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Abstract: Despite its well-known role in red blood cell production, it is now accepted that 

erythropoietin (Epo) has other physiological functions. Epo and its receptors are expressed in 

many tissues, such as the brain and heart. The presence of Epo/Epo receptors in these organs 

suggests other roles than those usually assigned to this protein. Thus, the aim of this review is 

to describe the effects of Epo deficiency on adaptation to normoxic and hypoxic environments 

and to suggest a key role of Epo on main physiological adaptive functions. Our original model 

of Epo-deficient (Epo-TAgh) mice allowed us to improve our knowledge of the possible role of 

Epo in O
2
 homeostasis. The use of anemic transgenic mice revealed Epo as a crucial component 

of adaptation to hypoxia. Epo-TAgh mice survive well in hypoxic conditions despite low hema-

tocrit. Furthermore, Epo plays a key role in neural control of ventilatory acclimatization and 

response to hypoxia, in deformability of red blood cells, in cerebral and cardiac angiogenesis, 

and in neuro- and cardioprotection.

Keywords: Epo-TAgh mice, mouse model, physiological functions, hypoxia

Introduction
Life is dependent upon transport and utilization of oxygen (O

2
) for the metabolic 

conversion of nutrients into energy,1 making O
2
 homeostasis an essential process for 

survival. Indeed, an inadequate level of O
2
 is detrimental for the tissues, and complex 

mechanisms serve to maintain in vivo the cellular O
2
 concentration within a physi-

ological range.1 An imbalance between O
2
 delivery and requirement, such as at high 

altitude, activates a variety of specific mechanisms at molecular, cellular, and systemic 

levels. High altitude is accompanied by low atmospheric O
2
 pressure, which sequentially 

leads to insufficient O
2
 uptake and reduced tissue oxygenation. Hypoxic exposure can 

be intermittent (obstructive sleep apnea) or continuous (high altitude, cardiorespiratory 

failure), leading to different strategies to address these stresses. Indeed, acute hypoxia 

triggers rapid and transient compensatory mechanisms, while chronic hypoxia (CHx) 

leads to more durable changes with gene expression modifications.1 The hypoxia-

inducible factor-1 (HIF-1) is the most important protein regulating homeostasis when 

O
2
 is lacking.2 Under hypoxia, stabilization of HIF-1 modulates the expression of 

hypoxia-regulated genes such as vascular endothelial growth factor (VEGF), glucose 

transporters, or erythropoietin (Epo).1–5 Epo is a hematopoietic growth factor and 

represents the main regulator of erythropoiesis. In low O
2
 conditions, the number of 

erythrocytes increases to sustain O
2
 delivery.6 This polycythemia, secondary to an 

increase in Epo release, is one of the key factors of acclimatization to CHx, through 
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the increase in O
2
-carrying capacity.7–9 However, despite this 

well-known role, it was suggested that Epo plays a key role 

in other physiological functions. Thus, Epo is also known to 

be fundamental for embryonic development,10 and it is also 

largely involved in the normal functioning of most organs, 

including brain, heart, and muscles by regulating numerous 

cell functions such as calcium flux or cell survival.11,12 To 

assess these pleiotropic actions of Epo on organs and cells, 

transgenic models of mice have been developed.13,14

The aim of this review is to provide a brief presentation 

of the physiological effects of Epo and describe the effects of 

Epo deficiency on adaptation to normoxic and hypoxic envi-

ronments in an original model of Epo-deficient (Epo-TAgh) 

mice. From these observations, we suggest a key role of Epo 

on multiple physiological adaptive functions, especially in 

response to hypoxia.

epo and epo-receptor expression in 
organs
Epo is a glycoprotein that is synthesized by peritubular fibro-

blasts in the kidneys of adults and in hepatocytes of fetal liver.15 

Epo was originally believed to play a role that restricted to 

stimulation of early erythroid precursor prolife ration, inhibi-

tion of apoptosis, and differentiation of the erythroid lineage. 

Currently, in addition to its well-known role in red blood cell 

production, a diverse group of cells has been identified to pro-

duce Epo and/or Epo receptor (Epo-R) including endothelial 

cells, smooth muscle cells, retina tissues, testis, and cells of 

the central nervous system.12,16–19 Moreover, Epo mRNA was 

also detected in lungs, testis, heart, and brain but not in skeletal 

muscles, intestine, or bone marrow of rodents.20,21

epo and the brain
Epo mRNA is constitutively expressed in the mice brain,22,23 

and Epo-R mRNA and protein are also expressed in the 

brain of rodents.23,24 Indeed, Epo and its receptors are found 

in the nervous system, including in neurons, astrocytes, and 

endothelial cells.16,18,22,23,25–27 Epo/Epo-R couple is involved 

in neuroprotection,28 promotes neural plasticity,29 and could 

have a potentially antidepressor effect.30,31 Furthermore, 

Epo/Epo-R pathway is required for normal brain develop-

ment.32 Indeed, Epo is required for neural progenitor cell 

proliferation,33 and it avoids neural apoptosis by maintaining 

Bcl-2 and Bcl-xl expression.34,35 Indirectly, Epo improves 

sensory, cognitive, and endocrine functions of the central 

nervous system through its erythropoiesis-stimulating 

effect, because it increases the O
2
 supply to the brain. The 

direct effects of Epo are independent of erythropoiesis.36 

Epo has been demonstrated to have neuroprotective effects 

after ischemic, hypoxic, metabolic, neurotoxic, and excito-

toxic stress in the nervous system. Epo operates at several 

levels within the central nervous system, including limit-

ing the production of reactive O
2
 species and glutamate, 

neurotransmission modulation, promotion of angiogen-

esis, prevention of apoptosis, reduction in inflammation, 

and recruitment of stem cells.37–40 Moreover, Epo-R was 

localized in both brainstem respiratory centers and carotid 

bodies,24 and it is involved in ventilatory regulations during 

hypoxic challenges.

epo and the heart
As in the brain, animal models of ischemia and acute myo-

cardial infarction have shown that Epo reduces infarct size 

and improves left ventricular (LV) function. These effects are 

mediated mostly through apoptosis inhibition by activating 

pro-survival pathways in the myocardium, mobilization of 

endothelial progenitor cells, and inhibition of migration of 

inflammatory cells as well as potent pro-angiogenic proper-

ties.41 Moreover, recent studies reported that the heart could 

be a site of Epo production42–44 and, in particular, that cardiac 

tissue reveals Epo gene and protein expression.20,45,46 Epo-R 

expression is high in cardiac progenitor cells.47 Epo has 

angiogenic and antiapoptotic effects in the heart,48,49 and 

intraperitoneal injection of Epo promotes the differentiation 

of cardiac progenitor cells into endothelial cells.45 Overall, 

Epo is known to have a cardioprotective effect through anti-

apoptotic, anti-inflammatory, and angiogenic effects,50 and 

it could act on the oxidative stress.51 For example, Epo may 

enhance protein kinase B or Akt and protect the heart from 

ischemia–reperfusion injuries.52 This effect of Epo on Akt 

could regulate cardiomyocyte mitochondrial biogenesis,53 

by acting on the Akt/endothelial nitric oxide (NO)-synthase 

pathway.54 Recently, it has also been shown that acute Epo 

injection can efficiently improve resuscitation and survival 

rates in a model of cardiac arrest in pigs.55,56

epo and the muscle
Epo-R has been identified in muscle biopsies suggesting a 

potential but undefined role of Epo on muscle metabolism 

or function.57,58 In humans, these effects were suggested by 

excessive intake of Epo during endurance exercise in order 

to improve performance.59 In some athletes, Epo increases 

performance during endurance exercises more than expected 

on the only basis of an increase in hematocrit. This suggests 

a potentially direct effect of Epo on muscle metabolism,60 

even if this effect remains to be validated.
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Epo could induce angiogenesis and accumulation of 

VEGF in skeletal muscles submitted to ischemia–reperfusion 

experiments61 and act as a promoter of growth factors in skel-

etal muscles.57 In vitro, Epo-R mRNA and protein expression 

were identified in the primary muscle cells of mammals.57,62,63 

However, the effects of administration of human recombinant 

Epo (rhu-Epo) and the role of Epo-R in culture media remain 

controversial. Some authors showed a positive effect,57 and 

some others showed no effect,62,63 on primary myoblast prolife-

ration. In vivo, although mRNA-encoding Epo-R and Epo-R 

proteins were detected in rats,64 skeletal muscle treatment by 

rhu-Epo have shown controversial results. However, Epo is 

suspected to induce a shift in muscle fiber metabolism toward 

a more oxidative phenotype65,66 and prevent the impairment 

of mitochondrial structure and function.67 Moreover, some 

authors observed a positive effect of rhu-Epo on myoblast 

apoptosis,64,68 proteolysis, glycolysis, and mitochondrial 

functions.69 The authors suggested70 that indirect effects of 

Epo treatment through the amelioration of O
2
 supply could  

explain the observed effects of Epo on skeletal muscles dur-

ing endurance exercises.

epo underproduction and clinical 
disorders
In adults, insufficient Epo production results mostly from 

direct damage to Epo-producing cells in the kidneys or to 

a lesser extent from the suppression of Epo production by 

inflammatory cytokines.71 Indeed, in patients suffering from 

rheumatoid arthritis, cancer, and acquired immune deficiency 

syndrome (AIDS), inflammatory cytokines suppress Epo gene 

expression.71–75 In contrast, patients with renal failure generally 

develop anemia due to the suppression of erythropoiesis and 

to a moderate reduction in red cell life span.71 Furthermore, 

the main reason of anemia in patients with uremia is an insuf-

ficient Epo production.71,76,77 Diabetic nephropathy can also 

lead to Epo deficiency and anemia.78 Moreover, exposure to 

metals such as cadmium or platinum results in a modification 

of the structure and function of renal proximal tube, resulting 

in the suppression of Epo production.71 Patients with increased 

plasma viscosity due to monoclonal dysproteinemias have an 

inappropriate Epo production.71,79

Mouse model of Epo deficiency
A mouse model of Epo-TAgh mice was used for the first time 

for the identification of the renal Epo-producing cells.80 We 

then developed this model in 2006 in our laboratory to assess 

the potential roles of Epo and/or anemia in the adaptation 

processes to hypoxia.

The transgenic construct contains an SV40 sequence in 

the five untranslated region of the mouse Epo gene, which 

is flanked on each side by 9 and 7.5 kb of DNA from the 

mouse Epo locus.80 Anemia-inducible Epo expression was 

observed in the kidneys.80 Thus, these mice present a severe 

reduction in Epo gene expression,13,80 leading to low plas-

matic level of Epo (122±16 pg/mL in wild type [WT] vs 

53±18 pg/mL in Epo-TAgh mice) and thus chronic anemia 

with low hemoglobin concentration (17.1±0.3 g in WT vs 

6.9±0.3 in Epo-TAgh mice; Table 1). However, Epo-TAgh 

mice have a good survival rate in CHx (14 days, 4,500 m) 

through an increase in ventilation and cardiac output.81,82 

They also develop cerebrovascular adaptations to chronic 

anemia and hypoxia.83

Characteristics of Epo-TAgh mice in 
normoxic and hypoxic conditions: 
effect of Epo deficiency and/or 
anemia
Blood characteristics
Red blood cells are responsible for the transport of .98% 

of the O
2
 into the blood. In order to deliver O

2
 to the tissues, 

red blood cells deform as they enter capillaries. In Epo-TAgh 

mice, hematocrit and hemoglobin are ∼60% lower (Table 1) 

than those observed in WT mice.82 Furthermore, Epo defi-

ciency decreases blood viscosity and slightly reduces red 

blood cell deformability.84 After CHx, hemoglobin concen-

tration remained 60% lower in Epo-TAgh mice as compared 

with that of WT mice,81 despite a proportional increase in 

Epo concentration as compared with WT animals.85 Neverthe-

less, in Epo-TAgh mice, Epo concentration following acute 

hypoxia increased to reach only the normoxic WT value83 

and returned to basal value after CHx.20

Cardiac characteristics
Epo-TAgh mice show right ventricular and LV hypertrophy,82 

leading to increased stroke volume and cardiac output (Table 1).  

This adaptive process, already described,86 allows to offset 

the fall in arterial O
2
 content due to anemia. Echocardio-

graphic data confirmed compensatory LV hypertrophy, 

higher myocardial chamber volumes, and a higher cardiac 

output,20 which could be explained by an increase in pre-

load without change in left ventricle afterload as depicted 

by unchanged blood pressure. Although cardiac output was 

increased in Epo-TAgh mice, O
2
 delivery remained lower than 

in control WT animals. Furthermore, Epo/Epo-R pathway 

is known to be involved in the transcription of target genes 

that mainly involved in the inhibition of apoptosis and cell 
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proliferation87 through the phosphorylation of Jak2 and  

STAT-5. Because of unchanged P-STAT-5/STAT-5 ratio, we 

could not confirm the activation of this cardioprotective 

pathway in response to chronic Epo deficiency.20 In addition 

to its angiogenic function, VEGF may also activate pathways 

associated with NO synthesis and thus induce vasodilation, 

improving blood supply to cardiac cells.88 Thus, we demon-

strated that chronic Epo deficiency induces a cardiac angio-

genesis probably mediated by HIF-1α/VEGF (Figure 1) and 

Epo-R pathways, which could optimize O
2
 supply and limit 

the consequences of chronic anemia on cardiac cells.

The effects of both chronic Epo deficiency and hypoxia 

on myocardial contractile function and cardioprotective pro-

cesses were investigated using Epo-TAgh mice.20 The initia-

tion of cardioprotective mechanisms was estimated through 

Epo-R/P-STAT5 signalization as well as by a change in the 

P-STAT5/STAT5 ratio in response to chronic Epo deficiency 

and/or hypoxia. When 14 days of CHx were added to Epo 

deficiency, the expected cardiac hypertrophy89 was reduced 

and cardiac output could not catch up with the O
2
 demand. 

Systolic blood pressure did not increase indicating that 

systemic afterload was not responsible for the decrease in 

cardiac output. Moreover, CHx did not significantly affect 

right ventricular hemodynamics, and Epo-TAgh mice did not 

develop pulmonary hypertension. Therefore, the decrease in 

cardiac output was not the consequence of right ventricular 

failure. After CHx, Epo-TAgh mice displayed a lower LV 

hypertrophy than the normoxic anemic mice, which could 

account for the decrease in cardiac output and O
2
 delivery. 

Furthermore, our data showed a mild alteration of diastolic 

and systolic LV function. These results suggested that altered 

myocardial function in Epo-TAgh mice exposed to CHx 

could participate in the failure of cardiac adaptation in this 

severe condition.

Although hypoxia or Epo-deficiency leads to an over-

expression of HIF-1α, VEGF (Figure 1), Epo, and Epo-R, 

we did not observe a synergic effect of these combined 

constraints on the heart of Epo-TAgh mice exposed to CHx, 

except for P-STAT-5/STAT-5 ratio. However, this ratio was 

lower in Epo-TAgh than in WT mice exposed to CHx, sug-

gesting that the activation of the cardioprotective pathways 

downstream the Epo/Epo-R system may represent a limiting 

step. As we found a decrease in LV hypertrophy and func-

tional LV adaptation, a depressed HIF-1α/VEGF pathway 

(Figure 1) as well as a reduced O
2
 delivery, we suggested that 

cardiac adaptive mechanisms that take place with chronic Epo 

deficiency and hypoxia might require extensive Epo effects 

(angiogenesis, cardioprotection) on the heart.

ventilatory and metabolic characteristics
Our first publication on the Epo-TAgh mice model showed 

a greater ventilation in normoxia in these anemic mice as 

compared to WT animals.82 This difference was mainly due 

to a larger tidal volume. However, more recently, we have 

not observed a baseline ventilatory adaptation in Epo-TAgh 

male mice in normoxia (Table 1, Figure 2) when compared  

with that of WT mice.90 Some explanations could be proposed 

to explain this difference. First, in the study of Macarlupu 

et al, the control animals were classical WT animals and 

not littermates, and it is well known that the environmental 

conditions during the first day of life could induce significant 

changes in ventilatory variables.91 Second, the method used to 

measure ventilatory variables can induce slight differences, 

according to the plethysmograph used, for example. Third, 

Table 1 Characteristics of wild-type and epo-TAgh male mice in normoxic conditions

References Wild-type mice Epo-TAgh mice

Hemoglobin (g⋅dL-1)b Macarlupu et al81 17.1±0.3 6.9±0.3a

Hematocrit (%)b Macarlupu et al81 54.2±0.8 24.0±1.6a

Cardiac characteristics Heart rate (bpm)c el Hasnaoui-Saadani et al20 500±27 548±46
Stroke volume (μL⋅g-1)c el Hasnaoui-Saadani et al20 1.9±0.19 3.2±0.68a

Cardiac output (mL⋅min-1⋅g-1)c el Hasnaoui-Saadani et al20 0.94±0.14 1.76±0.43a

Systolic blood pressure (mmHg)c el Hasnaoui-Saadani et al20 96.7±8.5 94.2±5.8
Right ventricular weight (mg)b Macarlupu et al82 23±1 33±2a

Left ventricular and septum weight (mg)b Macarlupu et al82 80±2 113±3a

Fulton ratiob Macarlupu et al82 0.288±0.013 0.297±0.010a

ventilatory parameters Minute ventilation (mL⋅min-1⋅g-1)c voituron et al90 2.26±0.48 2.17±0.53
Respiratory frequency (c⋅min-1)c voituron et al90 261±34 284±54
Tidal volume (μL⋅g-1)c voituron et al90 8.63±1.26 7.62±1.09
Resting oxygen consumption (mL⋅min-1⋅kg-1)b Macarlupu et al81 93.3±4.7 96.8±6.5
Maximal oxygen consumption (mL⋅min-1⋅kg-1)b Macarlupu et al81 270.7±22.0 210.2±12.3a

Note: aIndicates significant difference between wild-type and Epo-TAgh mice. bData presented as mean ± SeM. cData presented as mean ± SD.
Abbreviations: epo, erythropoietin; epo-TAgh mice, Epo-deficient mice; SD, standard deviation; SEM, standard error of the mean.
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it could be possible that Epo-TAgh mice could have exhib-

ited some epigenetic adjustments between 2006 and 2014. 

Indeed, more than 30 generations of mice have lived between 

the first and the last experiment, and it is not impossible that 

epigenetic changes would improve the whole O
2
 transport 

steps, and thus, ventilatory adaptation could appear in the 

last generations of mice.92

In female Epo-TAgh mice, we observed a difference in 

respiratory frequency and minute ventilation with larger 

values for the Epo-TAgh mice as compared with those of 

WT mice (unpublished data). There is no change in resting 

O
2
 consumption ( VO2

) in Epo-TAgh mice, while VO2
 max 

is only 30% reduced (Table 1) as compared with that of WT 

mice,82 despite a 60% reduction in hemoglobin concentration. 

The normal resting VO2
 in anemic Epo-TAgh mice could also 

be explained by the elevated cardiac output associated with 

better tissue extraction of O
2
,86 which could compensate for 

the decrease in O
2
 transport capacity. Severe anemia also 

generally induces a reduction in physical performance.93–95 In 

Epo-TAgh mice, the reduction in VO2max
 was only moderate, 

suggesting compensatory mechanisms such as an increase 

in maximal cardiac output, augmented capillarization, and 

better O
2
 extraction.

The normal ventilatory response to acute hypoxia is 

characterized in adult mammals by a hyperventilation fol-

lowed by a relative ventilatory decline named “roll off ”.96,97 

If hypoxia persists, an increase in ventilation occurs (ven-

tilatory acclimatization to CHx),98 which is accompanied 

by an increase in the sensitivity of the respiratory control 

system.99–101 Epo-TAgh mice displayed neither ventilatory 

response to acute hypoxia nor ventilatory acclimatization 

to CHx (Figure 2).90 However, after 14 days of exposure to 

chronic hypoxia, Epo-TAgh mice increased their ventila-

tion when exposed acutely to a hypoxic stress (Figure 2;  
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Figure 1 Cardiac angiogenesis in epo-TAgh mice.
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AHx; @P,0.05 CHx epo-TAgh vs CHx wT. μP,0.05 AHx epo-TAgh vs AHx wT. Reprinted from Respir Physiol Neurobiol, volume 186(2), el Hasnaoui-Saadani R, Marchant D,  
Pichon A, et al, Epo deficiency alters cardiac adaptation to chronic hypoxia, pages 146–154. Copyright 2013 with permission from Elsevier.20
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8% O
2
, 5 minutes).90 These results differ from those pre-

viously published.82 We cannot exclude the fact that our 

transgenic mice, along generations, developed adaptation 

strategies to cope with Epo deficiency and/or chronic 

anemia.

Brain adaptations
Epo deficiency in Epo-TAgh mice leads to cerebral adapta-

tions (Figures 3 and 4).83 Indeed, in the brain of these nor-

moxic mice, we observed an increase in the transcript and the 

protein levels of HIF-1α, VEGF (Figure 3), Epo-R (Figure 4), 

and P-STAT-5/STAT-5 ratio accompanied with an increase in 

cerebral capillary density. Taken together, these data suggest 

that Epo-TAgh mice have developed cerebral angiogenesis, 

probably via the HIF-1α/VEGF pathway (Figure 3), optimiz-

ing O
2
 diffusion as previously described.83,102 Furthermore, 

the increase in P-STAT-5/STAT-5 ratio in the brain sug-

gests neuroprotective mechanisms and angiogenesis with a 

decrease in apoptosis and an increase in cell proliferation.23,103 

Overall, these results illustrate the direct and indirect effects 

of Epo in terms of O
2
 delivery improvement and the activa-

tion of neuroprotective mechanism to counteract the lack of 

Epo in the brain.

Skeletal muscles
Our model of transgenic Epo-TAgh mice has allowed us 

to study the role of Epo on skeletal muscle development, 

angiogenesis, and acclimatization to hypoxia. Our main 
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results displayed a developmental adaptation to Epo 

deficiency and/or chronic anemia by an improvement 

of microvessel network (Table 2) in both fast and slow 

skeletal muscles.85 This adaptation of Epo-TAgh mice was 

not accompanied by any difference in skeletal muscles for 

contractile structure, metabolism, maximal strength, fati-

gability, contraction time, and relaxation time. Moreover, 

we never observed any overexpression of HIF-1α or VEGF 

protein. The discrepancy between our results and those of 

Mille-Hamard et al’s team69 could be explained by a genetic 

developmental adaptation to chronic anemia in our trans-

genic model. In the Mille-Hamard et al’s transgenic model, 

Epo deficiency is induced by vaccination of adult mice, 

so that developmental adaptation has not occurred. When 

exposed to severe chronic hypobaric hypoxia (4,300 m) 

during 14 days, skeletal muscles of Epo-TAgh mice were 

not submitted to deconditioning. Neither skeletal muscle 

phenotype nor skeletal muscle functions were altered com-

pared with those of WT mice.104 In the skeletal muscles 

of our Epo-TAgh model, we did not detect Epo mRNA 

in both normoxia and hypoxia. Moreover, the hypoxia-

induced elevation of circulating Epo was not correlated 

with an increase in Epo concentration in skeletal muscle. 

Overall, these results favor the hypothesis of an indirect 

effect of Epo on skeletal muscles. We clearly show that, in 

our model, the deficit in oxygenation caused by anemia is 

responsible for the main change in skeletal muscles such 

as the improvement of microvessel network (Table 3). 

Unfortunately, we cannot study the regeneration process 

of the Epo-TAgh model, because in this mutant, Epo has 

been replaced by antigen T, which has been shown to alter 

skeletal muscle regeneration.105

Limits of our models
Experiments were performed on whole-body Epo-TAgh 

mice13 that display a very low hematocrit (20%) and did not 

develop polycythemia after CHx.81 Therefore, it is important 

to note that our model of transgenic mice combines the effects 

of chronic anemia (low O
2
 content) and the effects of chronic 

Epo deficiency. To differentiate the respective effect of each 

constraint is rather difficult since chronic anemia itself is a 

consequence of chronic Epo deficiency. However, it could be 

speculated from the activation of HIF/VEGF systems that the 

reduction in tissue O
2
 delivery (and therefore chronic anemia) 

is the main trigger of the observed adaptations.

Conclusion
For many years, Epo was mainly considered a growth factor 

for erythropoiesis and a determinant factor for the acclimatiza-

tion to CHx only through an increase in O
2
 transport capacity. 

It appears from recent studies that it may also participate in the 

acute and chronic responses to hypoxia (Table 2) through the 

activation of Epo-Rs in various organs (brain, heart, muscle, 

chemoreceptors). However, there is still a lot of debates and 

uncertainties about the presence and functionalities of these 

receptors. Our model of Epo-TAgh mice may help to unravel a 

possible key role of Epo in O
2
 homeostasis. Indeed, our stud-

ies demonstrate that high levels of Epo are not necessary for 

survival in chronic moderate hypoxia. Moreover, we showed 

that Epo could play a key-regulating role in the neural control 

of ventilatory acclimatization to hypoxia and hypoxic ventila-

tory response probably via a catalyzing role on the NO central 

pathway. We also demonstrated that chronic Epo deficiency 

induced cerebral and cardiac angiogenesis, which could have 

synergic effects not only in neuro- and cardioprotection but 

Table 3 Indices of the microvascular supply of the deep region of gastrocnemius muscle fibers in normoxia and after chronic hypoxia

Normoxia Chronic hypoxia

WT mice Epo-TAgh mice WT mice Epo-TAgh mice
Capillary density (cap/mm2) 1699±350 1587±180 1845±393 1701±211
Capillary-to-fiber ratio 2.23±0.29 2.69±0.29a 2.28±0.20 2.62±0.29a

Number of capillaries around single fibers 5.20±0.78 6.27±0.54a 5.22±0.82 6.19±0.41a

Individual capillary-to-fiber ratio 2.16±0.26 2.46±0.35a 2.15±0.19 2.58±0.21a

Notes: aIndicates significant difference between WT and Epo-TAgh mice. Data presented as mean ± SD.
Abbreviations: epo, erythropoietin; epo-TAgh mice, Epo-deficient mice; WT, wild type.

Table 2 Main characteristics of epo-TAgh mice when compared with those of wild-type mice

Blood Heart Ventilation Brain Muscle

Normoxia Low epo, low Hb High CO, high angiogenesis High angiogenesis High microvessel network
Acute hypoxia Low HvR
Chronic hypoxia Low Hb Low cardioprotection Low vAH High microvessel network

Abbreviations: CO, cardiac output; epo, erythropoietin; epo-TAgh mice, Epo-deficient mice; Hb, hemoglobin; HVR, hypoxic ventilatory response to hypoxia; VAH, 
ventilatory acclimatization to hypoxia.
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also in O
2
 supply optimization, in order to limit the conse-

quences of chronic anemia on cerebral and cardiac tissues. 

However, under both constraints (chronic Epo deficiency and 

hypoxia), angiogenesis, neuroprotective, and cardioprotective 

pathways along with a functional LV adaptation failed to 

occur, showing the limits of these adaptive processes in heart 

and brain, but more importantly suggesting a crucial role of 

Epo in main physiological functions.

Some future areas of research could focus on the role of 

Epo as a global regulator of the cardioventilatory adaptations 

from erythrocytes synthesis, blood hemorheology, blood vol-

ume regulation, and ventilatory control.106 Epo seems to be 

able to protect tissues (cardiomyocytes, lung, neurons) from 

various aggressions such as hypoxia, ischemia–reperfusion, 

or inflammation.107 Moreover, there are few data on the pos-

sible effect of Epo on the ventilatory response to hypercapnia 

in contrary to the response to hypoxia. The role of Epo/Epo-R 

on the oxidative stress needs also to be studied later as this 

is central on tissue antiapoptosis properties.
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