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Abstract: Epigenetics is a growing fi eld not only in the area of cancer research but recently 

in stem cells including human embryonic stem cell (hESC) research. The hallmark of profi ling 

epigenetic changes in stem cells lies in maintaining pluripotency or multipotency and in attaining 

lineage specifi cations that are relevant for regenerative medicine. Epigenetic modifi cations 

including DNA methylation, histone acetylation and methylation, play important roles in 

regulating gene expressions. Other epigenetic modifi cations include X chromosome silencing, 

genomic stability and imprinting and mammalian development. This review attempts to elucidate 

the mechanism(s) behind epigenetic modifi cations and review techniques scientists use for 

identifying each modifi cation. We also discuss some of the trends of epigenetic modifi cations 

in the fi elds of directed differentiation of embryonic stem cells and de-differentiation of 

somatic cells.

Keywords: epigenetics, embryonic stem cell, somatic cell nuclear transfer, DNA methylation, 

chromatin modifi cations

Embryonic stem cells (ESCs)
ESCs derived from the blastocyst are capable of self renewal and can remain in an 

undifferentiated state for indefi nite passages in vitro and also can be coaxed to differentiate 

to different lineages (Martin 1981). This makes them the favorable candidate for 

developing cellular therapies against many degenerative diseases such as those outlined 

in Table 1. Following the fi rst successful derivation of 5 hESC lines by Thomson’s group 

in 1998 (Thomson et al 1998), more new hESC lines have been created (Guo et al 2007; 

Zhang et al 2006; Cowan et al 2004; Sidhu et al 2008). To date it is estimated, that more 

than 414 new hESC lines have been produced worldwide and out of which ∼78 are listed 

on the National Institute Health (NIH) Registry (Guhr et al 2006). Only ∼179 of these 

lines are characterized to some extent and available for research. Many of these hESC 

lines are not clonal and are derived under different culture conditions and propagated on 

different feeder layers (MEF, STO, fetal muscle, skin and foreskin, adult fallopian tube 

epithelial cells and also some feeder free/serum free systems), hence comparison of these 

lines are very diffi cult (Amit et al 2000; Cowan et al 2004; Amit et al 2003).

Epigenetic modifi cations play a signifi cant role in maintaining pluripotency in 

ESCs and at the same time, very relevant in determining the somatic status of termi-

nally differentiated cells. Accordingly, epigenetic profi les of pluripotent genes such 

as Nanog and OCT4, in ESCs are maintained.

The study of epigenetics – a cell’s epigenome
Gene and protein expression profi ling has long been the benchmark in characterizing 

cell specialization during development. However, recent emphasis is shifted in favor 

S
te

m
 C

el
ls

 a
nd

 C
lo

ni
ng

: A
dv

an
ce

s 
an

d 
A

pp
lic

at
io

ns
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.



Stem Cells and Cloning:  Advances and Applications 2008:112

Chung and Sidhu

of epigenetic profi ling (also referred to as the ‘epigenome’) 

than genomic profiling as the former is considered to 

play a signifi cant role in lineage specifi cations. The study 

of epigenetics involves covalent modifications to the 

architectural structure of both chromatin and DNA, but 

not to the sequence itself. However, there are other players 

which regulate gene expression such as binding of DNA 

proteins. These modifi cations are heritable (El Kharroubi 

et al 2001) and often regulate gene expression to a certain 

extent (Li 2002).

In contrast to gene expression profiles observed in 

somatic and/or differentiated cells, the ESCs have the 

potential of activating all gene expression profi les of all cell 

types from one genome. During mammalian development, 

almost all cells differentiate without changes to the DNA 

sequence, however their phenotypes are associated with 

certain activation (or inactivation) of genes. The differential 

activation/deactivation of genes depends on the presence and 

arrangement of functional moieties such as methyl (−CH
3
) 

and acetyl (−COCH
3
) groups, which forms the basis of an 

‘epigenetic’ environment around the genomic DNA.

Understanding these complex structures of epigenetic 

modifi cations can lead to better understandings of how and 

when genes are activated or repressed. These patterns are 

established in early embryonic development and are subject to 

change throughout development (Li 2002; Reik et al 2001).

The mechanism of DNA
methylation
Protein expressions determine cell phenotypes that are 

translated from mRNA transcripts of genomic DNA. Despite 

gene expression being influenced by changes in DNA 

sequence (single nucleotide polymorphisms – SNPs, within 

protein encoding sequences), epigenetic modifi cations such 

as DNA methylation can also affect gene expression (Hattori 

et al 2004).

DNA methylation forms an important means of 

epigenetic modifications and was first detected nearly 

60 years ago, using chromatography techniques (Hotchkiss 

1948). Over the past decade, transcriptional silencing of 

tumor suppressor genes through abnormal DNA methylation 

patterns has been established (Jones and Laird 1999). DNA 

methylation is also involved in other cellular processes such 

as, genomic stability (Peters et al 2001), X chromosome 

inactivation (Mohandas et al 1981), genomic imprinting 

(El Kharroubi et al 2001), chromatin structure (Jones et al 

1998) and mammalian development (Reik et al 2001).

In mammalian genomes, DNA methylation occurs 

exclusively at the 5’ position on a cytosine nucleotide in 

the context of CG sequences (Bird, 2002). CpG islands 

are regions of DNA where CG nucleotides are present at 

signifi cantly higher levels than the rest of the genome, these 

islands often reside at 5’ ends of all housekeeping and many 

tissue-specifi c genes – the promoter region (Gardiner-Garden 

and Frommer 1987). This methylated 5’ cytosine can act as 

a 5th DNA base, as different cytosine methylation status 

affects gene transcription.

Methylated DNA is often correlated to gene repression 

(Fuks et al 2000), its precise mechanism remains to be 

elucidated. One such explanation is that transcriptional 

binding sites become occupied by a group of methyl-CpG 

binding proteins (MeCP1, MeCP2, MBD1, MBD2) that 

specifi cally bind to methylated DNA. This explanation is 

supported via the fi ndings that the binding of MeCP2, recruits 

histone deacetylases to repress transcription (Jones et al 

1998; Nan et al 1998; Wade 2001; Fuks et al 2003). This 

is also evident that these 2 epigenetic modifi cations; DNA 

methylation and histone deacetylations are inter-related. 

MBD2 is also known to bind with NuRD, forming a complex; 

MeCP1 which has gene repressive capabilities (Feng and 

Zhang 2001).

DNA methyl transferases (DNMT) are enzymes that add 

methyl groups to DNA. In mammals there are 3 common 

transferases, DNMT1, DNMT3a, DNMT3b. DNMT1 is 

a methylation maintenance enzyme and targets newly 

synthesized DNA via its N-terminal regulatory domain which 

aims for the replicating foci (Leonhardt et al 1992). Somatic 

cells are believed to preserve their methylation patterns 

via this manner. DNMT3a/3b are de novo methylation 

enzymes and are most active during 2 stages of embryonic 

development following the 2 rounds of global genomic 

demethylation (Morgan et al 2005).

Methylation patterns are dynamic, as commonly 

demonstrated in reprogramming studies and they also 

Table 1 A concise list of some degenerative diseases that can be 
treated with cellular transplantation

Disease/disorder Type of cells required 
for transplantation

Alzheimer’s disease Nerve cells

Diabetes Islet cells

Cardiovascular disease Cardiomyocytes

Liver disease Hepatocytes

Multiple sclerosis Glial cells

Osteoarthritis Chrondrocytes

Spinal cord injuries Nerve cells
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change as cells develop physiologically (Freberg et al 2007; 

Takahashi et al 2007). Demethylation occurs spontaneously 

as previously demonstrated (Cervoni and Szyf 2001). 

Ectopically methylated genes transfected into somatic cells 

showed demethylating activity. Another study also showed 

demethylase activity via a mammalian protein which has 

DNA encoding for a methyl-CpG binding domain is also 

shown (Bhattacharya et al 1999). However demethylation 

alone is not suffi cient to remove the repressive trait of 

methylation. This encourages scientists to look at epigenetic 

modifi cations as a whole, instead of one entity, specifi cally at 

histone modifi cations, as will be discussed later. Mechanisms 

that prevent de novo CpG methylation are unclear. Several 

proposed hypotheses include; DNMT3a/3b requires 

additional CpG binding proteins (CGBP) or other protein 

interaction. There may also be a constant demethylase 

activity, as demonstrated in the above mentioned study 

(Cervoni and Szyf 2001).

All types of cells would have their own epigenomic 

signature. This is best depicted using DNA microarrays (for 

example Illumina’s bead arrays), where an epigenome is 

expressed in a cluster analysis methylation chart, displaying 

cell type and CpG methylation levels. A recent study, mapped 

the methylation status of 23 genes (25 CpG sites) over a 

range of cell types (Bibikova et al 2006) (Figure 1). From 

this fi gure, it is very clear that different cell types are epige-

netically (and transcriptionally) divergent from each other, 

otherwise referred to as being ‘epigenetically unique.’

There are many techniques used to study DNA 

methylation patterns, but the most specifi c and commonly 

used, being bisulfi te DNA sequencing (Frommer et al 1992). 

Bisulfi te deals structural changes to unmethylated cytosines, 

while methylated cytosines remain intact. With this change, 

one can measure the amount of DNA methylation using 

conventional DNA sequencing procedures (Figure 2). 

This is a quantitative measure and is generally correlated 

to gene expression profi les. A most recent study, mapped 

the entire genome of Arabidopsis thaliana using a shotgun 

bisulfi te approach using a Next-generation sequencer, which 

provided a map at single base pair resolution of methylated 

cytosines (Cokus et al 2008).

5’aza-2-deoxycytidine (5azadC) is a global DNA 

demethylation reagent that clips off methyl groups bound on 

5’methyl-cytosines. 5azadC is a deoxy- form of 5-azacytidine 

and is more readily incorporated into DNA. This causes 

a more effi cient inhibition of methylation than the latter 

(Momparler et al 1984). Its activity is characterized by 

the covalent trapping of DNMT which depletes the cell 

of its enzymatic activity (Juttermann et al 1994). 5azadC 

is commonly used as a DNA methylation inhibitor and its 

activity has been correlated with gene expression (Jones and 

Taylor 1980; Taylor 1993; Juttermann et al 1994; Grassi et al 

2003), cellular differentiation (Pinto et al 1989; Choi et al 

2004a) and specifi cally in enhancing hESC differentiation 

(Xu et al 2002).

Maintaining methylation but not de novo methylation 

is required for in vitro differentiation, as demonstrated 

previously (Jackson et al 2004). Briefl y, hypomethylated 

cell lines with Dnmt3a/3b gene knockouts restored their 

methylation after stable integration of DNMT1 cDNA 

transgene.

Although DNA methylation has been intensively studied, 

many questions remain to be answered, including what 

mechanisms prevent the de novo methylation of normal 

somatic cells? And the proteomic network of DNMT remains 

to be elucidated.

Chromatin remodeling 
and histone modifi cations
The fundamental unit of chromatin is a nucleosome, which 

consists of a core of 8 histones; H2A, H2B, H3 and H4 

(2 of each). Each core is surrounded by ∼147bp of DNA 

and is tightly wound around 1.75 turns (Figure 3). There is 

increasing evidence that transcriptional factors recognize 

signals given off by histone tail modifi cations. As there is an 

association between DNA and histones, it is not surprising 

that histone tail modifi cations (acetylation methylation, 

ubiquitylation and phosphorylation) also affect gene 

transcription.

Cell type 

G
ene/C

pG0.0
0.1
1.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 1 Methylation analysis chart. Each column represents a different cell type, 
while each row is a different genes/CpG site. Each cytosine is graded from being 
heavily methylated (1) to largely unmethylated (0).
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Figure 2 Process of bisulfi te DNA sequencing. Genomic DNA is treated with sodium bisulfi te which deals structural and irreversible changes to a cytosine through 
denaturation, deamination and desulphonation processes. Taking advantage of these changes, the DNA is PCR-amplifi ed and ligated to plasmid vectors for transformation into 
Escherichia coli. White colonies are hand picked and plasmid DNA extracted for automated DNA sequencing. Closed circles represent methylated CpGs and open represent 
unmethylated CpGs.

At the molecular level, the revealing (or hiding) of 

binding sites that infl uence gene transcription are outcomes 

of histone tail modifi cations. This hiding and revealing of 

binding sites is determined by overall chromatin structure 

whether it is relaxed or compact. Acetylation of histone 

tails removes the positive charge, thus decreasing the 

affi nity between the DNA and histones. This results in a 

structure called euchromatin and allows easier access of 

transcriptional factors. In contrast, the result of deacetylation, 

caused by histone deacetylases (HDACs) is heterochromatin, 

which results in tightly compacted chromatin and conceals 

transcriptional DNA binding sites.

Histone tails of H3 holds several amino acids that 

are notably studied for their correlation with gene 

expression; these are lysine, arginine, serine and threo-

nine residues. Transcriptionally active genes generally 

harbors histone H3 lysine 9 acetylation (H3K9ac), H3K4 

di-methylation (H3K4me2), tri-methylation (H3K4me3), 

H3K36me3 and H3K79me3. Transcriptionally repressed 

genes tend to harbor H3K9me2, H3K9me3, H3K27me3 

and histones H4 lysine 20 tri-methylation (H4K20me3) 

(Dahl and Collas 2007; Freberg et al 2007; Maherali et al 

2007). Cell populations expressing high levels of gene(s) 

are generally enriched with euchromatic markers in their 

promoter regions as demonstrated in pluripotent genes 

Figure 3 A diagrammatic representation of one chromatin unit. A nucleosome, 
consisting of 4 histones types; H2A, H2B, H3 and H4 with DNA (blue) tightly wound 
around the core unit. Histone tails (yellow) protrude from the centre of the histones 
through the DNA strands (blue).

Powered by TCPDF (www.tcpdf.org)



Stem Cells and Cloning:  Advances and Applications 2008:1 15

Epigenetic changes in stem cells

OCT4, NANOG and heterochromatic markers of somatic 

gene PAX6 of pluripotent undifferentiated carcinoma cells 

(Dahl and Collas 2007). A recent study mapped the histone 

methylation marks in mouse- ESCs, neural progenitor cells 

and embryonic fi broblasts and highlighted the impact of 

H3K4me3 and H3K27me3, on transcriptionally active and 

inactive genes respectively (Mikkelsen et al 2007). Gene 

promoters which contained both the euchromatic and 

heterochromatic markers above determine switching cell 

developmental fates (Bernstein et al 2006).

Chromatin immunoprecipitation (ChIP) is a technique 

used to study chromatin remodeling including histone de/

acetylation and de/methylation. Protein-DNA interaction 

is the basis of this technique and has been used for the past 

20 years. Conventional ChIP analysis requires large numbers 

of starting material; cells and hence, a simplifi ed recipe, 

Q2ChIP Assay was invented (Dahl and Collas 2007). Briefl y, 

cells are cross linked using sodium butyrate prior to lysis and 

sonication. Cell lysate is immunoprecipitated and reversed 

cross linked; unbinding of DNA-histone complexes, DNA is 

then isolated and used for polymerase chain reaction (PCR) 

assays (Figure 4).

Recruitment of histone acetyl transferases (HATs) or 

presence of histone deactylases (HDAC) inhibitor(s) results in 

histone acetylation (Cervoni and Szyf  2001). Hyper-acetylated 

promoter regions correspond to gene activity (Hattori et al 

2004). Trichostatin A (TSA) is a commonly used deacetylase 

inhibitor, and allows re-expression of genes regulated by histone 

acetylations (Cameron et al 1999), methylation (Ou et al 2007) 

and also inducing cellular differentiation (Hosseinkhani et al 

2007). Other studies have determined common enzymes 

that demethylate specifi c lysine residues which generally 

lead to gene activation/repression (depending on the traits of 

specifi c lysine residues): Lysine specifi c demethylase (LSD1) 

specifi cally demethylates H3K4 (Shi et al 2004), Ubiquitously 

transcribed tetratricopeptide repeat, X chromosome (UTX) 

and Jumonji domain containing 3 (JMJD3) specifically 

demethylates H3K27 (Hong et al 2007).

The increase of histone acetylation is associated with a 

decrease in global methylation (Jackson et al 2004; Ou et al 

2007) and a gene’s methylated state is determined by the 

balance between demethylase activity and state of histone 

acetylation (Cervoni and Szyf 2001). Treatment of cells with 

TSA showed re-expression of some methylation-silenced 

H3K9ac

H3K4me2

H3K4me3

H3K9me2

Antibody-bead
complexes binding

Isolate  purified DNA after 
proteinase K digestion

Real time PCR

DNA-Protein
Crosslinking

Magnetic separation

Cell lysis and chromatin 
fragmentation

Figure 4 Quick and Quantitative Chromatin Immuno-precipitation (Q2ChIP). Cells were harvested and treated with sodium butyrate to allow DNA-protein crosslinking. 
Cells were lysed and sonicated to produce fragments (∼500 bp). Chromatin fragments were allowed to conjugate to ‘antibody-paramagnetic bead complexes’ (specifi c for 
H3K9ac). The solution is magnetically separated and purifi ed fragments are reversed crosslinked and subjected to proteinase K digestion. Isolated DNA is now ready for 
downstream PCR processes.
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tumor suppressor genes indicating that methylation is the 

dominant epigenetic suppressor of densely methylated 

genes (Cameron et al 1999). Another study displays similar 

results while providing evidence that TSA inhibits DNMT1 

(Januchowski et al 2007), which plays the role of 5azadC 

(as mentioned earlier); demethylation of tumor suppressor 

genes (Merlo et al 1995).

Lineage specifi cations
Recently, the study of epigenetic changes during differ-

entiation of ESCs and de-differentiation of somatic cells 

has revealed some interesting results. More differentiated 

cells generally harbor more epigenetic modifi cations as 

demonstrated in mouse fi broblast cells (fully differentiated 

cells), where a combination of Trichostatin A (TSA) 

and 5’aza-2-deoxycytidine (5azadC), was required for 

OCT4 re-expression, whereas in trophoblast stem cells 

(less differentiated cells), either 5’azadC or TSA alone 

can re-activate OCT4 expression (Hattori et al 2004). 

However, certain cells do retain their ability to switch cell 

developmental fates through balancing of euchromatic 

and heterochromatic markers (Mikkelsen et al 2007). 

One exception to the above rule, applies to germ line 

cells (non-somatic cells), namely – primordial germ cells 

(PGCs). PGCs undergoes dynamic methylation changes 

(Trent 2005) which forms the basis of regulating germ 

cell-specifi c gene expression (Maatouk et al 2006). Deriva-

tives of PGCs, such as; arrested metaphase II eggs and 

mature sperm exhibit hypomethylated major and minor 

satellite sequences whereas in comparison to somatic cells, 

are hypermethylated (Yamagata et al 2007). This is one of 

the best examples using epigenetic modifi cations in lineage 

specifi cation. Somatic cells maintain their gene expressions 

after mitosis through epigenetic mechanisms, a process 

often referred to as ‘cellular memory.’ However, the cellular 

memory present in PGCs remains in a ‘reprogrammable’ 

state with the potential event of totipotency.

Another example of epigenetic lineage specifi cation 

include specifi c CpG methylation of promoter regions as 

previously demonstrated (Takizawa et al 2001). Briefl y, 

a certain CG found in the STAT3 binding element within 

the GFAP promoter region of neuroepitheilial cells/post-

mitotic neurons is highly methylated and is a sign of GFAP 

suppression. As these cells differentiate into astrocytes, 

this level of methylation is decreased resulting in the 

expression of GFAP (Takizawa et al 2001). Therefore 

methylation of the STAT3 recognition sequence results in 

GFAP suppression.

Epigenetic modifi cations 
of stem cells
Cellular differentiation
There are 3 major stages of epigenetic modifi cations dur-

ing gametogenesis and embryonic development. The fi rst 

occurs in primordial germ cells, where the imprints of 

genes are erased, shown by the lack of methylation (Seki 

et al 2007; Maatouk et al 2006). The second stage involves 

epigenetic acquisition in maturing gametes, namely 

oocytes (Lucifero et al 2002) and spermatozoan (Oakes et al 

2007). The third stage occurs during fertilization and usually 

involves maintenance of methylation in imprinted genes, 

while other genes gradually lose their methylation (Mayer 

et al 2000; Okamoto et al 2004).

As described above, epigenetic modifications are 

dynamic throughout cellular differentiation. Many recent 

studies on directed differentiation of ESCs used epigenetic 

modifying agents 5azadC and TSA to enhance the effi ciency 

of differentiation. Differentiation of ESCs to cardiomyocytes 

was enhanced with 5azadC and TSA (Xu et al 2002; 

Hosseinkhani et al 2007). A recent report attempts to 

describe the dynamics of DNA methylation of differentially 

methylated regions (DMRs) in 5azadC-induced adipocyte 

differentiation (Sakamoto et al 2008). Although a majority of 

associated genes exhibited no change in methylation profi les, 

a series of 8 out of 65 tissue-dependent DMRs underwent 

either methylation, demethylation or were transient, from 

stem cell to mature adipocytes.

In a recent study it is demonstrated that although TSA 

does not improve astrocyte differentiation, it assisted in 

the derivation of neurons with normal electrophysiological 

membrane properties and elongation of dendrites 

(Balasubramaniyana et al 2006).

Cellular reprogramming 
and dedifferentiation
Somatic cell nuclear transfer (SCNT) is a process whereby 

the derivation of cloned animals (Wilmut et al 1997) and 

donor-matched cell lines (Wakayama et al 2005) is made 

possible. SCNT is an emerging area in stem cell research and 

involves transferring nuclei of somatic cells into enucleated 

oocytes with the aim to derive embryonic stem cells with 

the same genetic makeup as the ‘donor’ somatic cell. From 

a clinical perspective, such cells, when transplanted, should 

not be rejected due to incompatible immune response.

SCNT is also useful for studying drug toxicologies in 

embryonic cell lines derived from a somatic cell’s genome 
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carrying a certain disease(s) such as those listed in Table 1. 

This technique has also been used to generate live cloned 

offspring in various animal species but not in humans 

(Cibelli et al 1998b; Meng et al 1997; Rideout III et al 2000). 

However, it remains as an ineffi cient technique. Many factors 

infl uencing SCNT effi ciency include; donor cell phenotype 

(Table 2), developmental stage of recipient oocytes during 

nuclear transfer (Hall et al 2007), cell cycle stage of donor 

somatic cell (Kasinathan et al 2001), type of zygote/embryo 

activation method (Choi et al 2004b) and recently, epigenetic 

modifications including DNA methylation and histone 

acetylation (Kishigami et al 2006).

Epigenetic studies play a signifi cant role in determining 

reprogramming during SCNT (Byrne et al 2007) and also in 

a recently developed technology; induced pluripotent stem 

(iPS) cells, that is, reprogramming somatic cells to pluripotent 

state by transducing specifi c pluripotency-associated genes 

into the somatic cells (Takahashi and Yamanaka 2006; 

Takahashi et al 2007; Wernig et al 2007; Yu et al 2007). 

These studies have analysed DNA methylation and histone 

modifi cations to confi rm their reprogrammed somatic cells 

have reverted back into a pluripotent state (and even to 

totipotent status in mice). These epigenetic analyses along 

with gene expression patterns are essential to specify and 

confi rm the identity of the pluripotent lineage.

As indicated in Table 2, SCNT remains as an ineffi cient 

process and many studies are being carried out to improve 

SCNT effi ciency. In a recent study led by Jaenisch (Blelloch 

et al 2006), it has been demonstrated that less differentiated 

somatic cells increases SCNT effi ciency. It has been shown, 

by using cells which carry a hypomorphic allele of Dnmt1 

(which results in ‘global demethylation’ of the donor 

genome), higher effi ciency could be achieved (65%). This 

paper may well provide a spark in the future for effi cient 

establishment of nuclear transfer-ESC lines. However 

higher effi ciency of cloning was also achieved by using dif-

ferentiated cells (namely, granulocytes) compared to that 

with less differentiated hematopoietic stem cells (Sung et al 

2006). Conclusions from both these studies, although cor-

rect, encourage us to look at the epigenetic nature of donor 

cells and how certain somatic epigenomes infl uences SCNT 

effi ciency.

Bisulfi te sequencing and Q2ChIP analyses are useful for 

studying a limited number of genes at one time. However, it 

is more convenient to use immunocytochemistry to visually 

observe global epigenetic patterns and/or dynamics within 

cell populations. Antibodies specifi c to epigenetic markers 

(for eg, 5’methyl-cytosines and H3K9 methylation) is an Ta
bl
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invaluable tool to study the epigenetic dynamics by observing 

intensities of fl uorescence (Beaujean et al 2004; Yang et al 

2006; Seki et al 2007).

SCNT embryos in animals tend to exhibit aberrant 

epigenetic makers as compared to those produced with 

traditional IVF technology These embryos tend to exhibit 

abnormally higher methylation levels during pre-implantation 

embryogenesis (Dean et al 2001; Beaujean et al 2004). H3K9 

acetylation levels in SCNT embryos, on the other hand, were 

at a lower level than IVF embryos and suggest active histone 

deacetylase activity. Inhibition of histone deacetylases 

(HDACs) via trichostatin A, may bring up the levels of 

acetylation consistent with IVF embryos. These strategies 

have previously been demonstrated in mice (Enright et al 

2003; Kishigami et al 2006) and should be adapted in future 

studies, for effi cient reprogramming of donor nuclei, which is 

believed to be the major cause for SCNT low effi ciency.

Conclusions
Epigenetics is an exponentially growing fi eld in ESC research, 

especially in cellular reprogramming studies. The aim to estab-

lish patient-matched ESC lines is currently hindered by the 

fact that there are aberrant epigenetic modifi cations during the 

reprogramming process and needs to be addressed. Epigenetic 

modifi cations are dynamic and directed differentiation studies 

should aim to address these issues, since growth factors and 

supplements is not suffi cient for the directed differentiation of 

ESCs. Both DNA methylation and histone modifi cations are 

inseparable entities when it comes to cellular differentiation 

and de-differentiation. Epigenetic changes induced by using 

specifi c reagents have the prospects of studying both the 

cellular differentiation and de-differentiation processes as 

demonstrated in some previous studies.
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