swiftly followed, with signals already of increased 

response rates compared to virus or checkpoint inhibitor 

alone.182 This follows evidence in a preclinical in vivo 

melanoma model, the oncolytic Newcastle disease virus, in 

combination with an anti-CTLA-4 antibody (ipilimumab), 

that showed enhanced tumor infiltration by activated CD8+ 

and CD4+ T cells and a reduction in T
regs

.183 This model also 

showed a nearly 70% rate of cure with combination treat-

ment compared to less than 25% for agents alone. Prolonged 

survival was also seen in the same in vivo melanoma model 

(B16.F10) when treated with a combination of anti PD-1 

antibody and reovirus.184 It is most likely that in the near 

future, combination studies with OVs will focus largely on 

immune-checkpoint modulation, but this may be tempered 

in term of toxicities and high cost.

While the earliest combination studies of OVs with chemo-

therapeutic agents were focused on attenuation of the expected 

brisk neutralizing antiviral antibody response, there is huge 

potential for combinations based on the immunostimulatory 

effects of common cytotoxic agents. Recent studies have 

shown convincingly that many OVs can hitchhike on circulat-

ing blood cells, are protected from neutralizing antibodies, 

and reach tumor sites, so this end point of chemotherapy–

OV combination is now being considered less important. A 

key factor that may allow combination studies to evolve is 

that almost all human OV studies have been associated with 

minimal toxicity, and actual dose-limiting toxicities rarely 

achieved. Therefore, patients will not be expected to face new 

and additional side effects and lower quality of life beyond 

the known chemotherapeutic agent-toxicity profile.

Historically, chemotherapy has been thought to prompt 

cancer cell death in an immunogenically silent way, but 

extensive studies have shown that such treatment can 

induce humoral and cellular antitumor immunity and break 

immune tolerance to tumors. The more subtle detail of 

this potential centers around the dose and sequencing of 

agents: CPA is myelosuppressive at conventional doses, but 

immunomodulatory as a single dose in combination with 

 immunotherapy, or may be used to delete T
regs

 by metronomic 

dosing. Furthermore, combination studies will logically 

exploit the natural tropism of certain OVs for tumor vas-

culature with chemotherapeutic agents with antiangiogenic 

potential or those that may cause vascular leakage to allow 

OV into that tumor microenvironment.185

There is huge potential for the combination of OVs with 

chemotherapeutics, but success will entail careful selection 

of the OV, the tumor model, the molecular dysregulation har-

bored by the malignancy, and the transgenes the OV carries, 

together with the best dose and sequencing with the most 

appropriate cytotoxic. The ideal disease setting and virus is 

not clear as yet, and further challenges will be evaluation of 

response to combination therapy and the contribution of an 

OV added to a classical three-drug regimen in a common 

setting, such as advanced breast or gastrointestinal cancers. 

Our wealth of experience with single- and multiagent chemo-

therapy regimens at least allows us a head start with clinical 

translation of combinations with OVs.
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