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Purpose: This study proposes an ordered categories model, using multinomial cumulative 

logistic regression, to investigate the risk factors affecting the severity of childhood anemia 

in Malawi.

Patients and methods: We generated a four-category outcome based on the categorization of child 

hemoglobin (Hb) level: nonanemia (Hb $11 g/dL), mild anemia (10.0 g/dL # Hb # 10.9 g/dL), 

moderate anemia (7.0 g/dL # Hb # 9.9 g/dL), and severe anemia (Hb ,7.0 g/dL), using the 2010 

Malawi Demographic and Health Survey data. We fitted a cumulative logistic threshold model, 

permitting nonlinear effects for continuous variables and spatial effects for district of residence. 

Inference was based on the empirical Bayes framework, with continuous covariates modeled by 

the penalized (P) splines and spatial effects smoothed by the two-dimensional P-spline.

Results: Findings reveal substantial spatial variation, with increased risk of anemia observed 

in the districts of Nsanje, Chikwawa, Salima, Nkhotakota, Mangochi, Machinga, and Balaka. 

On the other hand, reduced risk was estimated in the districts of Karonga, Chitipa, Rumphi, 

Mzimba, Zomba, Chiradzulu, and Thyolo. All known determinants, such as maternal anemia, 

child stunting, wasting, fever, and being underweight, increased the likelihood of childhood 

anemia. Furthermore, infant anemia decreased with child’s age and wealth index. In addition, 

there was a U relationship between childhood anemia and mother’s age.

Conclusion: Strategies for minimizing infant anemia must include optimized iron intake but 

should also simultaneously address maternal anemia, food insecurity, poverty, and child fever, 

particularly targeting districts identified to have a high risk of anemia.

Keywords: anemia, cumulative logit, Bayesian, spatial effect, Malawi

Introduction
Infant anemia is a global public health problem. According to the World Health 

Organization’s most recent report on the world prevalence of anemia,1 the global 

prevalence of anemia is 24.8% with the highest prevalence in the sub-Saharan Africa 

(67%), followed by the Southeast Asia (65.5%). Preschool-aged children are reported 

to have the highest prevalence (47.4%); however, estimates from a systematic review 

report2 suggest that the world prevalence of anemia for this population group has slightly 

decreased from 47% to 43%, with the South Asia, Central Africa, and West Africa still 

having the highest prevalence. Malawi alone, as part of the sub-Saharan Africa, has 

63% prevalence of childhood anemia, according to the 2010 Malawi Demographic 

and Health Survey (MDHS) report.3

Consequences of childhood anemia are poor cognitive development for mild and 

moderate anemia and death for severe anemia. Severe anemia carries a significant risk 
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of death by profound hypoxia and congestive heart failure 

or, more rarely, by cerebral malaria.4,5

The prevalence of anemia is influenced by a number of 

factors. It is said that 50% of all anemia cases are due to iron 

deficiency.6 Anemia is also due to the deficiency of other 

micronutrients such as vitamin A, vitamin C, and folate. 

Diseases such as malaria, human immunodeficiency virus, 

bacteremia, and helminth infections caused by hookworm 

and Schistosoma haematobium are also known to influence 

anemia.7,8 Infections lead to anemia through blood loss, 

hemolysis by antibodies, and anemia of inflammation. 

Furthermore, previous studies have also shown that low 

parental education levels, low household income, and 

demographic factors such as age, sex, and family size affect 

anemia.9–11 Sickle-cell disease has also been documented as 

a risk factor for anemia in sub-Saharan countries.12

Most studies on childhood anemia have used binary 

logistic regression and linear regression to investigate factors 

that influence childhood anemia. For example, many stud-

ies11,13–15 use a binary logistic model and some9,10 use a Gauss-

ian model. A binary logistic model is used when childhood 

anemia as a response is binary (non-anemic [hemoglobin 

{Hb} $11 g/dL] or anemic [Hb ,11 g/dL]), and a Gaussian 

model is used when childhood anemia as a response is a 

continuous measure of Hb level. Nevertheless, the interest in 

analyzing the severity of the disease and the corresponding 

risk factors is of epidemiological importance.16–18 In cases 

where childhood anemia can be considered as an ordered 

response (ie, nonanemia [Hb $11 g/dL], mild anemia [10.0 g/

dL # Hb # 10.9 g/dL], moderate anemia [7.0 g/dL # Hb 

#9.9 g/dL], and severe anemia [Hb ,7.0 g/dL]), a multi-

nomial ordered model is appropriate. To our knowledge, 

a few studies though have employed the use of multinomial 

ordered outcome model for childhood anemia.16–18 The use 

of a multinomial ordered outcome model may help identify 

children at the greatest risk to anemia, which is important 

when resources are inadequate.

This study aims at investigating factors of childhood ane-

mia in Malawi by using multinomial ordered outcome model, 

extended to permit nonlinear effects of some continuous 

variables and spatial effects of district of residence. Spatial 

effects are surrogates of unknown influences, eg, climatic and 

environmental factors, access to good transport system, and 

access to good child health care services. These unknown fac-

tors may have a localized effect (uncorrelated/unstructured) 

or global effect (correlated/structured). Mapping geographi-

cal spatial effects to childhood anemia severity would have 

important implications to policy.

The paper is organized as follows: first, the “Patients and 

methods” section in terms of study population, area, data, 

and statistical analysis is presented. It is followed by the 

“Results”, “Discussion”, and “Conclusion” sections.

Patients and methods
Study area and data
The study focused on children ,5 years old in Malawi and 

used the standard and nationally representative 2010 MDHS 

data. The 2010 MDHS was conducted from June 2010 to 

November 2010. Data were downloaded from the DHS web 

site (www.dhsprogram.com/data/dataset_admin) after being  

granted permission. Parents of the patients signed informed 

consent. The Malawi  Health Research Committee saw that 

ethical approval was not deemed necessary in this study 

considering the fact that the study used data from a research 

study already approved by an ethical research committee. 

According to the 2010 MDHS report,3 the 2010 MDHS 

study was ethically approved by Malawi Health Research 

Committee, Institutional Review Board of ICF Macro, 

Centre for Disease and Control (CDC) in Atlanta, GA, 

USA. Furthermore, mothers whose children were tested for 

anemia, voluntarily allowed their children to be tested. The 

sampling design according to the 2010 MDHS report3 was 

a two-stage cluster design with stratification. The primary 

sampling units were the enumeration areas (EAs), and the 

secondary sampling units were the households. EAs were 

stratified in terms of rural and urban. A total of 849 EAs 

were sampled with 158 in urban areas and 691 in rural 

areas. A total representative sample of 27,307 households 

was selected, and 25,311 households were considered to 

be occupied in the 2010 MDHS. Data collection was done 

through questionnaires. There were three types of question-

naires: woman, man, and household questionnaires, and 

data were collected through face-to-face interviews also. 

Total households that were successfully interviewed were 

24,825, yielding a response rate of 98%. Out of 23,748 

eligible women, 23,020 were successfully interviewed, 

yielding a response rate of 97%. Out of 7,783 eligible men, 

7,175 were successfully interviewed, yielding a response 

rate of 92%. The data set used in the analysis was child 

record data set, which was based on woman and household 

questionnaires.

Data management in terms of extracting and generation 

of variables from child record data set was done in STATA 

Version 12 (StataCorp, College Station, TX, USA). Data 

variables used in this study were based on the variables used 

in previous studies on childhood anemia.8–10 The response 
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variable in the extracted data set was child anemia status, which 

was grouped into four categories that are defined as follows:

Category 1: non-anemia (Hb $11 g/dL)

Category 2: mild anemia (10.0 g/dL # Hb # 10.9 g/dL)

Category 3: moderate anemia (7.0 g/dL # Hb # 9.9 g/dL)

Category 4: severe anemia (Hb ,7.0 g/dL).

The four categories for child anemia status are based on 

categorization of child hemoglobin level using cutoff points 

according to World Health Organization.19 The covariates 

in the generated data set were mother education level (no 

education, primary, secondary, and higher), family wealth 

index (poorest, poor, rich, richer, and richest), child cough 

(yes/no), child fever (yes/no), receiving vitamin A (yes/no), 

stunting (height for age z-score [HAZ] ,−2/HAZ $−2), 

wasting (weight for height z-score [WHZ] ,−2/WHZ $−2), 

underweight (weight for age z-score [WAZ] ,−2/WAZ $−2), 

childbirth weight in kilograms, childbirth order (1, 2–3, 

4–5, 6+), household size (#5/.5), child’s age in months, 

mother’s age in years, breast-feeding in months, and district 

of the child. Child’s age in months, mother’s age in years, 

and the breast-feeding in months were continuous covariates. 

District of residence of child i was denoted as s
i 
∈ (1, 2, 3, 

…, S), corresponding to the label on the map. All children 

records where childhood anemia status was missing were 

dropped so that the final sample size of children in terms of 

the response was 4,177, representing 81% of children in the 

original sample.

Statistical model
A common tool for analyzing regression data with ordinal 

responses is the cumulative threshold model.20 The model 

assumes that the response variable Y, here child anemia status, 

is a categorized version of a latent continuous variable, say 

in this study, child Hb level.

 U = η ε+  (1)

where η is the predictor of the latent variable, and U and ε 

are the error variables. The two variables Y and U are linked 

by Y = r if and only if θ
r−1

,U,θ
r
, r = 1, 2, 3, …, k with 

thresholds ∞ = θ
0
,θ

1
, … ,θ

k
 = ∞. Here r = 1, 2, 3, …, k 

are the categories of the variable Y based on the range of the 

latent variable U, and the thetas, θ
r
, are the boundaries for 

these categories. For example, suppose r = 4, as it is the case 

in this study, then θ
1
 demarcates category 1 from category 2, 

θ
2
 demarcates category 2 from category 3, and θ

3
 demarcates 

category 3 from category 4. It follows immediately that Y is 

determined by the model Pr(Y#r) = F(θ
r
−η) so that

 F− [ ] = −1 Pr( )Y r r≤ θ η  (2)

where F−1 is the link function. If the errors have the standard 

normal distribution, ie, N(0,1), then the link function F−1 is 

the probit link so that Equation 2 is the probit model, and if 

the errors have the extreme value distribution, then the link 

function is the complimentary log–log, which makes Equa-

tion 2 to be the proportional hazard model. If the errors have 

the logistic distribution, then the link function is logit link so 

that Equation 2 is the cumulative logit model. In this study, 

we assumed errors to be distributed as logistic so as to have 

the cumulative logit model.

The basic assumption of course is that the predictor η in 

Equation 2 is linear. To take a more flexible approach, the 

continuous covariates and the area level random effects were 

modeled by the nonlinear smooth functions. This assisted in 

revealing their subtle influences, which could not be shown 

if modeled linearly. To reflect this flexible approach, the 

predictor in the cumulative logit model (Equation 2) was 

extended as follows:

 η = γ + …w f x f x f x f si
T

i p ip i1 1 2 2( ) ( ) ( ) ( )+ + + +i spat  (3)

where f
j
 for j = 1, 2, 3, …, p are smooth functions expressing 

nonlinear relationship between the response variable and the 

continuous covariate, and f
spat

 (s
i
) is the area of the child random 

effect. The vector of coefficients γ determines the parametric 

relationship between the response and the categorical covari-

ates. The smooth functions f
j
 were specified as Bayesian splines. 

According to Fahrmeir and Tutz,20 this assumes approximating 

f
j
 by the polynomial spline of degree l defined at equally spaced 

knots x xj j j j
min max= =ζ ζ ζ0 1, , ,… js , which are within the 

domain of the covariate x
j
. The Bayesian spline can be written 

as a linear combination of d = s+1 basis functions, B
m
, ie,

 f x B xj j jm mm

d
( ) ( )=

=∑ ε j1
 (4)

According to Ruppert,21 the number of knots d should 

be large enough from 5 to 20 to ensure more flexibility, 

while Eilers and Marx22 say that the number of knots must 

be between 20 and 40. In this study, the number of knots for 

each f
j
 was specified to be 20. Now Bayesian estimation of 

the penalized spline (Equation 4) is equivalent in estimating 

model parameters ε
j
 = (ε

j1
, ε

j2
, …, ε

jm
), where the first- or 

second-order random walk priors for the regression coef-

ficients are assigned. A first-order random walk prior for 

equidistant knots is given by ε
jm

= (ε
j,m−1

 + u
j,m

), where m = 2, 

3, …, d, and a second-order random walk prior for equidis-

tant knots is given by ε
jm

 = 2ε
j,m−1

 + ε
j,m−2

 + u
j,m

, where m = 3, 
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4, …, d and u Nj m j, ( , )∼ 0 2τ  are random errors. The spatial 

effect was modeled by the tensor product of two-dimensional 

spline defined as

 f x x B B x B xij i jj

k

i

k

spat pat( , ) ( ) ( ),1 2 1 1 2 2= ∑∑ s  (5)

where (x
1
, x

2
) refers to the coordinates of the location of the data 

point, latitude and longitude, or location centroids based on the 

map. Note that f
spat

 (x
1
, x

2
) represents the effect of correlated 

unmeasured or unobserved location effects. The prior for B
spat,ij

 

= (B
spat,11

, B
spat,12

, …, B
spat,kk

) is based on spatial smoothness priors 

common in spatial statistics.23 The most commonly used prior 

specification based on the four nearest neighbors is defined as

 

B N B B B Bij i j i j i j ispat spat spat spat spat, , , , , , , ,| . ~ − + −+ + +1 1 1 jj

ij

+









1

2

4
,
τ

 (6)

for i, j = 2, …, k − 1 with appropriate changes for corners and 

edges. Model inference was by empirical Bayesian approach 

via mixed model methodology. This was implemented in 

BayesX, a program for Bayesian inference in combination 

with R (R Core Team, Austria). Some of the R code for model 

fitting is in the Supplementary material section. Since model 

estimation was by empirical Bayesian method, all variance 

parameters were treated as unknown constants that were 

estimated by restricted maximum-likelihood method, and 

hence, their priors were not given. The fixed effects were 

assigned diffuse priors. An advantage of the empirical Bayes-

ian inference over full Bayesian inference is that questions 

about the convergence of MCMC samples or sensitivity on 

hyper parameters do not arise.24

Results
Descriptive summaries
Table 1 shows the prevalence of childhood anemia by some 

of the covariates. It is observed that 23% of the children 

have mild anemia, 36% have moderate anemia, and 3% have 

severe anemia. The prevalence of anemia is highest among 

Table 1 Percentage of childhood anemia per some covariates and bivariate Pearson’s chi-squared test

Variable Any  anemia  
(,11.0 g/dL)

Mild anemia  
(10.0–10.9 g/dL)

Moderate anemia  
(7.0–9.9 g/dL)

Severe anemia  
(,7.0 g/dL)

Pearson’s  
chi-square (P-value)

Age (months) 336.92 (,0.001)
 6–8 80.2 24 48.9 7.3 –
 9–11 85.0 23.3 56.9 4.9 –
 12–17 75.0 23.7 47.9 3.4 –
 18–23 70.0 24.4 42.6 3.8 –
 24–35 64.8 23.5 36.8 4.4 –
 36–47 53.9 22.9 28.9 2.1 –
 48–59 47.0 22.7 23.5 0.8 –
Sex 3.91 (0.271)
 Male 63.2 23.9 36.2 3.1 –
 Female 61.8 22.8 35.8 3.2 –
residence 20.28 (,0.001)
 Urban 53.2 20.8 30.0 2.4 –
 rural 64.0 23.8 37.0 3.2 –
region 28.46 (,0.001)
 northern 58.3 26.3 29.7 2.3 –
 central 63.6 21.3 38.6 3.7 –
 Southern 62.3 24.8 34.8 2.7 –
Mother education 22.97 (0.006)
 no education 64.9 23.4 37.4 4.0 –
 Primary 63.4 22.7 37.5 3.2 –
 Secondary 55.6 23.7 29.8 2.1 –
 More than secondary a a a a –
Wealth quintile 60.87 (,0.001)
 Poorest 68.4 22.8 40.8 4.8 –
 Poor 64.5 23.2 38.3 3.0 –
 rich 65.4 23.9 37.1 4.4 –
 richer 61.5 23.2 36.2 2.1 –
 richest 51.5 23.6 26.8 1.1 –
Total 62.3 23.4 36.0 3.1 –

Notes: aIndicates that a figure is based on ,25 unweighted cases and has been suppressed. – not applicable.
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children aged 6–11 months and decreases with age between 

12 and 59 months (χ2=336.92, P,0.001). Fifty three percent 

of children in urban areas have anemia, compared with 64% 

of children in rural areas (χ2=20.28, P,0.001). Childhood 

anemia decreases with an increase in mother education 

(χ2=22.97, P=0.006) and with wealth quintile (χ2=60.87, 

P,0.001). There is also regional difference in childhood ane-

mia with the northern region having slightly lower prevalence 

(58%) than the central and southern regions (64% and 62%, 

respectively) (Table 2). The Pearson’s chi-squared test of asso-

ciation between region and childhood anemia supports this 

observation as P-value for the chi-square test is ,0.05.

empirical Bayesian
Testing proportional odds assumption of cumulative 
logit model
To have a meaningful interpretation of results from the 

cumulative logit model, the validity of proportional odds 

assumption was first tested. Table 3 presents the results of 

this test. The assumption of proportional odds for the cumula-

tive logit model was not violated as the likelihood ratio chi-

square P-value for the difference in log-likelihood between 

the full multinomial logit model (results not tabled) and the 

full cumulative logit model (Table 4, Model 4) was .0.05. 

Thus, the results of the cumulative logit model could then be 

further presented and interpreted.

Model selection
A number of models were fitted. Model 1 was a fixed-effects 

model, while Model 2 had linear and the nonlinear effects. In 

Model 3, all covariates were modeled as fixed effects, except 

district of residence, which was random. In the last model, 

Table 2 District percentage distribution of childhood anemia status and bivariate Pearson’s chi-squared test

District Any anemia  
(,11.0 g/dL)

Mild anemia  
(10.0–10.9 g/dL)

Moderate anemia  
(7.0–9.9 g/dL)

Severe anemia  
(,7.0 g/dL)

Pearson’s  
chi-square (P-value)

north 22.90 (0.029)
 chitipa 52.8 24.8 27.3 0.8 –
 Karonga 52.6 17.9 32.9 1.8 –
 nkhata Bay 72.4 23.5 46.7 2.2 –
 rumphi 58.1 32.6 23.5 2.0 –
 Mzimba 59.1 21.3 38.6 3.7 –
central 51.28 (0.001)
 Kasungu 66.0 22.6 39.9 3.5 –
 nkhotakota 74.1 24.8 45.2 4.2 –
 ntchisi 55.2 23.4 29.6 2.2 –
 Dowa 65.6 21.1 40.0 4.5 –
 Salima 78.7 18.7 55.3 4.7 –
 lilongwe 58.7 19.3 35.3 4.1 –
 Mchinji 62.0 26.9 32.0 3.0 –
 Dedza 63.3 18.5 42.2 2.6 –
 ntcheu 60.5 24.8 34.8 2.7 –
South 110.16 (,0.001)
 Mangochi 73.4 24.2 46.5 2.7 –
 Machinga 72.3 27.5 40.7 4.1 –
 Zomba 63.5 28.9 33.4 1.3 –
 chiradzulu 46.3 25.8 19.8 0.7 –
 Blantyre 43.5 19.2 21.9 2.5 –
 Mwanza 63.6 22.7 38.7 2.2 –
 Thyolo 49.1 27.3 20.9 0.9 –
 Mulanje 59.6 19.2 39.4 1.0 –
 Phalombe 60.7 24.2 35.0 1.5 –
 chikwawa 74.6 28.4 40.6 5.6 –
 nsanje 72.7 26.2 43.7 2.7 –
 Balaka 70.4 21.7 42.5 6.2 –
 neno 73.5 35.4 32.2 5.9 –

Note: – not applicable.

Table 3 Testing proportional odds assumption

Model Log-likelihood Difference in log-
likelihood, 2(LM − LC)

df P-value

Multinomial logit −2,575.81
22.7 27 0.2841

cumulative logit −2,585.16

Abbreviations: df, degrees of freedom; M, multinomial logit; C, cumulative logit.
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Model 4, in addition to the fixed effects, it captured the 

nonlinear effects of some continuous covariates and the 

random effect of district of the child. Model selection is by  

the use of Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and generalized cross-validation 

(GCV) as used by Kneib et al25 when they used empirical 

Bayesian method in the estimation of the structured additive 

regression model. A model with the smallest AIC, BIC, or 

GCV is considered as the best model. BIC tends to give a 

larger penalty to overfitting than the AIC and hence tends to 

select simpler models. The GCV does not give any penalty 

to overfitting, and it tends to select more fitting models. 

Table 4 shows that AIC and GCV favor Model 4 and BIC 

favors Model 1. Therefore, the discussion of the results is 

based on the geoadditive model (Model 4) selected by both 

AIC and GCV.

Fixed effects
The cutoff point between non-anemia and mild anemia is θ

1
,  

the cutoff point between mild and moderate anemia is θ
2
, 

and the cutoff point between moderate and severe anemia 

is θ
3
. The sign of these cutoff point parameters means a 

shift toward an area of low or high probability with regard to 

probability distribution of the latent variable. Table 4 shows 

that the threshold parameter for category “non-anemia” (θ
1
) 

is negative, which means having non-anemia corresponds 

Table 4 Summary of four cumulative logit models

Variable Model 1 coefficient  
(95% CI)

Model 2 coefficient  
(95% CI)

Model 3 coefficient  
(95% CI)

Model 4 coefficient 
(95% CI)

θ1 −1.996 (−2.420 to −1.572) −0.751 (−1.090 to −0.413) −1.821 (−2.339 to −1.304) −0.589 (−1.037 to −0.140)
θ2 −0.936 (−1.356 to −0.519) 0.310 (−0.028 to 0.648) −0.734 (−1.249 to −0.219) 0.500 (0.053 to 0.948)

θ3
2.355 (1.906 to 2.804) 3.608 (3.227 to 3.987) 2.616 (2.077 to 3.155) 3.856 (3.374 to 4.337)

residence (ref = rural)
 Urban −0.204 (−0.436 to 0.027) −0.196 (−0.428 to 0.035) −0.143 (−0.389 to 0.103) −0.136 (−0.382 to 0.110)
child sex (ref = female)
 Male 0.044 (−0.079 to 0.166) 0.043 (−0.079 to 0.166) 0.064 (−0.059 to 0.187) 0.064 (−0.059 to 0.187)
Mother education (ref = no education)
 Primary −0.188 (−0.363 to −0.013) −0.187 (−0.362 to −0.012) −0.043 (−0.223 to 0.138) −0.042 (−0.223 to 0.139)
 Secondary −0.236 (−0.488 to 0.017) −0.229 (−0.482 to 0.024) −0.050 (−0.308 to 0.209) −0.043 (−0.303 to 0.216)
 higher 0.314 (−0.894 to 1.521) 0.332 (−0.875 to 1.539) 0.553 (−0.644 to 1.749) 0.570 (−0.627 to 1.767)
Wealth (ref = poorest)
 Poor −0.145 (−0.333 to 0.043) −0.142 (−0.330 to 0.046) −0.136 (−0.327 to 0.054) −0.135 (−0.325 to 0.056)
 rich −0.054 (−0.243 to 0.136) −0.055 (−0.244 to 0.134) −0.028 (−0.221 to 0.165) −0.029 (−0.223 to 0.164)
 richer −0.188 (−0.388 to 0.012) −0.187 (−0.386 to 0.013) −0.156 (−0.361 to 0.048) −0.1545 (−0.358 to 0.050)
 richest −0.440 (−0.682 to −0.198) −0.436 (−0.678 to −0.194) −0.436 (−0.684 to −0.188) −0.432 (−0.680 to −0.184)
Fever yes (ref = no) 0.427 (0.286 to 0.5671) 0.422 (0.281 to 0.562) 0.430 (0.286 to 0.573) 0.423 (0.280 to 0.567)

cough yes (ref = no) −0.011 (−0.159 to 0.136) −0.015 (−0.163 to 0.132) 0.045 (−0.106 to 0.195) 0.0412 (−0.109 to 0.192)
Vitamin A yes (ref = no) −0.157 (−0.343 to 0.029) −0.144 (−0.329 to 0.042) −0.109 (−0.297 to 0.080) −0.096 (−0.286 to 0.093)
Stunting yes (ref = no) 0.228 (0.093 to 0.362) 0.234 (0.010 to 0.369) 0.266 (0.130 to 0.402) 0.271 (0.135 to 0.407)

Underweight yes (ref = no) 0.220 (0.044 to 0.395) 0.214 (0.039 to 0.389) 0.209 (0.032 to 0.386) 0.204 (0.027 to 0.381)

Wasting yes (ref = no) 0.348 (0.010 to 0.686) 0.341 (0.003 to 0.680) 0.358 (0.017 to 0.699) 0.351 (0.009 to 0.693)

Mother anemia yes (ref = no) 0.662 (0.485 to 0.839) 0.665 (0.488 to 0.841) 0.579 (0.399 to 0.757) 0.580 (0.401 to 0.759)
child’s age −0.033 (−0.038 to −0.028) – −0.034 (−0.038 to −0.028) –
Breast-feeding (months) −0.008 (−0.018 to 0.003) −0.003 (−0.015 to 0.008) −0.009 (−0.020 to 0.002) −0.005 (−0.017 to 0.006)
Mother’s age −0.004 (−0.013 to 0.006) – −0.003 (−0.013 to 0.006) –
Variance parameters
 Spatial effect – – 0.6848 0.6787
 nonlinear effects – – – –
 child’s age – 0.0002 – 0.0002
 Mother’s age – 0.0004 – 0.0004
Model fit
 Aic 8,290.84 8,285.48 8,199.45 8,195.2
 Bic 8,427.64 8,437.06 8,459.92 8,469.4
 gcV 2.1978 2.1922 2.1351 2.1302

Notes: Model 1 (fixed effects), Model 2 (fixed plus nonlinear effects), Model 3 (fixed and spatial effects), and Model 4 (geoadditive). – not applicable.
Abbreviations: ci, credible interval; Aic, Akaike information criterion; Bic, Bayesian information criterion; gcV, generalized cross-validation; ref, reference.
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to reduced probability of having anemia. Also the negative 

sign for the threshold parameter of “mild anemia” (θ
2
) means 

that mild anemia category is associated with reduced prob-

ability of having anemia. The positive sign for the threshold 

parameter for “moderate anemia” (θ
3
) means that moderate 

anemia category is associated with increased probability of 

having anemia.

The sign of the covariate coefficient means being asso-

ciated with higher or lower levels of childhood anemia on 

the childhood anemia category rating scale compared to 

the baseline. In Table 4, the fixed-effects variables found 

significant to childhood anemia are fever, wealthy family 

of richest category, stunting, wasting, underweight, and 

mother anemia status. The coefficient of fever (0.423; 95%  

credible interval [CI]: 0.280−0.567) is positive, which means 

that fever is associated with higher levels of childhood ane-

mia, severe anemia, eg, compared to having no fever. The 

richest family has a negative effect on childhood anemia 

severity, that is, the children of the richest family are associ-

ated with less anemia compared to the children of the poorest 

family. The coefficient for stunting (0.271; 95% CI: 0.135−
0.407) is positive, which means that the stunted children are 

associated with severe childhood anemia compared to the 

nonstunted children. Similarly, the effect of underweight and 

wasting is positive, which means that the children who are 

underweight or wasted are associated with higher levels on 

childhood anemia rating scale, say severe anemia. Mother 

anemia status has a positive effect on childhood anemia 

(coefficient: 0.580; 95% CI: 0.401−0.759), which means that 

the children of anemic mothers are associated with severe 
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Figure 1 nonlinear effect of child’s age on childhood anemia.
Note: red band (95% ci) and green band (80% ci).
Abbreviation: ci, credible interval.

childhood anemia compared to those whose mothers do not 

have anemia.

nonlinear effects
Figure 1 presents the nonlinear effects of age of the child. 

As the child’s age increases, its effect on childhood anemia 

decreases, that is, older children are less likely to have 

childhood anemia. The chance of having anemia is much 

higher in children aged ∼5 to ∼20 months and decreases 

thereafter.

With regard to mother’s age (Figure 2), there is a U func-

tional relationship between childhood anemia and mother’s 

age. Young mothers are more likely to have children who are 

anemic, in particular, mothers aged 15–25 years. The risk of 

childhood anemia remains equal and is reduced for mothers 

aged 25–40 years. The risk of childhood anemia then rises 

for mothers who are aged 40 years and above.

Spatial effects
Figure 3 presents total residual spatial effects on child-

hood anemia. Chikwawa, Salima, and Nkhotakota increase 

the probability of having severe childhood anemia, while 

Chiradzulu reduces the probability of severe childhood 

anemia at the 95% credible interval (Figure 4). For the 80% 

credible interval (Figure 5), Nkhotakota, Salima, Mangochi, 

Machinga, Balaka, Chikwawa, and Nsanje increase the 

probability of having severe anemia, and Chitipa, Karonga, 

Rumphi, Mzimba, Chiradzulu, and Thyolo reduce the prob-

ability of having severe childhood anemia.

Discussion
This study employed the use of geoadditive multinomial 

ordered outcome model for childhood anemia, which 

allowed the identification of children who are at the greatest 

risk to anemia and the priority areas for action, especially 

where resources are inadequate. The geoadditive model 

allowed the mapping of residual spatial effects to childhood 

anemia while accounting for nonlinear covariate effects 

under the assumption of additivity. Modeling of metrical 

continuous covariates nonlinearly captured their subtle influ-

ences so that their effects could not be rejected if they were 

modeled linearly. For example, mother’s age was found to be 

insignificant when modeled as a fixed effect in Models 1 and 

3 (Table 4) as its effective CI contained a zero but was found 

to have a nonlinear effect when modeled nonparametrically 

by a smooth function in Models 2 and 4 (Figure 1).

The incorporation of spatial effect in the models helped 

to avoid underestimating the standard errors of model 
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parameters, thereby avoiding wrong statistical significance 

of covariates since their credible intervals would be narrower. 

For example, mother education and primary category 

coefficients were found to be significant in Models 1 and 2 

where there was no spatial effect, but were not significant in 

Models 3 and 4 (Table 4) when the spatial effect was included 

in the models.

The observed spatial heterogeneity may be due to 

unobserved factors not captured by the covariates in the 

models, and it is a matter of conjecture to identify them. The 

geographical variation in anemia-causing infections, such as 

malaria, hookworms, and helminths, could be one influence 

of such spatial variation. Malaria is common in places near 

water bodies and where temperature is high (.21%). The 

optimum temperature for the development of mosquitoes is 

between 22°C and 32°C.26 Soil moisture and relative atmo-

spheric humidity are also known to influence the development 

and survival of ova and larvae for hookworms and helminths, 

where higher humidity is associated with faster development 

of ova.27,28 Salima, Nkhotakota, Mangochi, Machinga, and 

Balaka were observed to have a high risk to anemia at 20% 

significance level probably due to closeness to Lake Malawi, 

Lake Malombe, Lake Chiuta, Lake Chilwa, and Shire River, 

which enhance the development of mosquitoes, hookworms, 

and helminths. The transmission of hookworms and helm-

inths along such water bodies would also be facilitated by 

open fecal disposal according to Coffey29 since along these 

water bodies, open fecal disposal is common, particularly 

by fishermen. Similarly, Nsanje and Chikwawa districts have 

a high risk to childhood anemia probably because they are 

characterized by permanent wetlands (Ndindi and Elephant 

marsh) with large stretches of stagnant water and their 

temperatures are .21°C, which provide the best ground for 

mosquitoes to breed, resulting in increased malarial transmis-

sion and let alone malaria anemia.

The height above the sea level (altitude) has another 

possible influence of spatial heterogeneity in anemia. Areas 

at higher altitudes are associated with higher Hb levels than 

those at lower altitudes. According to Rutstein and Rojas,30 

this difference is due to the lower oxygen concentration at 

higher altitude than at lower altitude so that an individual 

at high altitude requires relatively a large number of Hb 

cells to carry enough oxygen needed by the body. Highland 

areas also have lower temperatures and thus are associated 

with less risk to malaria anemia. Most areas in the north, 

such as Rumphi, Mzimba, Chitipa, and part of Karonga, are 

at a high altitude, and this may explain their reduced risk to 

anemia. The effect of altitude on geographical difference 

in anemia may be due to malaria–altitude relationship and 

not altitude–Hb level relationship as the latter was accounted 
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Figure 2 nonlinear effect of mother’s age on childhood anemia.
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Abbreviation: ci, credible interval.
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stunting, wasting, underweight, and mother anemia status. 

The finding of fixed-effects factors generally confirm with 

what is known in the literature. The finding of fever being 

significant agrees with that of Konstantyner et al,13 where 

fever had a positive effect. According to Konstantyner 

et al,13 fever is a common symptom of acute and chronic 

inflammatory diseases, mostly infections, which have 

been associated with lower Hb levels. Existing anemia is 

aggravated by underlying inflammation, which leads to 

alterations in iron homeostasis, impaired erythrocyte pro-

liferation, blunted erythropoietin response, and decreased 

erythrocyte half-life. Moreover, several proinflammatory 

cytokines have been implicated in chronic inflammation 

anemia, including interleukin-1 beta (IL-1β), tumor necrosis 

factor-α, and IL-6.

Figure 4 The 95% posterior credible intervals map for the spatial effects.
Note: red means positive effect, green means negative effect, and gray means 
insignificant effect.

−0.6333 0 0.7315

Figure 3 residual spatial effects on childhood anemia.

for by adjusting the child Hb level for altitude according to 

Guide to DHS Statistics.30

Geographical nutritional variation may also explain 

the spatial heterogeneity of childhood anemia in Malawi. 

The cause of regional nutritional differences can be natural 

disasters such as floods and difference in climatic conditions. 

Thus, the high risk of childhood anemia in the lower Shire 

districts may be explained by flooding from Shire river, which 

annually destroys crops, thereby affecting the nutrition of the 

area. In addition, these districts are in the Shire river basin, 

which is a rain shadow area.

The fixed-effects factors of childhood anemia significant 

in this study are fever, wealthy family of the richest category, 
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The children of the richest family have been found 

to have a reduced risk to childhood anemia compared to 

the poorest children. This is probably due to good, nutri-

tious food afforded by the family, resulting in nonanemia. 

Mothers who are anemic are also prone to have anemic 

children. This finding is consistent with that of Parischa et 

al.10 The association between a child’s Hb level and maternal 

Hb level may have multiple pathways. For example, antena-

tal anemia contributes to low birth weight and prematurity, 

both of which increase the risk of childhood anemia. Low 

birth weight has been found to be a risk factor of childhood 

anemia by Cessie et al.31 Severe maternal anemia may also 

reduce the iron content in breast milk, which can result in 

childhood anemia.

The positive effect of child malnutrition (stunting, wast-

ing, and underweight) on childhood anemia can be due to 

chronic food shortages, which is essential in Hb formation. 

The findings of malnutrition positively correlating with 

anemia status are consistent with those in the literature.32,33 

Mother’s age is observed to have a nonlinear effect, and its 

linear effect was insignificant, which makes it consistent 

with the finding of Konstantyner et al.13 More severe anemia 

in children born to young and elderly mothers is probably 

due to the young mothers who require more iron for their 

growth and elderly mothers who need more iron due to old 

age, which in turn affect the child’s Hb levels.

This study was not without limitations. The cross-

 sectional nature of the data collection exercise means that no 

temporal linkages can be made between childhood anemia 

status and any of the explanatory variables. However, the 

observed associations between childhood anemia status 

and the covariates will help in guiding the development and 

implementation of intervention policies of childhood anemia. 

Furthermore, quantile regression ordinal models would be 

fitted to have a complete understanding of covariates’ rela-

tionship with the response. The quantile ordinal regression 

models would also be compared to the fitted cumulative 

ordinal logit model to see which one would best fit the data. 

This can probably be the future area of research.

Conclusion
There is an evidence of residual spatial effect to child-

hood anemia severity in Malawi. The implication is that 

the major contributors to anemia and let alone anemia 

prevalence vary geographically. Furthermore, it means 

that the major contributors to anemia are geographically 

exchangeable but not similar. The areas that are at high 

risk to anemia based on significant positive spatial effects 

are Nkhotakota, Salima, Mangochi, Machinga, Balaka, 

Chikwawa, and Nsanje.
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Supplementary material
Some r code
require(R2BayesX) # loading package R2BayesX

d,-read.csv("C:/p/cdata3.csv") # reading data

m,-read.bnd("C:/p/malawi.csv") # reading mapfile

ctr,-bayesx.control(model.name="md1",outfile="C:/md1", 

family="cumlogit",method="REML") # defining BayesX 

estimation properties

f1 ,- canemiast ∼ residence + 

sex+medu2+medu3+medu4+wealth2+wealth3+wealth4+we

alth5+fever+cough+vitaminA+stunting+underweight+wasti

ng+mAnemiaadj+cage+mbreastf+mage # specifying model 

formula for model 1

f2 ,- canemiast∼ residence + 

sex+medu2+medu3+medu4+wealth2+wealth3+wealth4+we

alth5+fever+cough+vitaminA+stunting+underweight+wasti

ng+mAnemiaadj+sx(cage)+mbreastf+sx(mage)

f3 ,- canemiast ∼ residence + 

sex+medu2+medu3+medu4+wealth2+wealth3+wealth4+w

ealth5+fever+cough+vitaminA+stunting+underweight+w

asting+mAnemiaadj+cage+mbreastf+mage+sx(district2,b

s="gs",map=m,nrknots=20)

f4 ,- canemiast∼ residence + 

sex+medu2+medu3+medu4+wealth2+wealth3+wealth4+w

ealth5+fever+cough+vitaminA+stunting+underweight+wa

sting+mAnemiaadj+sx(cage)+mbreastf+sx(mage)+sx(dist

rict2,bs="gs",map=m,nrknots=20)

fm,- bayesx(f1,data=d,control=ctr) # model estimation
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