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Abstract: 5′ AMP-activated protein kinase (AMPK) is considered the master metabolic 

regulator in all eukaryotes, as it maintains cellular energy homeostasis in a variety of tissues, 

including the brain. In humans, alterations in AMPK activity can lead to a wide spectrum of 

metabolic disorders. The relevance of this protein kinase in the pathogenesis of diabetes and 

metabolic syndrome is now well established. On the contrary, correlations between AMPK and 

brain physiopathology are still poorly characterized. The aim of this review is to summarize 

and discuss the current knowledge about the prospective involvement of AMPK in the onset 

and the progression of different neurological diseases.
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Introduction
The maintenance of energy homeostasis is guaranteed by the tight regulation of 

molecular and functional mechanisms involved in energy intake and expenditure. The 

AMP-activated protein kinase (AMPK) is a sensor of AMP:ATP ratio and mediates 

adaptive changes as a function of low energy conditions. AMPK is considered the 

metabolic regulator of the whole organism, and it has become the leading factor in 

the study of obesity, diabetes, cachexia, and other metabolic disorders. However, 

during the last decade, increasing evidence sustains a pivotal role for AMPK also in 

the physiopathology of the central nervous system (CNS). AMPK is implicated in 

several neuronal aspects, such as neuronal proliferation and differentiation, synaptic 

connectivity, and neuroprotection. Thus, alterations in AMPK could easily lead to the 

onset of different neurological and neurodegenerative diseases.

AMPK: a pivotal metabolic regulator of the whole 
organism
Structure and regulation
In most species, AMPK exists as a heterotrimeric protein complex, containing α, β, 

and γ subunits in equal stoichiometry. The α subunit is responsible for the catalytic 

kinase activity, whereas the β and γ are regulatory subunits. In particular, mammalian γ 

subunits contain four cystathionine-β-synthase (CBS) domains, which occur as tandem 

pairs and function as nucleotide-binding sites for AMP or ATP.1 When intracellular 

ATP levels are low, AMP or ADP directly and mutually bind to the γ regulatory subunits 

of AMPK, thus inducing a conformational change that leads to AMPK activation.2,3 

High AMP levels also protect AMPK from dephosphorylation events operated by the 
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major classes of serine/threonine phosphatases (PP1, PP2A, 

and PP2Cα). The activatory phosphorylation of AMPK is 

mainly mediated by liver kinase B1 (LKB1), which phos-

phorylates the α catalytic subunit at Thr172.4 However, 

several studies have demonstrated that AMPK can be also 

phosphorylated on Thr172 in response to intracellular cal-

cium levels by calcium/calmodulin-dependent protein kinase 

kinase 2 (CAMKK2).5–8 (For extensive review, see works by 

Hardie5 and Moussa and Li8).

There are two genes encoding the α catalytic subunits 

(α1 and α2), two β genes (β1 and β2), and three γ genes (γ1, 

γ2, and γ3). Some of these isoforms display a tissue-specific 

expression pattern, and several experimental data also high-

light functional distinctions for the two catalytic α subunits, 

which reflect in AMP- and LKB1-responsiveness and nuclear 

localization. AMPKα2 isoform is particularly abundant in the 

nucleus, even though AMPKα1 is able to translocate to the 

nucleus under distinct and peculiar conditions.9,10 Moreover, 

the myristoylation of the β isoforms is an essential prerequisite 

for AMPK activation and its localization to membranes.11

Even though all the AMPK subunits are expressed in the 

brain, interesting findings underlie a specific distribution pat-

tern of the various subunit isoforms among cell types in the 

CNS. For instance, the α2 represents the dominant catalytic 

subunit in neurons. On the other hand, α subunits are not 

generally expressed in glial cells at basal conditions, but only 

in activated astrocytes. The γ1 subunit is mainly expressed in 

neurons but absent in astrocytes, and the amount of β1 and 

β2 subunits also differs according to the brain cell type (for 

extensive review, see Turnley et al12).

AMPK orchestrates autophagy  
and cell proliferation
Eukaryotic cells adaptively respond to low-nutrient condi-

tions by blocking cell growth and proliferation. These events 

are mediated by AMPK through the activation of p53, the 

inhibition of the mammalian target of rapamycin (mTOR) 

complex 1 (mTORC1), and the induction of autophagy. 

The inhibition of cell-cycle progression-induced by AMPK 

occurs via MDMX phosphorylation on Ser342, which leads 

to an increased binding of MDMX to 14-3-3. The subsequent 

inactivation of MDMX is responsible for the enhanced 

stability and activation of p53, which provokes a cell-cycle 

checkpoint.13

Beyond effects on p53, AMPK directly phosphorylates 

the tumor suppressor tuberous sclerosis complex 2 (TSC2) 

thus stimulating its GAP activity toward Rheb, which in 

turn leads to the inactivation of mTORC1 and the  inhibition 

of cell proliferation.8,14 AMPK also blocks the positive 

trophic effects of mTORC1 through the direct phosphory-

lation of regulatory associated protein of mTOR (raptor) 

(Figure 1).15

Besides the regulation of cell growth and proliferation, 

mTORC1 suppresses the autophagic flux through the inhibi-

tion of uncoordinated 51-like kinase 1 (ULK1) complex.16 

Autophagy is required for the breakdown of cellular organ-

elles and the recycling of cellular components under nutrient 

deprivation, as well as for the selective clearance of damaged 

organelles. In contrast to the inhibitory regulation operated by 

mTORC1, a variety of experimental evidence demonstrated 

that AMPK promotes autophagy by direct phosphorylation 

of ULK1 at several serine residues (eg, Ser317, Ser555, 

and Ser777).17,18 AMPK-dependent stimulation of ULK1 

complex seems to appear as a universal event for the induc-

tion of autophagy, as it occurs under different conditions 

such as nutrient starvation, hypoxia, and drug administration. 

This route of activation results in the promotion of not 

only nonselective autophagy (known as bulk autophagy) 

but also selective autophagy: for instance, AMPK triggers 

Regulation of
cell growth and

proliferation

TSC1

TSC2

AMPK

MDMX
14-3-3

Rheb

Raptor

p53
P

P
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Figure 1 AMPK modulates cell-cycle progression and cell growth.
Notes: Cell growth inhibition is mainly achieved by regulating one of the most 
well-known anabolic pathways, which involves mTORC1. AMPK activates TSC1/2 
complex, leading to the downregulation of mTORC1, composed by mTOR itself and 
the associated protein, raptor. AMPK is also able to inactivate mTORC1 through the 
direct phosphorylation of raptor. in addition, AMPK blocks the activity of MDMX, 
thus leading to the stabilization of p53 and the subsequent cell-cycle arrest. inhibitory 
phosphorylations are shown in red and activating phosphorylations in blue.
Abbreviation: AMPK, AMP-activated protein kinase.
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mitophagy through the phosphorylation of ULK1 during stress 

conditions, and this pathway is also required for the clearance 

of damaged mitochondria in physiopathological states.19–24 

In addition, recent data showed that AMPK phosphorylates 

Beclin1 at Ser91/94, and this event is essential for the induc-

tion of autophagy in nutrient stress response.25 An interesting 

study published by Sanchez et al sustains that AMPK also 

determines, at least in skeletal muscle, the FoxO3-dependent 

increase of autophagy-related proteins, such as LC3B, GABA-

RAPL1, and Beclin1.26 Another research supports these 

findings, since AMPK directly activates FoxO3 transcription 

through the phosphorylation of different serine residues (eg, 

Ser413, Ser588).27 Collectively, these data highlight that 

AMPK drives autophagy at multiple levels (Figure 2).

AMPK maintains energy homeostasis 
through short- and long-term regulation 
of metabolic targets
AMPK was originally discovered as the main protein kinase 

involved in the short-term modulation of key enzymes con-

trolling fatty acid and cholesterol biosynthesis. In particular, 

AMPK was found to be responsible for the rapid regulation 

of acetyl-CoA carboxylase (ACC) and HMG-CoA reductase 

(HMGR), as the inhibitory phosphorylation mediated by this 

kinase is able to strongly suppress the activity of both the 

enzymes.28,29

In highly specialized cells of metabolic organs, such as 

skeletal muscle and adipose tissue, AMPK regulates glucose 

metabolism promoting the phosphorylation of AS160 and 

Tbc1d1 and the subsequent binding to 14-3-3. These events 

lead to an enhancement of GLUT4 translocation on the cell 

membrane.30 In addition, AMPK drives lipid mobilization 

by directly phosphorylating hormone-sensitive lipase (HSL) 

and adipocyte triglyceride lipase (ATGL).31,32 Recently, 

these mechanisms have been shown to be involved not only 

during homeostasis maintenance in physiological conditions 

but also in the development of metabolic disorders such as 

cancer-associated cachexia.33

The adaptive changes in energy homeostasis induced 

by AMPK are not limited to the short-term regulation of 

enzymes, as this kinase orchestrates a profound metabolic 

reprogramming through transcriptional control. For instance, 

AMPK phosphorylates a variety of transcriptional factors 

and cofactors, such as PGC1α, p300, histone deacetylase 5 

(HDAC5), and sirtuin1, thus leading to the long-term regu-

lation of genes involved in gluconeogenesis, lipogenesis, 

and mitochondrial biogenesis (for details, see Mihaylova 

and Shaw19). Of note, AMPK also suppresses the activation 

of SREBP1 and SREBP2. The inhibitory phosphorylation 

mediated by AMPK is a pivotal prerequisite to prevent the 

proteolytic processing and activation of SREBPs. SREBPs 

are crucial transcription factors involved in the regulation 

of lipogenic genes, such as ACC and HMGR.34 As a result, 

AMPK controls lipid metabolism regulating both the activity 

and the protein levels of enzymes implicated in fatty acid 

and cholesterol biosynthesis (Figure 3).

Physiological roles of AMPK  
in the CNS
AMPK regulates brain cell metabolism, 
proliferation, and morphology
Even though the brain constitutes 2% of the total body weight, it 

utilizes 50% of the entire glucose supply. The energy consump-

tion by brain cells is very high and, unlike other peripheral cells, 

neurons use only glucose as a source of energy. As neurons are 

not able to synthesize and store a sufficient amount of glycogen, 

it is indispensable to ensure themselves a constant and con-

tinuous source of glucose.35 During the last few years, several 

research groups highlighted a crucial role for AMPK in the 

regulation of energy production and consumption in neurons. 

Synaptic activation is followed by a number of molecular and 

cellular events characterized by high energy consumption, such 

as sodium pump activity, neurotransmitter receptor transloca-

tion/recycling, synaptic transport, cytoskeleton remodeling, 

and metabolic processes. In the light of these observations, 

AMPK
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Figure 2 AMPK drives autophagy through short- and long-term mechanisms.
Notes: AMPK directly phosphorylates and activates proteins involved in the 
initiation and nucleation steps of autophagy, such as ULK1 and Beclin1. The 
permissive action of AMPK on autophagy is also mediated by the inhibition of 
mTOR pathway. Furthermore, AMPK phosphorylates FoxO3, leading to increased 
transcription of autophagy-related genes. inhibitory phosphorylations are shown in 
red and activating phosphorylations in blue.
Abbreviation: AMPK, AMP-activated protein kinase.
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it was demonstrated that the decrease in ATP levels follow-

ing glutamate stimulation is able to strongly phosphorylate 

AMPK, and the activation of glutamate transmission enhances 

the translocation of the glucose transporter GLUT3 on cell 

surface. Notably, the increase of GLUT3 on cell membrane 

is mediated by AMPK, as the pharmacological inhibition or 

the knockdown of this kinase is able to completely prevent the 

glutamate-induced GLUT3 translocation.36

In addition to glucose metabolism, other studies indicated 

that AMPK acts as a key regulator of mitochondrial function 

and biogenesis in neurons. In Neuro2a cell line, AMPK activa-

tion by resveratrol determines an increase in the transcripts of 

the mitochondrial protein marker Mitofusin 2, and a rise in the 

master regulators of mitochondrial biogenesis, PGC-1α and 

mitochondrial transcription factor A (mtTFA). AMPK inhibi-

tion suppresses the transcription of these mitochondrial-related 

proteins, further sustaining that AMPK exerts a pivotal role in 

the regulation of mitochondrial metabolism in neurons.37,38

Besides the direct regulation of metabolism in neurons, 

AMPK has been shown to be involved in neurodevelopmental 

processes. For instance, AMPK maintains the genomic integ-

rity during neural progenitor cell division in Drosophila, and 

any interference with the activity of this kinase provokes 

embryonic lethality.39 This study corroborates the finding that 

the ablation of AMPK β1 subunit leads to a severe reduction 

in the number of neurons and oligodendrocytes, as well as 

alterations in astrocyte proliferation in mice. Indeed, defects 

in AMPK functionality induce aberrant proliferation and 

increased apoptosis of neural stem cell progenitors (NPCs). 

The effects of AMPK on NPC proliferation and viability are 

exerted through direct phosphorylation of Rb protein, whose 

activation is required for the normal development of CNS.40

Increasing evidence also suggests that AMPK plays 

an important role in the control of cell polarization under 

energy-lacking conditions. As an instance, AMPK modulates 

the establishment of initial neuronal polarity by affecting the 

processes at the root of axogenesis.41 In addition, a recent 

work sustains that AMPK regulates neuronal development 

during dendrite outgrowth and branching. At molecular 

level, the effects on neuronal architecture are induced by 

Membrane
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14-3-3

14-3-3

14-3-3

GLUT4

GLUT4
PPAR
target
genes
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Nucleus
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Figure 3 AMPK controls cell metabolism.
Notes: AMPK phosphorylates/activates HSL and ATGL, thus leading to increased lipolysis. On the contrary, the inhibitory phosphorylations on HMGR and ACC are 
responsible for the reduction in lipid biosynthesis. This kinase also affects the transcription of lipogenic genes through the direct phosphorylation of SReBP transcription 
factors. AMPK regulates mitochondrial biogenesis, as it activates PGC1α and the subsequent transcription of PPAR target genes. in addition, AMPK controls the membrane 
translocation and the protein expression of GLUT4 by inhibiting Rab GTPase activating proteins (AS160 and Tbc1d1) and HDAC5, respectively. inhibitory phosphorylations 
are shown in red and activating phosphorylations in blue.
Abbreviation: AMPK, AMP-activated protein kinase.
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the AMPK-dependent suppression of both mTOR and Akt 

signaling pathways.42

In adult brain, AMPK drives the cellular events involved 

in the aging process. An elegant study performed in 

Drosophila demonstrated that the activation of neuronal 

AMPK determines a delay in systemic aging and prolongs life 

span. These outcomes are mediated by the AMPK-dependent 

activation of autophagy and the synergic reduction of insulin-

like peptide signaling.43

Hypothalamic AMPK controls food intake 
and body weight
Metabolic diseases are regarded as a major health problem 

in many Western countries. Generally, they are caused by 

the lack of physical activity and are strictly associated to the 

presence of food intake-related disorders. From a pathophysi-

ological point of view, metabolic diseases are characterized 

by obesity, insulin resistance, and several atherogenic signs, 

leading to disruption in energy homeostasis.44

Whole-body energy balance is guaranteed not only by the 

functionality of high metabolic peripheral tissues such as liver, 

skeletal muscle, and adipose tissue, but also by the control of 

the CNS. The hypothalamus represents the main brain area 

involved in regulating food intake and energy expenditure, 

and it is organized into several structural and functional 

nuclei, including the arcuate nucleus (ARC), the paraven-

tricular nucleus (PVN), the dorsomedial nucleus (DMN), the 

ventromedial nucleus (VMN), and the lateral hypothalamic 

area. The majority of these hypothalamic regions are involved 

in the production and secretion of orexigenic and anorectic 

neuropeptides that affect food intake and energy homeostasis. 

For instance, the orexigenic neuropeptides agouti-related 

protein (AgRP) and neuropeptide Y (NPY), as well as the 

anorectic neuropeptide α-melanocyte-stimulating hormone 

(MSH) are synthesized by the ARC.45,46 On the other hand, 

the orexigenic neuropeptides melanin-concentrating hormone 

(MCH) and orexins are produced by the lateral hypothalamic 

area.45,47 In addition, both the hypothalamic regions possess 

the capability to synthesize the anorexigenic neuropeptide 

cocaine-amphetamine regulated transcript (CART).48

During the last few years, a variety of hormones have been 

identified as powerful modulators of energy balance.49 In this 

context, AMPK exerts a pivotal role in nutritional regulation and 

energy homeostasis, as this kinase orchestrates the hormonal 

signaling pathways required for the production and the release 

of hypothalamic orexigenic and anorectic neuropeptides.50–52

The orexigenic hormones induce the activation of 

hypothalamic AMPK. Specifically, cannabinoids exert their 

permissive effects on food intake by activating cannabinoid 

receptors expressed in the VMN, whereas ghrelin, secreted 

by the gastric mucosa, binds to receptors expressed in both 

VMN and ARC.53,54 Different findings demonstrated that a 

rise in ghrelin levels is associated with an increase in food 

intake and body weight.55,56

At molecular level, the ghrelin-dependent increase of 

intracellular Ca2+ triggers CAMKK2 activity, which in 

turn enhances AMPK phosphorylation and the subsequent 

activity of AgRP/NPY and pro-opiomelanocortin (POMC) 

neurons.57,58 Similar orexigenic effects are also elicited 

by adiponectin. This adipocyte-secreted hormone mimics 

the outcomes induced by ghrelin through the activation of 

hypothalamic AMPK.59 However, the molecular mechanisms 

linking adiponectin and AMPK modulation are still not 

completely elucidated.

The anorexigenic hormones leptin and insulin control 

food intake and body weight by suppressing hypothalamic 

AMPK. The effects promoted by leptin are mediated through 

the modulation of neuropeptides in the ARC and PVN, whereas 

multiple hypothalamic regions are affected by insulin. An 

interesting study demonstrated that MC4 transduction path-

way is required for AMPK inhibition by these hormones, and 

the expression of the constitutively active AMPKα2 isoform 

completely prevents the effects on food intake and body weight 

elicited by leptin.60 Tri-iodothyronine (T3) represents another 

anorexigenic hormone able to regulate the whole-body energy 

balance through the inhibition of AMPK in neurons located 

at the VMN. As for leptin, T3 determines norepinephrine/

epinephrine release from sympathetic nerves, which stimu-

lates fatty acid mobilization from white adipose tissue and 

heat production in brown adipose tissue.61 AMPK inhibition 

mediates the effects of anorectic hormones at least by two 

different mechanisms: the former involves the activation of 

ACC and the subsequent increase in fatty acid biosynthesis, 

which culminates in the translocation of fatty acids across the 

mitochondrial membrane; the latter is related to the activation 

of mTOR and the consequent phosphorylation of p70S6 kinase 

(p70S6K) and 4EBP1. The modulation of these pathways leads 

to the suppression of orexigenic AgRP/NPY neurons and the 

activation of anorectic POMC/CART neurons.60,62–65

Pathological involvement of AMPK 
in neurological conditions
AMPK in neurodegenerative disorders
Given the importance of AMPK in regulating stress responses, 

it is not surprising that dysfunctions of AMPK signaling are 

associated with several brain diseases including Alzheimer’s 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biology 2016:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6

Rosso et al

disease (AD), Huntington’s disease (HD), and Parkinson’s 

disease (PD). Here, we summarize the current knowledge 

about the pathophysiological roles of AMPK in regulating 

neuronal survival during neurodegenerative disorders.

AMPK in AD
AD is the most common form of dementia, characterized by 

progressive neurodegeneration, particularly affecting cortical 

and hippocampal brain regions. Histopathological features of 

AD are senile plaques, composed of β-amyloid (Aβ) peptide 

polymers, and intracellular neurofibrillary tangles, formed 

by hyperphosphorylated Tau protein.66

AD has been identified as a protein misfolding disease 

and is caused by accumulation of abnormally folded Aβ in the 

brain.67 Aβ peptides originate from the proteolysis of amyloid 

precursor protein (APP) – amyloidogenic pathway – by the 

sequential enzymatic actions of beta-site amyloid precur-

sor protein-cleaving enzyme 1 (BACE-1, or β-secretase) 

and a protein complex with presenilin 1 at its catalytic core 

(γ-secretase).68,69

AMPK has been identified to play an important role in the 

development of AD. This hypothesis was initially supported 

by different evidence highlighting the hyperphosphorylation 

of AMPK in the brains of both AD patients and AD mouse 

models.70–72 Moreover, a different AMPK subcellular localiza-

tion is present in the brains of AD patients when compared 

with control subjects.70 It is now well established that AMPK 

is a key regulator of Aβ generation. Vingtdeux et al showed 

that the activation of AMPK by resveratrol lowers extracel-

lular Aβ accumulation.73 The same research group demon-

strated that this polyphenol inhibits the AMPK target mTOR, 

triggering autophagy and lysosomal degradation of Aβ.

Studies conducted on cultured rat cortical neurons 

revealed that Aβ production is significantly reduced after 

stimulation with the AMPK activator 5-aminoimidazole-4-

carboxamide-1-d-ribofuranoside (AICAR). On the contrary, 

Aβ peptide levels are increased when AMPKα2 is knocked 

out, thus indicating the crucial involvement of AMPK in 

amyloidogenesis.74 AMPK controls Aβ generation through 

the modulation of neuronal cholesterol and sphingomyelin 

levels, which regulate APP distribution in lipid rafts.67 In 

addition, leptin-induced AMPK activation is associated with 

a reduction in Tau phosphorylation.75

Despite these findings, other evidence sustains an opposite 

role for AMPK in AD. Interestingly, the activation of AMPK 

by metformin is protective in females but increases memory 

dysfunction in males, suggesting a sex-divergent cognitive 

effect in a murine model of AD.76 Moreover, chronic treatment 

of AD mice with the same compound was reported to enhance 

the generation of Aβ via the upregulation of β-secretase at 

transcriptional level.77 Noteworthy AMPK inhibitor com-

pound C (CC) is able to correct Aβ-induced inhibition of 

long-term potentiation (LTP) and the enhancement of long-

term depression (LTD). Similarly, LTP impairments in APP/

PS1 transgenic mice are improved by CC treatment.78

AMPK in HD
HD is an age-related neurodegenerative disorder, character-

ized by motor and cognitive impairment, and caused by a 

CAG trinucleotide expansion in exon 1 of the Htt gene. When 

the number of CAG repeats is 36 or more, the translated 

polyglutamine-expanded Htt protein interferes with the nor-

mal functions of cellular machinery and causes cytotoxicity. 

The major characteristic of HD is the selective loss of neurons 

in the neostriatum, nigrostriatal tract, and cortex, which leads 

to movement disorders, dementia, and eventual death.79

Recent research showed that mitochondria and several key 

molecular players in energy homeostasis are altered during 

HD progression. Notably, mutated Htt (mHtt) forms aggre-

gates on mitochondrial membranes. This aberrant associa-

tion impairs calcium homeostasis and triggers Ca2+-induced 

oxidative stress, decreases the activity of mitochondrial 

respiratory complexes (II and III), and alters mitochondrial 

fission and fusion, globally disrupting the neuronal energy 

homeostasis. In this scenario, AMPK could represent one 

of the leading actors in modulating metabolic events.80,81 

Indeed, AMPK was found to be abnormally activated in the 

striatum of a transgenic mouse model of HD (R6/2).82 Ju et al 

highlighted that the activation of AMPKα1 in striatal neurons 

is closely associated with mHtt-induced cell death.79 The 

induction of neurotoxicity requires the nuclear translocation 

of AMPKα1 to suppress the expression of the survival gene 

Bcl2 in striatal neurons.79 Furthermore, AMPK activation by 

AICAR in HD mice induces neuronal apoptotic activation 

and worsens motor function.79,81 The same research groups 

showed that the induction of cAMP/PKA signaling reduces 

AMPK activity, thus preventing the detrimental effect of 

AMPKα1 in the nuclei of striatal neurons.

AMPK in PD
PD is the most common neurodegenerative movement disor-

der and the second most common neurodegenerative disease 

after AD. Clinically, it is characterized by tremor, rigidity, and 

bradykinesia, and pathologically by the loss of dopaminergic 

neurons in the substantia nigra. During the last few years, 

a plethora of studies identified different genes involved in 
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familial forms of PD, and implicated aberrant mitochon-

drial homeostasis as one of the key contributors to PD.83 

Among the disease-associated genes, recessive mutations in 

several genes such as α-synuclein, DJ-1, PINK, parkin, and 

dominant mutations in LRRK2 (especially the G2019S vari-

ant) are directly or indirectly associated with mitochondrial 

dysfunction in PD.84

In this pathology, AMPK activation is similarly a double-

edged sword, promoting or aggravating neurodegeneration 

under different circumstances.85 Indeed, AMPK exerts a 

neuroprotective role as demonstrated in mice treated with 

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

which represents the most common experimental model used 

to investigate the pathogenesis of PD. Recent findings sustain 

that AMPK is activated by MPTP in mice and MPP(+) in SH-

SY5Y cells, and the inhibition of AMPK by CC resulted in 

an increase of neuronal cell death.86 In addition, AMPK acts 

with parkin in a functionally converging manner to guarantee 

the quality control of organelles.85 Hence, the activation of 

AMPK may prevent neuronal cell death and play a role as a 

survival factor in PD.

In contrast to these findings, Kim et al described that poly 

(ADP-ribose) polymerase-1 (PARP-1) promotes ATP deple-

tion and the subsequent activation of AMPK, which mediates 

the degeneration of dopaminergic neurons.87

impact of AMPK on cancer cell fate  
and brain tumors
A variety of tumor types, including brain tumors, are char-

acterized by uncontrolled and rapid cell growth. In order to 

sustain the enhanced rate of mitosis, tumor cells undergo 

profound changes in their metabolism, a phenomenon known 

as “Warburg effect”.88

It has been demonstrated that AMPK regulates cell growth 

arrest and cell death interacting both with mTOR and p53 in 

normal cells. Furthermore, the modulation of AMPK repre-

sents an important prerequisite for the induction and mainte-

nance of cell proliferation under abnormal nutrient conditions 

in cancer cells. The role of AMPK in brain tumors is still 

poorly understood and controversial hypotheses have been 

proposed. Glioma represents a large group of common brain 

tumors that comprises glioblastoma and astrocytoma.89 Rios 

et al observed that AMPK is hyperactivated both in astrocytes 

expressing HRasV12 (common mutation in human astrocy-

toma) and in glioblastoma cell lines compared to control cells. 

High phospho-AMPK levels were also detected in samples 

derived from glioblastoma patients, whereas normal brain 

tissue was completely negative. CC treatment and the genetic 

deletion of AMPK lead to a strong decrease of cell prolifera-

tion and to a reduction of Rb phosphorylation, suggesting that 

AMPK could play a critical role in tumor growth by regulating 

Rb and, consequently, cell-cycle progression.90 Furthermore, 

it has been shown that AMPK activity is necessary to provide 

metabolic support during early stages of tumor growth.91 

The relevance of AMPK in oncology has been demonstrated 

not only for cell growth but also for cell migration. Indeed, 

AMPK inhibition antagonizes the ghrelin-mediated migra-

tion of rat C6 and human U251 glioma cells, suggesting that 

AMPK activation is an obligatory event in ghrelin-induced 

glioma migration.92 In a retrospective clinical analysis, it 

has been revealed that high-grade human glioma expresses 

higher levels of AMPKα2 subunit if compared to low- and 

mid-grade gliomas. The α2 subunit is selectively induced in 

hypoxic conditions and significantly contributes to vascular 

endothelial growth factor (VEGF) expression in human 

glioma cells, thus improving neoangiogenesis and underlying 

the pivotal role of AMPK in glioma progression.93 In addition, 

the resistance to antiangiogenic therapies in glioblastoma 

may depend on the autophagic flux induced by the activation 

of hypoxia-inducible factor-1α (HIF-1α)/AMPK axis after 

hypoxia and lack of nutrients.94 Even though all these data 

sustain a protumor effect of AMPK, other researchers suggest 

that AMPK acts as an oncosuppressor. Guo et al showed that 

AMPK activation by AICAR blocks EGFR-activated glioma 

proliferation through the modulation of mTORC1 signaling 

and lipid biosynthesis.95 The antitumor effects of AMPK were 

also demonstrated by the induction of apoptosis in mouse 

astrocytoma cell line following AICAR administration.96 This 

finding corroborates the outcomes induced by metformin, 

which is able to inhibit tumor cell growth and to enhance the 

sensitivity of glioblastomas to chemotherapy.97

The use of different biological models (ie, different cell 

lines or mouse models, and different cancer mutations) may 

lead to the contrasting evidence about the prospective role of 

AMPK in glioma. In addition, AMPK activators or inhibitors 

may have AMPK-independent effects on cancer cells, making 

it more difficult to dissect the specific role of this kinase 

in brain tumors.98,99 Furthermore, AMPK could not show 

a unique behavior; conversely, it may play a protumoral or 

antitumoral role depending on the energetic and the genetic 

status of the tumor.

Another aggressive brain tumor is neuroblastoma, 

the most common extracranial solid tumor in children.100 

Although only little knowledge is available about its 

role in neuroblastoma, AMPK is believed to act as an 

oncosuppressor. In particular, AMPK activity may lead to 
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apoptosis via p38MAPK/p53 pathway in neuro2a and SH-SY5Y 

neuroblastoma cell lines.101,102 However, research in this field 

is still limited and more detailed analysis will be necessary 

to specifically assess the involvement of AMPK in the onset 

and progression of neuroblastoma.

AMPK regulation in stroke
Ischemic stroke is one of the most frequent leading causes 

of death worldwide.103 Recently, different studies showed that 

AMPK is rapidly activated in an energy-deprived status such 

as that which follows a stroke. Ischemic stroke promotes the 

activation of oxidative and cell death pathways, leading to 

cellular energy imbalance, that increases the phosphorylation 

of AMPK in an attempt to restore ATP levels through the 

enhancement of glycolysis and fatty acid oxidation, increment 

of glucose transport, and inhibition of glycogen synthesis.104–106 

Thus, AMPK plays a crucial role in regulating ischemic stroke 

phenotype, but it is unclear whether its activation would be 

detrimental or beneficial. In vivo studies using the transient 

middle cerebral artery occlusion (MCAO) model in mice 

have shown that AMPK activation is damaging, because the 

pharmacological inhibition of AMPK with CC causes a reduc-

tion in stroke volume, whereas the treatment with AICAR 

leads to a more severe injury, suggesting that inactivation 

of AMPK during ischemia may be neuroprotective.107 The 

mechanisms through which acute AMPK activation exac-

erbates stroke injury are still unclear. It has been suggested 

that AMPK activation enhances astrocytic glycolysis which 

leads to progressive lactic acidosis, exacerbating lactate accu-

mulation, and inhibits the ability of neurons to use lactate as 

an energy source, contributing to neuronal death. Moreover 

AMPK activation is responsible for the aberrant neuronal 

nitric oxide synthase activity, which in turn produces per-

oxynitrite, the strongest oxidizing agent. These data support 

the hypothesis that AMPK activation in the acute phase of 

stroke is associated with injury.108 To corroborate the idea that 

AMPK activation is harmful in ischemic stroke, preclinical 

studies demonstrated that mice deficient in AMPKα2 have 

less injury and show a reduced total infarct volume compared 

with wild-type littermates in an MCAO reperfusion model. 

AMPKα1-knockout mice have no difference in injury com-

pared with wild-type mice, suggesting that AMPKα2 isoform 

plays a more significant role in the damaging response of 

AMPK activation in ischemic brain.109 On the contrary, recent 

clinical trials report that metformin significantly reduces the 

risk and incidence of stroke by actions that are independent of 

its glucose-lowering effects.110–112 The chronic treatment with 

metformin offers potent neuroprotective effects similar to pre-

conditioning, a phenomenon by which exposure to sublethal 

ischemia stimulus leads to protection of the organism from 

subsequent severe ischemic insults.113,114 In particular, it was 

observed that chronic metformin treatment is able to signifi-

cantly downregulate stroke-mediated brain injury, increase 

phospho-AMPK levels, reduce lactate formation, improve 

infarct damage, enhance angiogenesis, and alleviate inflam-

matory responses by a negative feedback mechanism, blunting 

ischemia-induced AMPK activation.115,116 Interestingly, only a 

chronic metformin treatment is beneficial for the prevention 

of ischemic disease and the change from a chronic to an acute 

regimen worsens ischemic injury and functional outcome 

in otherwise healthy animals, by enhancing AMPK activity 

and lactic acidosis.115 In addition, a recent study showed that 

acute metformin treatment in diabetic rats worsens the infarct 

size and caused significant neurological deficiencies if com-

pared to untreated diabetic animals.117 Thus, metformin has 

negative effects on the severity of neurovascular injury when 

used acutely, but chronic treatment is protective against fatal 

cerebral ischemia. The explanation of these divergent results 

may be dependent on the extent of AMPK manipulation in 

vivo, on timing and amount of its activation, and on different 

animal strains and models.118 As ischemic stroke is a condi-

tion of severe energy depletion and AMPK is a master energy 

regulator, future investigations are needed to provide new 

information about the therapeutic potential of acute and/or 

chronic AMPK modulation in stroke.

AMPK in genetic and chromosomal 
disorders
Although a direct involvement is still unclear, different 

genetic and chromosomal aberrations strongly suggest a role 

for AMPK in the development of mental disabilities in genetic 

disorders. Mutations in the PRKAG2 gene (AMPKγ2 subunit) 

have been associated with hereditary cardiac arrhythmias 

(Wolff–Parkinson–White syndrome, OMIM 194200), 

familial hypertrophic cardiomyopathy (OMIM 600858), and 

glycogen storage disease of the heart (OMIM 261740).119–121 

Interestingly, a polymorphism in the PRKAG2 gene has been 

also linked to cognitive impairments in elderly people.122

PRKAB2 gene (AMPKβ2 subunit), which maps on 

chromosome 1q21.1, is included in chromosomal rearrange-

ments causing the chromosome 1q21.1 deletion (OMIM 

612474) and duplication (OMIM 612475) syndromes. 

Deletions or duplications (copy number variations [CNVs]) 

of 1q21.1 chromosomal region have been associated with 

variable phenotypes, which include intellectual disability 

and/or autism, schizophrenia, congenital heart anomalies, 

dysmorphic features, or a normal phenotype.123 The crucial 

role of AMPK in brain function is particularly empathized 
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in 1q21.1 CNV carriers, as they manifest some form of 

learning disabilities.123 Notably, AMPK inhibits the mTOR 

pathway, which is required for the modulation of learning 

and memory processes.124

The involvement of AMPK in brain functioning is further 

supported by recent studies demonstrating that 1q21.1 CNVs 

(candidate gene PRKAB2) were most frequently associated 

with schizophrenia.125,126

It has been shown that AMPKβ2 protein levels change in 

concordance with the 1q21.1 copy number state in patient-

derived lymphoblastoid cell lines (LCLs).123 This imbalanced 

expression affects AMPK activity, as the basal levels of 

phospho-AMPKα in both 1q21.1 Del and Dup expressing 

cells are significantly different in comparison to wild-type 

cells.123 Furthermore, the AICAR-induced phosphorylation of 

the AMPK substrates ACC and raptor is suboptimal in 1q21.1 

Del and Dup LCLs with respect to wild type, but it is more 

evident in the 1q21.1 Del-containing cells, demonstrating that 

the reduced availability of a regulatory β-isoform could affect 

AMPK activity to a greater extent than its overabundance.123

The critical role of AMPK in the CNS could also help to 

elucidate the mechanisms that contribute to altered neuronal 

function in patients affected by other genetic diseases, such 

as TSC (OMIM 191100 and 613254). TSC is an autosomal 

dominant disorder characterized by hamartomas in multiple 

organs and neurological manifestations such as seizures, 

hyperactivity and aggression, intellectual disability, or learn-

ing problems.20 TSC is caused by mutations in the TSC1 

or TSC2 genes, leading to the disruption of TSC1–TSC2 

intracellular protein complex and to the hyperactivation 

of mTORC1.127 It was reported that TSC1/2 deficiency 

reflects in a reduced autophagy because of the inactivation 

of ULK1 operated by mTORC1 in non-neuronal cells. On 

the contrary, a recent study demonstrated that TSC1/2 loss 

in neurons determines an enhanced induction of autophagy 

via AMPK-dependent phosphorylation of ULK1 at Ser555. 

Thus, despite the concomitant inhibitory effect of mTORC1 

on ULK1 activity, AMPK seems to be the dominant modu-

lator of autophagy in brain cells.20 As a consequence, the 

accumulation of p62 and autolysosomes could contribute to 

the altered neuronal homeostasis in TSC disease.

Conclusion
The fine regulation of energy intake and expenditure is of 

great importance for maintaining the integrity of physiological 

processes in almost all eukaryotic cells. AMPK is the master 

regulator of metabolic stress and mediates pivotal adaptive 

changes as a function of nutrient deprivation. For these 

reasons, AMPK is considered the leading actor in several 

pathologies such as obesity, diabetes, cachexia, and other 

metabolic disorders. Recently, increasing evidence sustains a 

key role for AMPK also in brain physiopathology. AMPK is 

involved in a variety of neuronal processes, such as neuronal 

proliferation, differentiation, and synaptic transmission.

It is possible that alterations in AMPK activity could 

reflect in the development of neurological disorders (Figure 4). 

AMPK

Astrocyte
mTORC1

Aβ aggregates

Tau phosphorylation

nNOS

Bcl-2
mHTT

Neuron

p38/p53

ROS

Ca2+

Rb
Glycolysis

Lactate
acidosis

G
lio

m
a

S
troke

A
D

PD

HD

Stroke

Neuroblastoma

Figure 4 AMPK is involved in the manifestation of neurological conditions.
Notes: AMPK activity in the brain: a) modulates the production of β-amyloid and the formation of neurofibrillary tangles in AD; b) upregulates the expression of the 
prosurvival gene Bcl-2, thus preventing neurotoxicity in HD; c) orchestrates the quality control of mitochondria in PD; d) exerts pivotal roles in ischemic stroke by 
regulating nNOS and lactate production in neurons and astrocytes; e) is involved in brain tumor initiation and progression by modulating the oncosuppressor proteins Rb 
and p53.71,73–75,77,79,81,84,85,87,90,95,101,102,107,108

Abbreviations: AMPK, AMP-activated protein kinase; AD, Alzheimer’s disease; HD, Huntington’s disease; PD, Parkinson’s disease; nNOS, nitric oxide synthase.
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The studies reviewed here highlight intriguing relationships 

between AMPK and neurological diseases such as stroke, 

AD, HD, PD, and brain tumors, whereas other findings show 

emerging roles for this protein kinase in the development of 

mental disabilities in genetic disorders. However, even though 

a great knowledge about the pathological role of AMPK in 

the brain has been reached, literature data is far from being 

convincing. AMPK does not show a unique behavior in neuro-

degenerative diseases, and both detrimental and protective 

roles have been hypothesized. Indeed, while AMPK activation 

mediates mHtt-induced toxicity in HD striatal neurons, it pre-

vents neuronal cell death and acts as a survival factor in PD. 

The role of AMPK is ambiguous in AD pathogenesis, as some 

reports indicate that AMPK activation is strongly associated 

with a reduction in amyloidogenesis, whereas other studies 

demonstrate that AMPK inhibition corrects the Aβ-induced 

impairments in LTP.74,78 In the same way, many studies have 

described the divergent evidence about the involvement of 

AMPK in brain tumors and ischemic stroke. The presence 

of contradictory results indicates that further investigations 

are needed to better dissect the molecular mechanisms link-

ing AMPK activity and the development of CNS diseases. 

A deep comprehension could provide useful information for 

designing novel and effective therapeutic strategies addressing 

a variety of neurological conditions.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Scott JW, Hawley SA, Green KA, et al. CBS domains form energy-

sensing modules whose binding of adenosine ligands is disrupted by 
disease mutations. J Clin Invest. 2004;113(2):274–284.

2. Townley R, Shapiro L. Crystal structures of the adenylate sensor from 
fission yeast AMP-activated protein kinase. Science. 2007;315(5819): 
1726–1729.

3. Xiao B, Heath R, Saiu P, et al. Structural basis for AMP binding to 
mammalian AMP-activated protein kinase. Nature. 2007;449(7161): 
496–500.

4. Woods A, Johnstone SR, Dickerson K, et al. LKB1 is the upstream kinase 
in the AMP-activated protein kinase cascade. Curr Biol. 2003;13(22): 
2004–2008.

5. Hardie DG. AMP-activated protein kinase: an energy sensor that regulates 
all aspects of cell function. Genes Dev. 2011;25(18):1895–1908.

6. Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin-dependent protein 
kinase kinase-beta is an alternative upstream kinase for AMP-activated 
protein kinase. Cell Metab. 2005;2(1):9–19.

7. Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent 
protein kinase kinase-beta acts upstream of AMP-activated protein kinase 
in mammalian cells. Cell Metab. 2005;2(1):21–33.

8. Moussa A, Li J. AMPK in myocardial infarction and diabetes: the yin/
yang effect. Acta Pharm Sin B. 2(4):368–378.

9. Salt IP, Johnson G, Ashcroft SJ, Hardie DG. AMP-activated protein kinase 
is activated by low glucose in cell lines derived from pancreatic beta cells, 
and may regulate insulin release. Biochem J. 1998;335(Pt 3):533–539.

 10. Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the 
circadian clock by cryptochrome phosphorylation and degradation. 
Science. 2009;326(5951):437–440.

 11. Oakhill JS, Chen ZP, Scott JW, et al. beta-Subunit myristoylation is the 
gatekeeper for initiating metabolic stress sensing by AMP-activated protein 
kinase (AMPK). Proc Natl Acad Sci U S A. 2010;107(45):19237–19241.

 12. Turnley AM, Stapleton D, Mann RJ, Witters LA, Kemp BE, Bartlett 
PF. Cellular distribution and developmental expression of AMP-
activated protein kinase isoforms in mouse central nervous system.  
J Neurochem. 1999;72(4):1707–1716.

 13. He G, Zhang YW, Lee JH, et al. AMP-activated protein kinase induces 
p53 by phosphorylating MDMX and inhibiting its activity. Mol Cell 
Biol. 2014;34(2):148–157.

 14. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to 
control cell growth and survival. Cell. 2003;115(5):577–590.

 15. Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation 
of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2): 
214–226.

 16. Chan EY. mTORC1 phosphorylates the ULK1-mAtg13-FIP200 
autophagy regulatory complex. Sci Signal. 2009;2(84):pe51.

 17. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate 
autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 
2011;13(2):132–141.

 18. Bach M, Larance M, James DE, Ramm G. The serine/threonine kinase 
ULK1 is a target of multiple phosphorylation events. Biochem J. 
2011;440(2):283–291.

 19. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates 
cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9): 
1016–1023.

 20. Di Nardo A, Wertz MH, Kwiatkowski E, et al. Neuronal Tsc1/2 complex 
controls autophagy through AMPK-dependent regulation of ULK1. 
Hum Mol Genet. 2014;23(14):3865–3874.

 21. Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK 
with ULK1 regulates autophagy. PLoS One. 2010;5(11):e15394.

 22. Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and 
diabetic nephropathy. Diabetes. 2012;61(1):23–29.

 23. Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of 
ULK1 (hATG1) by AMP-activated protein kinase connects energy 
sensing to mitophagy. Science. 2011;331(6016):456–461.

 24. Tian W, Li W, Chen Y, et al. Phosphorylation of ULK1 by AMPK 
regulates translocation of ULK1 to mitochondria and mitophagy. FEBS 
Lett. 2015;589(15):1847–1854.

 25. Kim J, Kim YC, Fang C, et al. Differential regulation of distinct 
Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 
2013;152(1–2):290–303.

 26. Sanchez AM, Csibi A, Raibon A, et al. AMPK promotes skeletal muscle 
autophagy through activation of forkhead FoxO3a and interaction with 
Ulk1. J Cell Biochem. 2012;113(2):695–710.

 27. Greer EL, Dowlatshahi D, Banko MR, et al. An AMPK-FOXO pathway 
mediates longevity induced by a novel method of dietary restriction in 
C. elegans. Curr Biol. 2007;17(19):1646–1656.

 28. Carling D, Zammit VA, Hardie DG. A common bicyclic protein kinase 
cascade inactivates the regulatory enzymes of fatty acid and cholesterol 
biosynthesis. FEBS Lett. 1987;223(2):217–222.

 29. Sato R, Goldstein JL, Brown MS. Replacement of serine-871 of 
hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phos-
phorylation by AMP-activated kinase and blocks inhibition of sterol 
synthesis induced by ATP depletion. Proc Natl Acad Sci U S A. 
1993;90(20):9261–9265.

 30. Steinberg GR, Kemp BE. AMPK in Health and Disease. Physiol Rev. 
2009;89(3):1025–1078.

 31. Watt MJ, Holmes AG, Pinnamaneni SK, et al. Regulation of HSL serine 
phosphorylation in skeletal muscle and adipose tissue. Am J Physiol 
Endocrinol Metab. 2006;290(3):E500–E508.

 32. Ahmadian M, Abbott MJ, Tang T, et al. Desnutrin/ATGL is regulated 
by AMPK and is required for a brown adipose phenotype. Cell Metab. 
2011;13(6):739–748.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biology 2016:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

11

The role of AMPK in the brain

 33. Das SK, Eder S, Schauer S, et al. Adipose triglyceride lipase contributes 
to cancer-associated cachexia. Science. 2011;333(6039):233–238.

 34. Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits 
SREBP activity to attenuate hepatic steatosis and atherosclerosis in 
diet-induced insulin-resistant mice. Cell Metab. 2011;13(4):376–388.

 35. Vilchez D, Ros S, Cifuentes D, et al. Mechanism suppressing glycogen 
synthesis in neurons and its demise in progressive myoclonus epilepsy. 
Nat Neurosci. 2007;10(11):1407–1413.

 36. Weisova P, Concannon CG, Devocelle M, Prehn JH, Ward MW. Regula-
tion of glucose transporter 3 surface expression by the AMP-activated 
protein kinase mediates tolerance to glutamate excitation in neurons. 
J Neurosci. 2009;29(9):2997–3008.

 37. Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity 
in neurons. Proc Natl Acad Sci U S A. 2007;104(17):7217–7222.

 38. Onyango IG, Lu J, Rodova M, Lezi E, Crafter AB, Swerdlow RH. 
Regulation of neuron mitochondrial biogenesis and relevance to brain 
health. Biochim Biophys Acta. 2009;1802(1):228–234.

 39. Lee JH, Koh H, Kim M, et al. Energy-dependent regulation of cell structure 
by AMP-activated protein kinase. Nature. 2007;447(7147):1017–1020.

 40. Dasgupta B, Milbrandt J. AMP-activated protein kinase phosphorylates 
retinoblastoma protein to control mammalian brain development. Dev 
Cell. 2009;16(2):256–270.

 41. Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man HY. AMP-activated 
protein kinase regulates neuronal polarization by interfering with PI 
3-kinase localization. Science. 2011;332(6026):247–251.

 42. Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. AMPK activation 
regulates neuronal structure in developing hippocampal neurons. 
Neuroscience. 2014;259:13–24.

 43. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. AMPK modulates 
tissue and organismal aging in a non-cell-autonomous manner. Cell 
Rep. 2014;8(6):1767–1780.

 44. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. 
Nature. 2006;444(7121):881–887.

 45. Williams G, Harrold JA, Cutler DJ. The hypothalamus and the regulation 
of energy homeostasis: lifting the lid on a black box. Proc Nutr Soc. 
2000;59(3):385–396.

 46. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. 
Central nervous system control of food intake and body weight. Nature. 
2006;443(7109):289–295.

 47. Sakurai T. Orexins and orexin receptors: implication in feeding 
behavior. Regul Pept. 1999;85(1):25–30.

 48. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new 
anorectic peptide regulated by leptin. Nature. 1998;393(6680):72–76.

 49. Hardie DG, Ashford ML. AMPK: regulating energy balance 
at the cellular and whole body levels. Physiology (Bethesda). 
2014;29(2):99–107.

 50. Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals 
to regulate food intake and energy balance through effects in the 
hypothalamus and peripheral tissues. J Physiol. 2006;574(Pt 1):73–83.

 51. Stark R, Ashley SE, Andrews ZB. AMPK and the neuroendocrine 
regulation of appetite and energy expenditure. Mol Cell Endocrinol. 
2013;366(2):215–223.

 52. Blanco Martinez de Morentin P, Gonzalez CR, Saha AK, et al. 
Hypothalamic AMP-activated protein kinase as a mediator of whole body 
energy balance. Rev Endocr Metab Disord. 2011;12(3):127–140.

 53. Jamshidi N, Taylor DA. Anandamide administration into the 
ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 
2001;134(6):1151–1154.

 54. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. Expression of 
ghrelin receptor mRNA in the rat and the mouse brain. J Comp Neurol. 
2006;494(3):528–548.

 55. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS.  
A preprandial rise in plasma ghrelin levels suggests a role in meal 
initiation in humans. Diabetes. 2001;50(8):1714–1719.

 56. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels 
after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 
2002;346(21):1623–1630.

 57. Claret M, Smith MA, Batterham RL, et al. AMPK is essential for 
energy homeostasis regulation and glucose sensing by POMC and 
AgRP neurons. J Clin Invest. 2007;117(8):2325–2336.

 58. Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises [Ca2+]i 
via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochem 
Biophys Res Commun. 2008;366(2):388–392.

 59. Kubota N, Yano W, Kubota T, et al. Adiponectin stimulates AMP-
activated protein kinase in the hypothalamus and increases food intake. 
Cell Metab. 2007;6(1):55–68.

 60. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates 
food intake by responding to hormonal and nutrient signals in the 
hypothalamus. Nature. 2004;428(6982):569–574.

 61. Lopez M, Varela L, Vazquez MJ, et al. Hypothalamic AMPK and fatty 
acid metabolism mediate thyroid regulation of energy balance. Nat 
Med. 2010;16(0):1001–1008.

 62. Ropelle ER, Fernandes MF, Flores MB, et al. Central exercise action 
increases the AMPK and mTOR response to leptin. PLoS One. 
2008;3(12):e3856.

 63. Ropelle ER, Pauli JR, Fernandes MF, et al. A central role for neuronal 
AMP-activated protein kinase (AMPK) and mammalian target of 
rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes. 
2008;57(3):594–605.

 64. Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling 
regulates food intake. Science. 2006;312(5775):927–930.

 65. Blouet C, Jo YH, Li X, Schwartz GJ. Mediobasal hypothalamic leucine 
sensing regulates food intake through activation of a hypothalamus-
brainstem circuit. J Neurosci. 2009;29(26):8302–8311.

 66. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010; 
362(4):329–344.

 67. Cai Z, Yan LJ, Li K, Quazi SH, Zhao B. Roles of AMP-activated protein 
kinase in Alzheimer’s disease. Neuromolecular Med. 2012;14(1): 
1–14.

 68. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: 
lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell 
Biol. 2007;8(2):101–112.

 69. Cole SL, Vassar R. The role of amyloid precursor protein processing 
by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. 
J Biol Chem. 2008;283(44):29621–29625.

 70. Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is 
abnormally activated in tangle- and pre-tangle-bearing neurons in 
Alzheimer’s disease and other tauopathies. Acta Neuropathol. 2011; 
121(3):337–349.

 71. Mairet-Coello G, Courchet J, Pieraut S, Courchet V, Maximov A, 
Polleux F. The CAMKK2-AMPK kinase pathway mediates the syn-
aptotoxic effects of Abeta oligomers through Tau phosphorylation. 
Neuron. 2013;78(1):94–108.

 72. Lopez-Lopez C, Dietrich MO, Metzger F, Loetscher H, Torres-Aleman 
I. Disturbed cross talk between insulin-like growth factor I and AMP-
activated protein kinase as a possible cause of vascular dysfunction in 
the amyloid precursor protein/presenilin 2 mouse model of Alzheimer’s 
disease. J Neurosci. 2007;27(4):824–831.

 73. Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase 
signaling activation by resveratrol modulates amyloid-beta peptide 
metabolism. J Biol Chem. 2010;285(12):9100–9113.

 74. Won JS, Im YB, Kim J, Singh AK, Singh I. Involvement of 
AMP-activated-protein-kinase (AMPK) in neuronal amyloidogenesis. 
Biochem Biophys Res Commun. 2010;399(4):487–491.

 75. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N. Leptin regulates tau 
phosphorylation and amyloid through AMPK in neuronal cells. Biochem 
Biophys Res Commun. 2009;380(1):98–104.

 76. DiTacchio KA, Heinemann SF, Dziewczapolski G. Metformin treatment 
alters memory function in a mouse model of Alzheimer’s disease. 
J Alzheimers Dis. 2015;44(1):43–48.

 77. Chen Y, Zhou K, Wang R, et al. Antidiabetic drug metformin 
(GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides 
via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 
2009;106(10):3907–3912.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biology 2016:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

12

Rosso et al

 78. Ma T, Chen Y, Vingtdeux V, et al. Inhibition of AMP-activated 
protein kinase signaling alleviates impairments in hippocampal 
synaptic plasticity induced by amyloid beta. J Neurosci. 2014;34(36): 
12230–12238.

 79. Ju TC, Chen HM, Lin JT, et al. Nuclear translocation of AMPK-alpha1 
potentiates striatal neurodegeneration in Huntington’s disease. J Cell 
Biol. 2011;194(2):209–227.

 80. Costa V, Giacomello M, Hudec R, et al. Mitochondrial fission and 
cristae disruption increase the response of cell models of Huntington’s 
disease to apoptotic stimuli. EMBO Mol Med. 2010;2(12):490–503.

 81. Liu YJ, Chern Y. AMPK-mediated regulation of neuronal metabolism 
and function in brain diseases. J Neurogenet. 2015;(2–3):1–9.

 82. Chou SY, Lee YC, Chen HM, et al. CGS21680 attenuates symptoms 
of Huntington’s disease in a transgenic mouse model. J Neurochem. 
2005;93(2):310–320.

 83. Corti O, Lesage S, Brice A. What genetics tells us about the causes 
and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4): 
1161–1218.

 84. Ng CH, Guan MS, Koh C, et al. AMP kinase activation mitigates 
dopaminergic dysfunction and mitochondrial abnormalities in 
Drosophila models of Parkinson’s disease. J Neurosci. 2012;32(41): 
14311–14317.

 85. Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson 
disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci. 
2015;1350(1):37–47.

 86. Choi JS, Park C, Jeong JW. AMP-activated protein kinase is activated 
in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine. Biochem Biophys Res Commun. 2010;391(1): 
147–151.

 87. Kim TW, Cho HM, Choi SY, et al. (ADP-ribose) polymerase 1 and AMP-
activated protein kinase mediate progressive dopaminergic neuronal 
degeneration in a mouse model of Parkinson’s disease. Cell Death Dis. 
2013;4:e919.

 88. Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the 
Body. J Gen Physiol. 1927;8(6):519–530.

 89. Appin CL, Brat DJ. Molecular pathways in gliomagenesis and their 
relevance to neuropathologic diagnosis. Adv Anat Pathol. 2015;22(1): 
50–58.

 90. Rios M, Foretz M, Viollet B, et al. AMPK activation by oncogenesis 
is required to maintain cancer cell proliferation in astrocytic tumors. 
Cancer Res. 2013;73(8):2628–2638.

 91. Jang T, Calaoagan JM, Kwon E, Samuelsson S, Recht L, Laderoute KR.  
5′-AMP-activated protein kinase activity is elevated early during 
primary brain tumor development in the rat. Int J Cancer. 2011;128(9): 
2230–2239.

 92. Chen JH, Huang SM, Chen CC, et al. Ghrelin induces cell migration 
through GHS-R, CaMKII, AMPK, and NF-kappaB signaling pathway 
in glioma cells. J Cell Biochem. 2011;112(10):2931–2941.

 93. Neurath KM, Keough MP, Mikkelsen T, Claffey KP. AMP-dependent 
protein kinase alpha 2 isoform promotes hypoxia-induced VEGF 
expression in human glioblastoma. Glia. 2006;53(7):733–743.

 94. Hu YL, DeLay M, Jahangiri A, et al. Hypoxia-induced autophagy 
promotes tumor cell survival and adaptation to antiangiogenic treatment 
in glioblastoma. Cancer Res. 2012;72(7):1773–1783.

 95. Guo D, Cloughesy TF, Radu CG, Mischel PS. AMPK: a metabolic 
checkpoint that regulates the growth of EGFR activated glioblastomas. 
Cell Cycle. 2009;9(2):211–212.

 96. Mukherjee P, Mulrooney TJ, Marsh J, Blair D, Chiles TC, Seyfried TN.  
Differential effects of energy stress on AMPK phosphorylation and 
apoptosis in experimental brain tumor and normal brain. Mol Cancer. 
2008;7:37.

 97. Sesen J, Dahan P, Scotland SJ, et al. Metformin inhibits growth of 
human glioblastoma cells and enhances therapeutic response. PLoS 
One. 2015;10(4):e0123721.

 98. Liu X, Chhipa RR, Pooya S, et al. Discrete mechanisms of mTOR and 
cell cycle regulation by AMPK agonists independent of AMPK. Proc 
Natl Acad Sci U S A. 2014;111(4):E435–E444.

 99. Liu X, Chhipa RR, Nakano I, Dasgupta B. The AMPK inhibitor 
compound C is a potent AMPK-independent antiglioma agent. Mol 
Cancer Ther. 2014;13(3):596–605.

 100. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. 
2007;369(9579):2106–2120.

 101. Jung JE, Lee J, Ha J, et al. 5-Aminoimidazole-4-carboxamide-
ribonucleoside enhances oxidative stress-induced apoptosis through 
activation of nuclear factor-kappaB in mouse Neuro 2a neuroblastoma 
cells. Neurosci Lett. 2004;354(3):197–200.

 102. Filomeni G, Cardaci S, Da Costa Ferreira AM, Rotilio G, Ciriolo MR.  
Metabolic oxidative stress elicited by the copper(II) complex 
[Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the 
induction of the AMP-activated protein kinase/p38MAPK/p53 
signalling axis: evidence for a combined use with 3-bromopyruvate in 
neuroblastoma treatment. Biochem J. 2011;437(3):443–453.

 103. Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. 
Br Med Bull. 2009;92:7–32.

 104. Hardie DG. Minireview: the AMP-activated protein kinase cascade: 
the key sensor of cellular energy status. Endocrinology. 2003; 
144(12):5179–5183.

 105. Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on 
glycolysis through the AMP protein kinase and 6-phosphofructo-2-
kinase pathway. Nat Cell Biol. 2004;6(1):45–51.

 106. Ronnett GV, Ramamurthy S, Kleman AM, Landree LE, Aja S. 
AMPK in the brain: its roles in energy balance and neuroprotection. 
J Neurochem. 2009;109 Suppl 1:17–23.

 107. McCullough LD, Zeng Z, Li H, Landree LE, McFadden J, Ronnett GV.  
Pharmacological inhibition of AMP-activated protein kinase 
provides neuroprotection in stroke. J Biol Chem. 2005;280(21): 
20493–20502.

 108. Khan M, Dhammu TS, Matsuda F, Singh AK, Singh I. Blocking a 
vicious cycle nNOS/peroxynitrite/AMPK by S-nitrosoglutathione: 
implication for stroke therapy. BMC Neurosci. 2015;16:42.

 109. Li J, Zeng Z, Viollet B, Ronnett GV, McCullough LD. Neuroprotective 
effects of adenosine monophosphate-activated protein kinase inhibition 
and gene deletion in stroke. Stroke. 2007;38(11):2992–2999.

 110. Cheng YY, Leu HB, Chen TJ, et al. Metformin-inclusive therapy 
reduces the risk of stroke in patients with diabetes: a 4-year follow-up 
study. J Stroke Cerebrovasc Dis. 2014;23(2):e99–e105.

 111. Effect of intensive blood-glucose control with metformin on compli-
cations in overweight patients with type 2 diabetes (UKPDS 34). UK 
Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131): 
854–865.

 112. Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials 
of oral diabetes medications: a systematic review. Arch Intern Med. 
2008;168(19):2070–2080.

 113. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against 
cerebral ischaemia: from experimental strategies to clinical use. Lancet 
Neurol. 2009;8(4):398–412.

 114. Venna VR, Li J, Benashski SE, Tarabishy S, McCullough LD. 
Preconditioning induces sustained neuroprotection by downregulation 
of adenosine 5′-monophosphate-activated protein kinase. Neuroscience. 
2012;201:280–287.

 115. Li J, McCullough LD. Effects of AMP-activated protein kinase in 
cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(3):480–492.

 116. Venna VR, Li J, Hammond MD, Mancini NS, McCullough LD. Chronic 
metformin treatment improves post-stroke angiogenesis and recovery 
after experimental stroke. Eur J Neurosci. 2014;39(12):2129–2138.

 117. Li W, Qu Z, Prakash R, et al. Comparative analysis of the neurovascular 
injury and functional outcomes in experimental stroke models in 
diabetic Goto-Kakizaki rats. Brain Res. 2013;1541:106–114.

 118. Nakatsu Y, Kotake Y, Hino A, Ohta S. Activation of AMP-activated 
protein kinase by tributyltin induces neuronal cell death. Toxicol Appl 
Pharmacol. 2008;230(3):358–363.

 119. Gollob MH, Green MS, Tang AS, et al. Identification of a gene 
responsible for familial Wolff- Parkinson-White syndrome. N Engl J 
Med. 2001;344(24):1823–1831.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Research and Reports in Biology

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/research-and-reports-in-biology-journal

Research and Reports in Biology is an international, peer-reviewed, 
open access journal publishing original research, reports, editorials, 
reviews and commentaries on all areas of biology including ani-
mal biology, biochemical biology, cell biology, ecological studies, 
evolutionary biology, molecular biology, plant science and botany. The 

manuscript management system is completely online and includes a 
very quick and fair peer-review system. Visit http://www.dovepress.
com/testimonials.php to read real quotes from published authors.

Research and Reports in Biology 2016:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

13

The role of AMPK in the brain

 120. Blair E, Redwood C, Ashraf ian H, et al. Mutations in the 
gamma(2) subunit of AMP-activated protein kinase cause familial 
hypertrophic cardiomyopathy: evidence for the central role of energy 
compromise in disease pathogenesis. Hum Mol Genet. 2001;10(11): 
1215–1220.

 121. Burwinkel B, Scott JW, Buhrer C, et al. Fatal congenital heart 
glycogenosis caused by a recurrent activating R531Q mutation in the 
gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not 
by phosphorylase kinase deficiency. Am J Hum Genet. 2005;76(6): 
1034–1049.

 122. Kim E, Lee SH, Lee KS, et al. AMPK gamma2 subunit gene PRKAG2 
polymorphism associated with cognitive impairment as well as diabetes 
in old age. Psychoneuroendocrinology. 2011;37(3):358–365.

 123. Harvard C, Strong E, Mercier E, et al. Understanding the impact of 
1q21.1 copy number variant. Orphanet J Rare Dis. 2011;6:54.

 124. Qi S, Mizuno M, Yonezawa K, Nawa H, Takei N. Activation of 
mammalian target of rapamycin signaling in spatial learning. Neurosci 
Res. 2010;68(2):88–93.

 125. Costain G, Lionel AC, Merico D, et al. Pathogenic rare copy number 
variants in community-based schizophrenia suggest a potential role 
for clinical microarrays. Hum Mol Genet. 2013;22(22):4485–4501.

 126. Hosak L. New findings in the genetics of schizophrenia. World J 
Psychiatry. 2013;3(3):57–61.

 127. Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric 
aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14(7): 
733–745.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/research-and-reports-in-biology-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


