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Abstract: Age-related macular degeneration (AMD) is the leading cause of blindness in 

developed countries. The etiology of AMD remains poorly understood and no treatment is 

currently available for the atrophic form of AMD. Atrophic AMD has been proposed to involve 

abnormalities of the retinal pigment epithelium (RPE), which lies beneath the photoreceptor 

cells and normally provides critical metabolic support to these light-sensing cells. Cumulative 

oxidative stress and local infl ammation are thought to represent pathological processes involved 

in the etiology of atrophic AMD. Studies of tissue culture and animal models reveal that 

oxidative stress-induced injury to the RPE results in a chronic infl ammatory response, drusen 

formation, and RPE atrophy. RPE degeneration in turn causes a progressive degeneration of 

photoreceptors, leading to the irreversible loss of vision. This review describes some of the 

potential major molecular and cellular events contributing to RPE death and infl ammatory 

responses. In addition, potential target areas for therapeutic intervention will be discussed and 

new experimental therapeutic strategies for atrophic AMD will be presented.

Keywords: age-related macular degeneration, danger signals, complement, infl ammation, 

retinal pigment epithelial cells

Introduction
Age-related macular degeneration (AMD) is an idiopathic retinal degenerative disease 

and the cause of irreversible, profound vision loss in people over the age of 60 years 

(Evans and Wormald 1996). Due to a rapidly aging population, the number of people 

with AMD in the US is estimated to increase from 1.75 million in 2000 to 2.95 million 

in 2020 (Friedman et al 2004). Similar proportional increases in the worldwide 

prevalence of AMD can be expected placing an increasing burden on health services. 

The market for AMD therapies is projected to increase from $638 million in 2005 to 

$2722 million in 2015 (Augustin and Offermann 2006).

AMD occurs in two major forms: atrophic (dry) AMD and exudative (wet) AMD. 

Atrophic AMD, characterized by retinal pigment epithelial (RPE) cell atrophy and 

subjacent photoreceptor degeneration, accounts for approximately 25% of cases 

with severe central vision loss (Klein et al 1997). In contrast, exudative AMD is 

characterized by choroidal neovascularization (CNV) through the outer layers of 

Bruch’s membrane under the basement membrane of the RPE or through the RPE 

into the subretinal space with subsequent retinal hemorrhage, detachment, and 

scarring, and accounts for approximately 75% of cases with severe central vision 

loss (Klein et al 1997). These two forms of AMD are both part of the same disease 

process and share similar risk factors for their development. In fact, patients may 

have CNV in one eye and geographic atrophy, the advanced form of atrophic AMD, 

in the second eye. In some cases, the dry form of AMD may progress to wet AMD 
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(Sunness et al 1999). The specifi c biological processes that 

determine which form of advanced AMD occurs and why 

and how some of dry AMD later progress to wet AMD are 

still elusive. AMD is an aging-related syndrome caused by 

multiple factors including environmental, nutritional, and 

behavioral (Snodderly 1995; Seddon et al 1996) as well 

as different susceptibilities to these factors based upon an 

individual’s genetic background (Heiba et al 1994; Seddon 

et al 1997). The early pathological changes of atrophic 

AMD begin with extracellular lipid-containing deposits in 

the macular area (Bressler et al 1990). Patients with drusen 

greater than 63 μm in diameter are diagnosed as having early 

AMD (Bird et al 1995; Curcio and Millican 1999). Large 

drusen can merge, become confl uent and eventually lead 

to geographic atrophy of the central retina. Although the 

vision loss results from photoreceptor damage in the central 

retina and abnormalities of the photoreceptor cells or the 

choroid might contribute to the development of AMD, the 

initial pathogenesis of atrophic AMD has been proposed to 

involve the degeneration of RPE cells (Spraul et al 1996; 

Zarbin 1998). The specifi c genetic and biochemical mecha-

nisms responsible for RPE degeneration in AMD have not 

been well determined. Recent progress in our understand-

ing of atrophic AMD suggests that infl ammation initiated 

by RPE cell death and RPE cell infl ammatory responses 

plays an important role in drusen biogenesis and maybe 

central to the etiology of this disease (Hageman et al 2001; 

Rodrigues 2007).

The RPE is a monolayer of cuboidal cells located 

subjacent to the neural retina (Strauss 2005). The basal 

membrane of the RPE is in contact with Bruch’s membrane, 

a multilayered matrix that separates the RPE from the 

underlying choroidal vasculature. The apical membrane of 

the RPE is intimately associated with the outer segments 

of retinal photoreceptor cells. The major function of RPE 

cells is to support the survival and normal functioning of 

photoreceptors by acting as part of the outer blood-retinal 

barrier to control exchange of nutrients, waste products, ions, 

and gases between the underlying choroidal blood vessels and 

overlying photoreceptors (McBee et al 2001). Additionally, 

the RPE is involved in the shuttling of retinoids required for 

visual pigment synthesis to photoreceptors (Thompson and 

Gal 2003), and in phagocytizing shed photoreceptor outer 

segment (POS) membrane discs for photoreceptor renewal 

(Nguyen-Legros and Hicks 2000). RPE cells also produce 

trophic factors necessary for photoreceptor survival, and 

immunological factors necessary for establishing immune 

privilege of the eye (Tanihara et al 1997; Streilein et al 2002). 

Injury to RPE cells causing failure of these functions may 

contribute to the retinal degeneration observed in AMD. Thus,  

there is considerable interest in elucidating the mechanisms 

responsible for RPE injury that would provide the basis for 

designing new strategies to treat or prevent AMD. In this 

review, the molecular and cellular events involved in RPE 

injury and infl ammation, and potential therapeutic strategies 

are discussed.

Factors causing RPE cell injury
Oxidative stress
Histological staining with biomarkers of oxidative damage 

has demonstrated widespread oxidative damage in the retinas 

of patients with atrophic AMD and to a lesser extent also 

in the retinas of patients with wet AMD (Shen et al 2007). 

Moreover, intravitreal injection of oxidants results in lipid 

peroxidation and retinal degeneration in animal models 

(Cingolani et al 2006). RPE cells suffer from cumulative 

oxidative stress due to normal physiological activity as well 

as environmental factors (Figure 1). RPE cells generate 

reactive oxygen species (ROS) during phagocytosis 

(Miceli et al 1994). RPE phagocytosis takes up the tips of 

the shed POS that contain high concentrations of radicals, 

photo-damaged proteins and lipids. Some of these oxidative-

damaged proteins and lipids are not completely digested by 

RPE lysosomes and accumulate within RPE cells as a major 

source of the photosensitizer, lipofuscin during RPE aging 

(Kennedy et al 1995). Once irradiated by light, lipofuscin 

produces ROS that damage surrounding tissues (Boulton 

et al 1993). Thus, the unique phagocytic function of RPE 

places an additional oxidative burden on the RPE. This 

is particularly true of RPE cells in the macula, where the 

predominant photoreceptors are cones that have a higher 

energy demand than rods (Perkins et al 2003). Additionally, 

the ratio of photoreceptors to RPE cells in the macula is 

signifi cantly higher than in the para-macular region or the 

periphery (Dorey et al 1989).

In addition to the physiological oxidative stress, aging 

and pathological conditions can also contribute to oxidative 

damage to macromolecules via a reduction in defense 

mechanisms or an increase in ROS production or both 

(Ames et al 1993). Environmental factors such as cigarette 

smoke (Chan 1998), light exposure (Cruickshanks et al 1993), 

diet, and cataract surgery also enhance ROS generation and 

can increase the risk for AMD. Heavy cigarette smokers have 

signifi cantly higher risks of AMD (Thornton et al 2005; Cong 

et al 2008). Furthermore, smoking can also cause a reduction 

in retinal and choroidal blood fl ow (Tamaki et al 1999; 
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Wimpissinger et al 2004, 2005). The relative contribution 

of these two processes to AMD remains to be determined. 

Cataract surgery to remove the lens increases the amount 

of harmful ultraviolet and blue light reaching the retina. 

Epidemiological studies have revealed an increased risk of 

late AMD in patients with cataract surgery (Klein et al 2002; 

Ho et al 2008). Data analysis of participants of the Rotterdam 

study shows that a history of cataract surgery is linked to an 

increased incidence of atrophic AMD, but no correlation 

with wet AMD was observed (Ho et al 2008).

Recent evidence suggests that genetic factors may 

also contribute to the accumulation of oxidative stress. 

Polymorphisms in the age-related maculopathy susceptibility 

2 gene (ARMS2, also known as LOC387715) were shown 

to be strongly associated with increased risk of AMD. The 

A69S polymorphism shows a strong association with risk of 

AMD (odds ratio [OR] 2.66 for GT heterozygotes and 7.05 

for TT homozygotes) (Kanda et al 2007). A deletion-insertion 

polymorphism (del443ins54) in ARMS2 also causes an 

increased risk in individuals carrying single copy of this allele 

(OR, 2.9) or those that are homozygous (OR, 8.1) (Fritsche 

et al 2008). The ARMS2 gene codes for a hypothetical 

protein of approximately 12 ∼ 13.5 kDa expressed in RPE 

and photoreceptor cells that is associated with the mitochon-

drial outer membrane, leading to the hypothesis that ARMS2 

dysfunction could alter mitochondrial energy metabolism and 

homeostasis, thereby generating ROS (Kanda et al 2007; Frit-

sche et al 2008). Animal studies have also provided genetic 

evidence for a role of oxidative stress in AMD. Deletion of 

the superoxide dismutase 1 (SOD1) gene, the product of 

which is responsible for scavenging superoxide, results in 

mice that develop many of the hallmark features of AMD 

including drusen, RPE atrophy, and CNV (Imamura et al 

2006; Hashizume et al 2008).

The factors described above suggest that oxidative stress 

is particularly signifi cant in the RPE. Indeed, it has been 

demonstrated that a variety of these oxidative stressors can 

cause RPE cell injury and death in cultured RPE cell lines 

(Lu et al 2006; Qin 2007). Once the protection afforded by 

the antioxidant system has been overwhelmed, dysfunction 

and death of RPE cells can occur. Thus, boosting the 

antioxidant capacity of these cells has the potential to prevent 

or delay AMD progression (Snodderly 1995; Winkler 

et al 1999).

Metabolic
stress
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Ischemia
Inflammation
Hypertension
Oxygen consumption
Phagocytosis
Respiratory chain inhibition

Environmental
stress

Diet
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Sunlight
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DAMPs

Enzymes
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Figure 1 Conditions that trigger retinal pigment epithelial (RPE) cell injury and subsequent release of damage-associated molecule pattern (DAMP) molecules. RPE cell injury 
is triggered by environmental stress, metabolic stress, and complement attack. Injured or dying RPE cells then produce danger signals that are defi ned as DAMP molecules. 
Some of these danger signals are intracellular molecules and others are the cleaved products of extracellular components such as extracellular matrix (ECM).
Abbreviations: HMGB1, high mobility group box 1; HSPs, heat-shock proteins; MMPs, matrix metalloproteinases.
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Complement-mediated bystander lysis
The activation of complement (McGeer and McGeer 2004) is 

a sophisticated attack system designed to destroy invaders, 

stimulate infl ammation and assist in the phagocytosis of 

waste materials. A role for the complement pathway in AMD 

was fi rst recognized through the biochemical characterization 

of the composition of drusen. By histochemical analysis 

and immunocytochemical studies drusen were found to 

contain numerous components of the complement pathway 

including complement activators, inhibitors, activation-

specifi c complement fragments as well terminal pathway 

components (Hageman et al 2001; Anderson et al 2002). 

Complement cascades consist of the classical, alternative, and 

lectin pathways (Walport 2001). Antibodies are considered 

to be the chief activators of the classical complement 

pathway while molecules, such as lipopolysaccharides, 

activate the alternative complement pathway. Once the 

complement system is fully activated, it proceeds to 

assemble the terminal components (C5b, C6, C7, C8, C9) 

into the lytic macromolecule C5b-9, known as the membrane 

attack complex (MAC) that mediates the destruction of 

the foreign bacteria and viruses. However, if host cells 

are inadequately protected, they may also suffer a MAC 

attack in a process termed bystander lysis. Under normal 

physiological conditions, RPE cells protect themselves 

from complement-mediated bystander lysis, by expressing 

high levels of complement pathway regulators, such as 

complement factor H (CFH) (Chen et al 2007; Wu et al 

2007) and CD46 (McLaughlin et al 2003; Vogt et al 2006) 

that inhibit activation of alternative pathway. However, 

acquisition of functional mutations or dys-regulation of these 

regulators during aging can lead to activation of alternate 

pathway. The Y402H polymorphism in CFH in particular 

has been proposed to be the major risk factor for acquiring 

AMD (Edwards et al 2005; Haines et al 2005; Klein et al 

2005). In addition, CFH-related proteins (CFHR) including 

CFHR1, CFHR2, CFHR3, CFHR4, and CFHR5, which lack 

the complement regulatory activity of CFH can indirectly 

modulate activation of the complement pathway, likely 

via competing with CFH (Jozsi and Zipfel 2008). Deletion 

of CFHR1 and CFHR3 has been reported to be associated 

with decreased risk of AMD. Meta-analysis reveals that 

the ORs are 0.35 and 0.63 for a Caucasian population of 

173 cases and 170 controls in the UK (Hughes et al 2006) 

and a Caucasian population of 780 cases and 265 controls 

in the US (Spencer et al 2008). Similarly, the R32G 

polymorphism in complement factor B (CFB), an activator of 

alternative pathway, is signifi cantly associated with a reduced 

incidence AMD. In a Caucasian population of 698 cases and 

282 controls evaluated at Medical Centers at Vanderbilt and 

Duke Universities, the R32Q variance was strongly associated 

with reduced risk of AMD (OR, 0.21) after controlling for 

age, the Y402H polymorphism, and smoking (Spencer et al 

2007). A similar result is obtained in the combined Columbia 

and Iowa cohorts with 551 cases and 269 controls (OR 0.32) 

(Gold et al 2006). In contrast, genotyping demonstrated 

that a single nucleotide polymorphism in Complement 

factor 3 (C3) is signifi cantly correlated with an increased 

risk of AMD (Maller et al 2007; Yates et al 2007; Spencer 

et al 2008). In combined English and Scottish groups with 

a population of 847 cases and 701 controls, the ORs for 

S/F heterozygotes and F/F homozygotes are 1.7 and 2.6, 

respectively (Yates et al 2007).

Together, these observations demonstrate a role for 

complement, particularly the alternative pathway, in the 

development of AMD. Consistent with this notion, it has been 

shown that in vitro, RPE cell synthesis of CFH is downregulated 

by direct hydrogen peroxide challenge (Wu et al 2007) or 

exposure to oxidized POS (Chen et al 2007). Furthermore, light 

exposure activates complement pathways in A2E-loaded RPE 

cells (Zhou et al 2006). Thus, it is reasonable to speculate that 

with aging, increased numbers of RPE cells could be subjected 

to bystander lysis due to oxidative stress-induced activation of 

the complement system. While the alternative pathway seems to 

play the major role in AMD, it was recently reported that mice 

immunized with mouse serum albumin (MSA) adducted with 

carboxylpyrrole, an oxidation fragment of docosahexaenoic 

acid (DHA) develop phenotypes mimicking atrophic AMD 

such as RPE cell lysis and drusen formation (Hollyfi eld et al 

2008), suggesting that the classical pathway may also be 

involved in the development of atrophic AMD.

RPE cell infl ammatory responses
Drusen biogenesis, in particular soft drusen, is a biological 

marker of atrophic AMD. Protein components of drusen 

include immunoglobulins, complement components, 

acute-phase infl ammatory response molecules, and major 

histocompatibility complex class II antigens (Johnson 

et al 2000; Mullins et al 2000). Cellular components 

of drusen include RPE debris, lipofuscin, and dendritic 

cells (DCs) (Hageman et al 2001). The mechanisms by 

which drusen is formed are poorly understood. However, 

compelling evidence from a number of laboratories suggest 

that infl ammatory responses of injured RPE cells serve 

as the initial events in drusen biogenesis (Hageman et al 

2001; Anderson et al 2002). Potential triggers of RPE cell 
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infl ammatory responses discussed here include molecules 

derived from necrotic RPE cells, complement attack, and 

oxidized adducts.

Pro-infl ammatory danger 
molecules: DAMPs
Tissue damage arising from nutrient, oxidative, genomic, or 

mechanical stress is a principal stimulus of infl ammation. 

Since this infl ammation occurs without infection, it is defi ned 

as sterile infl ammation to distinguish it from pathogen-induced 

infl ammation. Although the mechanisms that stimulate the 

infl ammatory response to injured cells remain poorly defi ned, 

progress has been made recently in our understanding of the 

process. In a fashion similar to defenses against invading 

microorganisms, the innate immune system alerts neighboring 

cells to the imminent danger by reacting to damage signals 

generated from dying cells called damage-associated 

molecular patterns (DAMPs). These signals lead to an 

infl ammatory response by releasing mediators that dilate 

local vasculature and recruit leukocytes from the blood into 

the tissue. These DAMP molecules can be in general divided 

into two categories, intracellular and extracellular DAMPs, 

based on their origin and mechanism of action. Intracellular 

DAMPs are bioactive mediators of cellular origin that directly 

stimulate cells of the innate immune system. Extracellular 

DAMPs are the cleaved fragments of extracellular components 

generated by enzymes released from dead cells.

As shown in Figure 1, intracellular DAMPs include 

the high mobility group box 1 protein (HMGB1) (Klune 

et al 2008), heat-shock proteins (HSPs) (Chen et al 

1999; Asea et al 2000), S100 proteins (Hofmann et al 1999; 

Foell et al 2007), nucleosomes (Muruve et al 2008), ATP 

(Idzko et al 2007), and uric acid (Martinon et al 2006). 

These molecules are expressed in all cell types. Most 

intracellular DAMPs exhibit a double life. As intracellular 

molecules, they play a role in cell homeostasis, for example 

as calcium binding proteins, chaperones, or chromatin-

stabilizing molecules. Once released into the extracellular 

compartment as a result of cell injury, they become ‘danger’ 

signals which serve to warn other cells and tissues of 

imminent danger by activating innate and pro-infl ammatory 

immune responses. For example, S100B, a member of the 

S100 family of calcium-binding proteins is a ligand for the 

receptor for advanced glycation endproducts (RAGE) and can 

stimulate expression of vascular endothelial growth factor 

(VEGF), transforming-growth factor-β1 and fi bronectin in 

RPE cells (Kim et al 2007; Ma et al 2007). Induction of a 

variety of cytokines by intracellular DAMPs in RPE cells 

could contribute to disease progression and potentially the 

conversion of atrophic to wet AMD.

Extracellular DAMPs are generated through the cleavage 

of extracellular matrix molecules such as collagen, hyaluronic 

acid, and heparan sulfate into pro-infl ammatory fragments 

(Wrenshall et al 1999; Johnson et al 2002; Taylor et al 2004; 

Scheibner et al 2006; Weathington et al 2006). Collagen, 

heparan sulfate, and hyaluronan are major components 

of RPE extracellular matrix that have been shown to be 

expressed in cultured RPE cells (Gross-Jendroska et al 1992; 

deS et al 2001). Degradation of extracellular matrix proteins 

is regulated by matrix metalloproteinases (MMPs), a family 

of zinc-binding, calcium-dependent enzymes (Alexander 

et al 1990). Release of MMPs from necrotic RPE cells 

would be expected to disrupt extracellular matrix, generating 

extracellular DAMPs. However, the extent to which these 

cellular triggers and the extracellular DAMPs that they 

generate contribute to the infl ammatory response in AMD 

has not yet been addressed.

The detection of danger signals is made by antigen-

presenting cells of the innate immune systems through 

receptors that recognize DAMP molecules. The known 

DAMP receptors include CD14, the NACHT-, LRR-, and 

Pyrin-domain-containing protein-3 (NALP3), P2 receptor, 

RAGE, and toll-like receptors (TLR) (Figure 2). CD14, 

NALP3, and P2 receptors detect HSPs (Chen et al 1999; 

Asea et al 2000), monosodium urate (Martinon et al 2006), 

and extracellular ATP (Idzko et al 2007), respectively. RAGE 

(discussed below) is a multi-ligand receptor for advanced 

glycation end (AGE) product, HMGB1, and S100 proteins 

(Barile and Schmidt 2007). TLRs recognize heparin sufl ate, 

HMGB1, HSP, and hyaluronate (Miyake 2007).

RPE cells make up the first line of defense against 

pathogens by expressing TLRs, which recognize microbial 

motifs. The ligation of TLRs leads to a cascade of events 

that culminates in the production of chemokines, and to 

the production of cytokines that can induce DC maturation. 

RPE cells express almost all TLR iso-forms except TLR-8 

(Kumar et al 2004). While, activation of TLR-2, 4, and 9 

have been demonstrated to result in cytokine production 

when cells are challenged with DAMP molecules in other 

systems (Scheibner et al 2006; Miyake 2007) it remains to 

be addressed whether TLRs have similar roles in mediating 

RPE cell danger responses.

Oxidized adducts
RPE cells are challenged with oxidative stress due to light 

irradiation, high oxygen consumption, and phagocytosis 
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of photo-bleached POS containing high levels of oxidized 

unsaturated fatty acids and free radicals. Many oxidized 

molecules, which are toxic to RPE cells, accumulate within 

and surround RPE cells with aging. Here we will focus our 

discussion on the relevance of AGE products, oxidized low-

density proteins (oxLDL) and carboxyethyl pyrole (CEP) 

adducts to the etiology of AMD.

AGEs are an heterogeneous group of products derived 

from nonenzymatic glycation and oxidation of amino groups 

of proteins, lipids, and nucleic acids. AGEs accumulate 

during normal aging with their formation being accelerated 

in a setting of oxidative stress and infl ammation (Schleicher 

et al 1997). There is little or no AGE products detected in 

normal retina, but expression of AGE products increases 

concomitantly with drusen formation and development of 

early atrophic AMD (Howes et al 2004). AGE products 

are also present in RPE lipofuscin, an enzymatically 

nondegradable heterogeneous mixture of numerous 

biomolecules (Schutt et al 2003). With the accumulation of 

AGE products during aging, RAGE, receptors for AGEs, 

are simultaneously induced (Yamada et al 2006). RAGE 

belongs to the immunoglobulin super-family of cell surface 

molecules that are constitutively expressed at very low levels 

in numerous cells, including Muller cells, photoreceptor cells, 

RPE cells, and vascular endothelial cells (Howes et al 2004; 

McFarlane et al 2005; Barile and Schmidt 2007). Cellular 

expression of RAGE increases upon ligand binding thus 

further amplifying cellular activation. In vivo, the levels 

of RAGE are correlated with drusen formation and early 

development of AMD (Howes et al 2004). Additionally, 

induction of AGE formation in vivo leads to the increased 

transcription of infl ammatory genes in the RPE/choroid 

(Tian et al 2005). In cultured human RPE cells, activation 

of AGE-RAGE pathway stimulates expression of VEGF 

(Ma et al 2007), platelet derived growth factor-b (Handa 

et al 1998), and production of interlukin-8 (IL-8) and 

monocyte chemotactic protein-1 (MCP-1) (also known as 

CCL2) (Bian et al 2001). Moreover in vitro, ligand-dependent 

activation of RAGE can trigger RPE cell death (Howes et al 

2004). Similarly, exposure of RPE cells to AGE-modifi ed 

P2X7 TLR2 TLR4 RAGE

• ATP
• NAD+

• HMGB1
• HSPs
• Hyaluronate

• HMGB1
• HSPs
• Heparansulfate
• Collagen-derived
• peptide

• AGE
• HMGB1
• S100
• OxLDL

NFκb

Cytokines
Chemokines
Adhesion molecules

pro-IL1β IL1β

Caspase1
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• Inflammation
• Leukocyte recruitment
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?
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Figure 2 Receptors that sense danger signals released from neighboring injured retinal  pigment epithelial (RPE) cells.  Toll-like receptors (TLRs) and the receptor for AGE 
(RAGE) can detect danger signals released from or generated by dying RPE cells. Once stimulated, TLRs and RAGE activate the transcription factor nuclear factor kappa B (NFkB), 
thereby turning on the transcription of many pro-infl ammatory genes and consequently inducing an infl ammatory response.  The DAMP molecules ATP and monosodium urate 
stimulate a pathway that works through Nod-like receptor NACHT, LRR, and PYD containing protein-3 (NALP3) and leads to the production of the proinfl ammatory cytokine 
interleukin-1β (IL-1β) and IL-18.  Those pathways surrounded by dotted lines indicate a current lack of data supporting a functional pathway in RPE cells.
Abbreviations: AGE, advanced glycation endproducts; OxLDL, oxidized low density proteins.
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matrix but not normal matrix triggers RPE cell death (Honda 

et al 2001). These observations suggest that activation 

of the RAGE axis is involved in disease progression and 

potentially in the conversion of atrophic to wet AMD. 

Consistent with this notion, transgenic expression of RAGE 

augmented blood-retinal barrier breakdown and leukostasis, 

accompanied by increased expression of VEGF and ICAM-

1 in the retina in a murine diabetic model (Kaji et al 2007). 

Moreover, these changes were signifi cantly inhibited by 

systemic administration of a soluble form of RAGE.

Oxidation of LDL generates malondialdehyde lysine 

protein adducts or 4-hydroxynoneal cysteine adducts that are 

the major modifi cations observed in RPE lipofuscin (Schutt 

et al 2003). OxLDLs have been shown to accumulate in 

Bruch’s membrane in AMD patients (Yamada et al 2008). 

Signifi cantly, treatment of RPE cells in culture with oxLDL 

alters phagosome maturation (Hoppe et al 2004) and inhibits 

phagocytosis of POS (Hoppe et al 2001), an important RPE 

cell function essential for outer segment renewal and survival 

of photoreceptors. Moreover, exposure of RPE cells to 

oxLDL induces transcriptional alterations in genes related 

to lipid metabolism, oxidative stress, infl ammation and 

apoptosis (Yamada et al 2008). Consistent with this, ingestion 

of oxidized POS stimulates production of IL-8 and MCP-1 

in cultured RPE cells (Higgins et al 2003). Additionally, as 

oxLDLs are ligands for scavenger receptors expressed on 

macrophages oxLDL accumulation leads to the recruitment 

of macrophages (Kamei et al 2007).

Proteomic analysis of drusen revealed the presence of 

a number of oxidized proteins (Crabb et al 2002). Most 

notable of these is CEP adducts. CEP adducts are uniquely 

generated by the oxidation of docosahexaenoate-containing 

lipids. Interestingly, docosahexaenoate is abundant in 

photoreceptors and is the most oxidizable fatty acid in 

humans (Fliesler and Anderson 1983). Western analysis 

and immunocytochemistry confirmed that CEP adducts 

are more abundant in photoreceptors in AMD than normal 

tissue (Crabb et al 2002; Gu et al 2003). Moreover, CEP 

immunoreactivity as well as autoantibodies to CEP was higher 

in plasma from AMD patients (Gu et al 2003). As previously 

noted, mice immunized with MSA adducted with CEP develop 

an atrophic AMD-like phenotype (Hollyfi eld et al 2008). 

Macrophages are observed in the interphotoreceptor matrix in 

these mice. Additionally, immunized mice fi x C3 in Bruch’s 

membrane (Hollyfi eld et al 2008). Interestingly, CEP modifi ed 

human serum albumin was shown to stimulate angiogenesis 

in ex-vivo models and a subretinal injection of MSA-CEP 

exacerbated laser-induced CNV in mice (Ebrahem et al 2006). 

Together, these observations implicate oxidized molecules 

in the perturbation of RPE cell function and infl ammatory 

responses observed in AMD.

Complement-driven infl ammation
Activated complement will injure host cells and induce 

infl ammatory responses under the conditions where loss of 

function mutations or downregulation of inhibitory regulators 

of the pathway occurs. In the retina, host cells are protected 

from complement attack by complement factors such as 

CFH, a negative regulator of the complement alternative 

pathway. The RPE is the major local source of CFH at the 

retina/choroid interface. Thus, mutations or downregulation 

of CFH may increase the chance of RPE cells being attacked 

by activated complement systems. During the process of 

complement cascade activation, the small fragments of cleaved 

complement components C3a, C4a, and C5a, known as 

anaphylotoxins, stimulate infl ammation. C3a and in particular 

C5a, are potent infl ammatory factors, recruiting leucocytes 

from blood and stimulating secretion of cytokines that lead 

to amplifi cation of infl ammatory responses (Ember et al 

1994; Daffern et al 1995). In cultured RPE cells, treatment 

with C5a stimulates production of IL-8 (Fukuoka and Medof 

2001; Fukuoka et al 2003) and MCP-1 (Ambati et al 2003). 

Furthermore, C3a and C5a have been shown to be present in 

drusen (Johnson et al 2001; Ambati et al 2003), supporting the 

idea that RPE cells are constantly stimulated by the presence 

of C3a and C5a, which induce the release of infl ammatory 

mediators that subsequently cause further damage to retina 

in vivo. In addition, C3a and C5a are generated early in the 

course of laser-induced CNV and activation of C3aR or 

C5aR has been shown to be required for CNV formation 

(Nozaki et al 2006). Moreover, the alternative pathway has 

been suggested to play a central role in the CNV development 

in laser-induced murine model (Bora et al 2006). Taken 

together, these results suggest that complement-driven 

infl ammation is involved in the etiology of both dry and wet 

AMD as well as progression of dry to wet AMD.

Chronic infection
RPE cells can be infected in vitro with viruses and bacteria 

such as cytomegalovirus (Bodaghi et al 1999) and Bacillus 

cereus (Moyer et al 2008). The presence of viruses in RPE 

cells has also been demonstrated in patients (Henderly et al 

1988) and in animal models (Vann and Atherton 1991). 

Additionally, pathogen replication and toxin production 

can cause RPE death (Vann and Atherton 1991; Moyer et al 

2008). Evidence is accumulating that pathogen-induced 
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chronic infection may be a novel risk factor in the etiology of 

AMD. An increase in the prevalence of higher-titer antibody 

to Chlamydia pneumoniae was found more often in wet AMD 

than in dry AMD (Miller et al 2004). Subjects with high 

antibody titers had a threefold greater risk of progression 

than those with low antibody titers (Robman et al 2005). 

Pathogen infection may stimulate macrophage activation 

and entrapment between the choroid and RPE layer. Local 

release of cytokines from these macrophages in concert 

with cytokine release from overlying RPE cells might be 

involved in the manifestation of certain AMD phenotypes. 

This is supported by the observation that infection of 

macrophages and RPE cells with C. pneumoniae in vitro 

induces production of cytokines such as VEGF, IL-8, and 

MCP-1 (Kalayoglu et al 2005). Moreover, the risk of AMD 

progression was increased by about 12-fold when, in addition 

to having the CFH C-risk allele, subjects also presented with 

high antibodies titers to the bacterial pathogen C. pneumoniae 

(Baird et al 2008). These observations suggest that infection-

induced complement activation may participate in AMD 

progression, although a causal and functional tie between 

infection and AMD remains to be established.

Recruitment of infl ammatory cells
Injury to RPE cells caused by oxidative stress induced by 

a number of processes including ischemia, photooxidative 

damage, phagocytosis, and lipofuscin toxicity, serves as the 

critical seeding event in the initiation of drusen formation 

by secreting soluble cytokines that initiate recruitment of 

macrophages and DCs (Hageman et al 2001; Holtkamp 

et al 2001). Activated macrophages and DCs have been 

found to accumulate in the subretinal space of patients with 

AMD (Gupta et al 2003). However, it is unclear whether 

endogenous macrophages serve protective or destructive 

functions in these patients. Recruited macrophages have 

been shown to be required for clearance of drusen and 

other debris (Duvall and Tso 1985). While activated 

macrophages and DCs phagocytize RPE debris they also 

produce mediators that amplify local infl ammation (van der 

Schaft et al 1993; Hageman et al 2001; Penfold et al 2001). 

In support of a protective role for these cells, impairment 

in recruitment of macrophages leads to manifestations of 

atrophic AMD in CCL2 (MCP-1) knockout mice (Ambati 

et al 2003). Consistent with this, an age-dependent 

increase in the expression of CCL2 (MCP-1) in the RPE 

and in macrophage infi ltration is observed in the choroids 

of wild-type mice (Ambati et al 2003). Additionally, 

IL-10−/− mice have signifi cantly reduced laser-induced CNV 

formation with increased macrophage infi ltrates compared to 

wild type mice. Moreover, direct injection of macrophages 

into the eye of these IL-10−/− mice inhibits CNV (Apte et al 

2006). However, depletion of macrophages is also reported 

to inhibit experimental CNV (Espinosa-Heidmann et al 2003; 

Sakurai et al 2003). These fi ndings suggest that macrophages 

can serve in both pro- and anti-infl ammatory capacities, and 

that dysregulation of clearance functions may fuel disease 

progression.

DCs are powerful antigen-presenting cells that participate in 

the induction of immunity. Histochemical studies have revealed 

that DCs are present in drusen and are thus proposed to play 

a role in drusen biogenesis (Hageman et al 2001). According 

to this hypothesis, injured RPE cells recruit and activate DCs 

which sustain and amplify the local infl ammation by producing 

inflammatory mediators, activating complement system, 

and degrading extracellular matrix. The CX3C chemokine 

receptor 1 (CX3CR1) is expressed in retinal microglia cells 

(macrophages and DCs) and mediates migration and adhesion 

of these cells in response to its ligand. Interestingly, mice 

defi cient in CX3CR1 develop some cardinal features of AMD 

with accumulation of microglia cells in the subretinal space 

at the sites of retinal degeneration and CNV (Combadiere 

et al 2007). Manifestations of AMD-like retinal lesions are 

exacerbated by further knockdown of the chemokine, CCL2 

(MCP-1). AMD lesions are found in 6-week-old CX3CR1/

CCL2 double-defi cient mice while none of the single knockout 

mice develop retinal lesions at this age (Tuo et al 2007). 

This may be because of the retention of CX3CR1-defi cient 

microglia cells at the sites of cell and/or tissue injury leading to 

sustained infl ammation. In the laser-induced CNV model, DCs 

infi ltrate transiently into the lesion sites (Eter et al 2008; Nakai 

et al 2008) and intravenous DC transplantation augments CNV 

(Nakai et al 2008), supporting a contribution of DCs to the 

development of AMD.

Recent evidence suggests that lymphoid cells may also be 

involved in the development of experimental atrophic AMD. 

When RAG-defi cient mice lacking mature lymphocytes were 

challenged with MSA adducted with CEP, unlike wild-type 

mice they failed to produce antigen-specifi c antibodies and 

fi x C3 in Bruch’s membrane. Nor did these animals develop 

an AMD-like phenotype (Hollyfi eld et al 2008).

Potential therapeutic approaches 
for atrophic AMD
Damage caused by oxidative stress and infl ammation lead 

to progressive loss of cell function and thus contributes to 

the development of atrophic AMD. Protecting RPE cells by 
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neutralizing ROS, promoting cell survival, and inhibiting 

infl ammatory responses could potentially delay the onset 

or progression of this disease. Discussed below are two 

treatment strategies: cytoprotection and anti-infl ammation 

therapy.

Cytoprotection
RPE cell death is believed to constitute the primary events in 

atrophic AMD and subsequent dysfunction and degeneration 

of photoreceptor cells lead to the loss of cone-mediated high 

resolution central and color vision. Thus, preservation of 

RPE and photoreceptor cells could help prevent progression 

of AMD.

ROS scavengers
Antioxidants have the capacity to alleviate or reduce the 

detrimental effects of ROS in response to a variety of 

stress stimuli. Extensive laboratory investigations have 

demonstrated the role of oxidative stress and the inhibitory 

effects of antioxidants on RPE cellular function (Choudhary 

et al 2005; Fernandez-Robredo et al 2005; Voloboueva 

et al 2005). Clinically, antioxidant supplements may delay 

the onset of AMD and progression to advanced AMD. The 

Age-related Eye Disease Study (AREDS) was comprised 

of 3640 participants who were randomized into cohorts 

receiving daily high-dose antioxidants (vitamin C 500 mg, 

vitamin E 400 IU, β-carotene 15 mg), or zinc (80 mg zinc 

oxide, 2 mg copric oxide), or antioxidants plus zinc or 

placebo (AREDS. 2001). With an average 6.5-year follow-

up, comparison with placebo showed a statistically signifi cant 

reduction in the development of advanced AMD in those 

patients receiving antioxidants plus zinc (AREDS. 2001). At 

5 years in the absence of supplementation of antioxidants plus 

zinc, the estimated probability of progression of participants 

with advanced AMD or vision loss due to nonadvanced AMD 

to advanced AMD in the second eye was 43%. The 5-year 

estimated probability of progression to advanced AMD in 

either eye with extensive intermediate drusen, large drusen, 

or noncentral geographic atrophy is 18% (AREDS 2001). 

Thus, people at risk of developing advanced AMD lowered 

this risk by about 25% when treated according to the AREDS 

recommendations. It has been estimated that if the 8 million 

people in the USA at risk of advanced AMD receive AREDS-

recommended supplements, 329, 000 of them would avoid 

developing advanced AMD during the next 5 years (Bressler 

et al 2003). In addition, dietary lutein/zeaxanthin intake has 

been shown to be inversely associated with the occurrence 

of geographic atrophy and large or extensive intermediate 

drusen (SanGiovanni et al 2007). Taken together these data 

demonstrate that dietary supplementation with antioxidants 

reduce the risk of progression of AMD. OT-551, a catalytic 

antioxidant with anti-infl ammatory activity has been shown 

to functionally and morphologically protect photoreceptor 

cells against acute light-induced damage in an animal model 

(Tanito et al 2007) and is currently being assessed in clinical 

trials in AMD patients with geographic atrophy (Table 1).

Induction of phase 2 antioxidant enzymes including SOD, 

catalase, glutamate cysteine ligase, and heme oxygenase-1 

by phase 2 enzyme inducers provides an alternative way to 

protect cells against ocular oxidative stress. High amounts of 

catalase (Tate et al 1995), SOD (Oliver and Newsome 1992), 

and glutathione (Newsome et al 1994; Beatty et al 2000) can 

effi ciently detoxify and remove ROS once they are generated 

in RPE cells. GSH synthesis can be induced in cultured RPE 

cells by a number of naturally occurring compounds that 

induce phase 2 detoxifi cation enzymes, including the rate-

limiting enzyme for GSH synthesis, glutamate cysteine ligase 

(Nelson et al 1999; Voloboueva et al 2005; Ha et al 2006; 

Qin et al 2006). RPE cells can be protected from peroxide-

induced damage by pre-treatment with a number of agents 

Table 1 Developing therapies for atrophic age-related macular degeneration

Compound Indications Company State of development Mechanism of activation

OT-551 Geographic atrophy Othera Phase 2 Antioxidants and 
anti-infl ammation

CNTF (NT-501) Geographic atrophy and 
retinitis pigmentosa

Neurotech Phase 2 Anti-apoptosis

JPE-1375 Geographic atrophy Jerini Pre-clinical testing C5aR antagonist

PMX-53 AMD and arthritis Arana Pre-clinical testing C5aR antagonist

POT-4 Geographic atrophy and 
infl ammatory ocular 
diseases

Potentia Phase 1 C3 inhibitor

Fenretinide Geographic atrophy Sirion Phase 2 Vitamin A receptor antagonist
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that induce GSH synthesis including dimethylfumarate 

(Nelson et al 1999), 15-deoxy-Δ12,14-prostaglandin J
2
 (Qin 

et al 2006), (R)-α-lipoic acid (Voloboueva et al 2005), or 

zinc (Ha et al 2006). Sulforaphane, a potent inducer of phase 

2 antioxidant enzymes, has been demonstrated to protect RPE 

cells from photooxidative damage in vitro (Gao and Talalay 

2004; Tanito et al 2005; Zhou et al 2006) and in vivo (Tanito 

et al 2005). A single dose of oltipraze, another potent phase 

2 enzyme inducer, signifi cantly stimulated GSH level in 

lymphocytes isolated from human blood (Gupta et al 1995), 

and induced a four- to fi vefold increase in mRNA transcripts 

for glutamate cysteine ligase and quinone reductase in colon 

mucosa (O’Dwyer et al 1996). These fi ndings provide a 

strong rationale to test whether phase 2 enzyme inducers, 

such as sulforaphane and oltipraz, can elevate the antioxidant 

enzymes in the retina and whether they can prevent oxidative 

damage in humans at risk for AMD.

Antiapoptotic approaches
In addition to the maintenance of antioxidant capacity, RPE 

cells and photoreceptors can be persevered by stimulating 

cell survival signaling and/or inhibiting death pathways.

RPE cell survival
Cell viability is precisely regulated by the balanced expression 

of pro- and antiapoptotic factors such as the Bcl-2 family of 

proteins. As expected, ectopic expression of antiapoptotic 

proteins Bcl-2 renders RPE cells resistant to A2E-mediated 

toxicity (Sparrow and Cai 2001) whereas knockdown of 

Bcl-xL expression leads to RPE cell death (Zhang et al 2007). 

Neuroprotectin D1 (NPD1), a metabolite of DHA that is rich 

in the retina, has been shown to protect against RPE cell 

apoptosis induced by A2E, a byproduct of phototransduction 

(Mukherjee et al 2007), as well as hydrogen peroxide and 

tumor necrosis factor-α (Mukherjee et al 2004). NPD1 and 

DHA protect RPE cells via upregulation of antiapoptotic 

proteins and downregulation of pro-apoptotic proteins of Bcl-2 

family (Mukherjee et al 2004, 2007). Pigment epithelium-

derived factor (PEDF), secreted by RPE cells, is a trophic 

factor required for RPE cell function and survival under stress 

conditions. PEDF can protect RPE cells from oxidant-mediated 

barrier dysfunction (Tsao et al 2006) and death (Ho et al 2006). 

ERK activation and NPD1 production stimulated by PEDF 

appear to be involved in mediating PEDF’s cyto-protective 

effects (Tsao et al 2006; Mukherjee et al 2007). Interestingly, 

PEDF levels in RPE cells are signifi cantly reduced in AMD 

patients (Bhutto et al 2006). Thus, increases in PEDF levels 

could potentially delay the onset of RPE abnormalities and 

progression to RPE cell atrophy.

Photoreceptor cell survival
RPE cell death initiates the development of atrophic AMD. 

However, loss of vision is caused by the death of rod and 

cone photoreceptors. Thus, the preservation of macular 

photoreceptors is a valid anti-AMD strategy. Many trophic 

factors can support photoreceptor survival (LaVail et al 

1992; Steinberg 1994). Among them, PEDF and ciliary 

neurotrophic factor (CNTF) have demonstrated consistent 

photoreceptor protection. PEDF protects cultured retinal 

neurons from hydrogen peroxide injury (Cao et al 1999) 

and inhibits macrophage-driven infl ammation (Zamiri et al 

2006). In vivo, intravitreal injection or intraocular gene 

transfer of PEDF rescues photoreceptors from light-induced 

damage (Cao et al 2001; Imai et al 2005). Moreover, a PEDF 

(82–121) peptide is as effective as full-length PEDF in 

protecting retina from ischemia and longer protection can be 

achieved if delivered in poly(lactide-co-glycolide) (PLGA) 

nanospheres (Li et al 2006). Taken together with the RPE 

protective effects, these observations suggest that PEDF is 

a promising therapeutic treatment for AMD.

CNTF is another trophic factor that has reached clinical 

development for retinal degeneration (Sieving et al 2006). 

Injection or gene transfer of CNTF protects photoreceptor 

degeneration in animal models (LaVail et al 1998; Huang 

et al 2004). Delivery of CNTF by encapsulated cell-based 

technology reduces photoreceptor degeneration in animal 

model of retinitis pigmentosa (Tao et al 2002). This delivery 

system, which can deliver CNTF to the vitreous for at least 

1 year (Thanos et al 2004), is currently being evaluated 

clinically.

Anti-infl ammation therapy
Steroids
Clinical studies have indicated that corticosteroid, 

triamcinolone acetonide (TA), has the capacity to reduce 

the permeability of the outer blood–retinal barrier (Antoszyk 

et al 1993), promote resorption of subretinal exudation 

(Penfold et al 1995) and downregulate infl ammatory stimuli 

(Tanner et al 1998). After 18 months of treatment with TA 

in patients with exudative AMD, the rate of development of 

severe visual loss in treated patients was 30%, compared with 

55% for historical controls (Challa et al 1998). Anecortave 

acetate is another angiostatic steroid that might be clinically 

effi cacious for maintaining vision, preventing severe vision 

loss, and inhibiting subfoveal CNV lesion growth (Russell 

et al 2007). Anecortave acetate was approved for use in wet 

AMD in Australia in 2005 with approval pending in the US. 

A third steroid, Posurdex (dexamethasone implant) is in 
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phase III clinical trial for retinal vein occlusion and diabetic 

macular edema. Although no clinical data are available 

yet, the role of chronic infl ammation in atrophic AMD 

pathogenesis (Hageman et al 2001; Anderson et al 2002) 

has led to the consideration that atrophic AMD patients 

might be expected to benefi t from anti-infl ammatory therapy 

that attenuates the local infl ammation, thereby preventing 

progression of the disease.

Nonsteroidal anti-infl ammatory drug
Epidemiology and animal studies suggest that nonsteroidal 

anti-infl ammatory drugs (NSAIDs) can delay the onset and 

progression of Alzheimer’s disease (AD) (Townsend and 

Pratico 2005; McGeer and McGeer 2007). Amyloid-β (Aβ), 

a major trigger of AD pathogenesis, is present in drusen 

from retinas with AMD (Dentchev et al 2003). Owing to the 

compositional similarities between drusen and AD-associated 

plaques, atrophic AMD patients might be expected to benefi t 

from NSAID therapy that may attenuate local infl ammation 

(Mullins et al 2000; Luibl et al 2006). Consistent with this, 

accumulation of Aβ causes RPE atrophy and basal deposit 

formation, characteristic features of human AMD (Yoshida 

et al 2005). Moreover, the addition of Aβ to cultured 

RPE cells upregulates expression of VEGF (Yoshida et al 

2005; Ma et al 2007) and downregulates PEDF expression 

(Yoshida et al 2005). The anti-infl ammatory compounds 

eicosapentaenoic acid and astaxanthin have been shown 

to inhibit cytokine production, macrophage activation, and 

CNV formation in mice (Koto et al 2007; Izumi-Nagai et al 

2008). Consistent with these observations, the prevalence 

of AMD in rheumatoid arthritis patients with long term 

NSAID use is about 10-fold lower than in general populations 

of similar racial origin (McGeer and Sibley 2005). Thus, 

additional studies of the potential utility of NSAIDs for the 

treatment of AMD patients are warranted.

Complement pathway regulators
As discussed in the section III, certain CFH haplotypes are 

associated with increased frequency of AMD (Hageman 

et al 2005; Hughes et al 2006). In contrast, the L9H variant 

of CFB, which participates in the amplification of the 

complement alternative pathway, confers a signifi cantly 

reduced risk for AMD (Gold et al 2006). Conceivably, 

delivery of a protective variant of the CFH or CFB through 

gene therapy or as a biologic could block activation of the 

alternative pathway and serve as an anti-AMD strategy. 

Alternatively, as CFB and CFD are both serine proteases 

small-molecule, inhibitors of these proteins could be used 

to inhibit activation of the alternate pathway.

Reduction of the CFH-associated AMD may also be 

achieved by inhibiting targets downstream the point of 

conversion for all three complement pathways. JPE-1375 

and PMX53 are two small molecule peptidomimetic 

antagonists targeting the C5a receptor (Schnatbaum et al 

2006) and are in preclinical evaluation for AMD. POT-4 is 

a cyclic peptide capable of binding to human C3 and prevents 

its activation, resulting in broad and potent complement 

activation inhibition (Nilsson et al 1998). POT-4 is the fi rst 

complement inhibitor that has entered into a Phase I clinical 

trial for AMD (Table 1).

Other novel therapeutic approaches
Besides antioxidant and anti-inflammation therapies, 

other novel therapeutic approaches are currently under 

development for the treatment of atrophic AMD. Lipofuscin 

in RPE cells is an autofl uorescent lipid-retinoid aggregate 

derived from visual cycle retinoids in photoreceptor cells. 

The major component of lipofuscin is A2E, a product of 

condensation of two molecules of all-trans-retinal with one 

molecule of phosphatidylethanolamine (Sparrow et al 2003). 

Lipofuscin accumulation in RPE cells is the key feature of the 

aging retina (Sparrow and Boulton 2005). In vitro, A2E can 

inhibit lysosomal function, perturb cholesterol metabolism, 

cause light-induced oxidative stress to RPE cells as well as 

activate the complement pathway (Bergmann et al 2004; 

Zhou et al 2006; Lakkaraju et al 2007). Therefore, reducing 

A2E accumulation in RPE cells by inhibiting the visual cycle 

could lead to delay in visual loss in the patients with atrophic 

AMD. Fenretinide, a synthetic nontoxic retinoid, competes 

with all-trans-retinol binding to retinol binding protein, 

thereby reducing ocular all-trans-retinol uptake and inhibiting 

the visual cycle (Radu et al 2005). Thus, administration of 

fenretinide effectively blocks A2E production and lipofuscin 

accumulation (Radu et al 2005). Fenretinide is currently in 

clinical trials to evaluate its effi cacy on AMD patients with 

geographic atrophy.

Issues and challenges
Etiology of atrophic AMD
Despite an increase in our understanding of the immunologi-

cal factors involved in atrophic AMD, this knowledge has 

yet to be translated into new treatments. One possible reason 

for this is our lack of understanding of disease chronicity, 

and the causative rather than risk factors that contribute to 

disease. Do drusen materials in AMD represent an abnormal 

or normal accumulation of metabolic debris? Why do soft 

drusen appear in macular area? What specifi c factors lead 
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to atrophy of the RPE and photoreceptors? The answers 

to these questions could one day be exploited to provide 

ideas for novel therapies. Another issue is the variability in 

disease characteristics at different stages of progression. As 

our understanding of the natural history of atrophic AMD 

grows, eligibility criteria for clinical trials might be tailored 

depending on the mechanism of action of a particular drug 

candidate.

Animal models
A variety of animal models have been developed to 

investigate the pathogenesis of atrophic AMD and test 

therapeutic compounds to ameliorate the pathology. 

Inflammatory models of AMD have been generated to 

elucidate the role of infl ammation in the etiology of AMD. 

One such model can be induced by immunization of mice 

with MSA adducted with CEP, an oxidation fragment of 

DHA (Hollyfi eld et al 2008). Mice challenged with the CEP 

produce antigen-specifi c antibodies, develop drusen under 

the RPE and lesions mimicking atrophic AMD. Moreover, 

macrophages are observed in the interphotoreceptor matrix 

in these mice (Hollyfield et al 2008). As complement 

deposition is also observed below the RPE in this model 

the phenotype appears to be driven by activation of this 

pathway. Other infl ammatory models include mice with 

knockouts of the chemokine receptor CX3CR1 with CCL2 

(MCP-1) or CCR2 in combination with its ligand, CCL2 as 

well (Ambati et al 2003; Combadiere et al 2007; Tuo et al 

2007). These knockout mice display many of the features of 

AMD including the accumulation of lipofuscin, A2E, drusen 

as well as photoreceptor atrophy and CNV. Additionally, in 

the case of the CX3CR1 knockouts, subretinal accumulation 

of microglial cells was observed (Combadiere et al 2007; 

Tuo et al 2007).

There are also a number of noninfl ammatory models that 

have been developed. The sodium iodate model involves the 

selective induction of RPE necrosis followed by photoreceptor 

degeneration in a pattern resembling gyrate atrophy of the 

choroid and retina (Kiuchi et al 2002). The mcd/mcd mouse 

was generated using a dominant negative form of Cathepsin 

D which is required for RPE phagocytosis of shed POS 

membrane discs (Rakoczy et al 2002). This transgenic mouse 

model manifests features of AMD including lipofuscin 

accumulation and both photoreceptor and RPE atrophy. 

The SOD1-defi cient mouse represents a novel model of 

ROS-mediated retinal degeneration, which similarly displays 

features of AMD such as drusen, RPE atrophy, and CNV 

(Imamura et al 2006; Hashizume et al 2008).

The extrapolation of experimental data obtained from 

animal studies to explain the in vivo pathological conditions 

must be done with caution. First, the mouse retina does not 

contain a specialized macula, thus, a murine model is not 

an exact replica of the human condition. Moreover, the 

components of drusen described in many animal models have 

not been molecularly characterized to confi rm a similarity 

with human drusen. In this regard, some progress has been 

made to identify a nonhuman primate model of AMD. 

A cynomolgus monkey pedigree has been identifi ed that 

develops early onset macular degeneration (Umeda et al 

2005). Interestingly, many components in the drusen of these 

animals are comparable to those found in human drusen 

(Umeda et al 2005). Furthermore, the loss of ultrastructure 

and function as well as progression of the disease is similar 

to that observed in humans (Dawson et al 2008).

AMD is a multi-factor disease; however, the available 

animal models only evaluate the contributions of one or at 

most two risk factors. Thus this limits the utility of these 

animal models of AMD for drug testing. Frequently, in 

the case of genetically modifi ed animals the penetrance 

of the observed phenotype is not complete. Moreover, 

the appearance of many of the AMD-like features occurs 

over a protracted period. Thus, a large number of animals 

and a prolonged treatment regimen would be required to 

test potential drug candidates. Efforts to accelerate the 

manifestation of the measurable features of these models 

are ongoing. Crossing various transgenic and knockout 

mice may accelerate the course of the disease. Alternatively, 

modifi cation of environmental factors such as diet or the 

addition of other risk factors could similarly hasten disease 

progression. For example, the addition of paraquat to 

SOD1-deffi cient mice has been shown to result in changes in 

electroretinography measurements within two weeks (Dong 

et al 2006). These efforts have the potential to enhance the 

utility of these models for drug development signifi cantly.

Conclusions and future studies
Currently, most treatments for AMD such as laser photo-

coagulation, photodynamic therapy, surgery, and anti-VEGF 

antibodies benefi t patients in advanced stages of the disease. 

The progressive nature of atrophic AMD and the extensive cell 

damage in affected individuals at the time of diagnosis indicates 

that the future of atrophic AMD therapeutics is in the prevention of 

progression of the disease. Any drug for disease prevention needs 

to fulfi ll two crucial requirements. First, the drug should target 

a key mechanism responsible for the initiation or progression of 

the disease process. Second, the drug should have minimal side 
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effects and be tolerated for extended periods. To date no such 

therapy is available for atrophic AMD. Thus, educating people 

about the risk factors associated with this disease such as smoking 

and diet is an important consideration at present. The development 

of pharmacological approaches to prevent onset or progression 

of AMD faces signifi cant hurdles including a lack of understand-

ing of the molecular mechanisms underlying the disease and 

the paucity of experimental models for testing potential drugs. 

Although a causal relationship based upon mechanistic studies 

of oxidative injury and infl ammation has not been completely 

established, the cumulative evidence presented in this review 

suggests a strong correlation between oxidative stress, infl ammation 

and AMD. This represents a signifi cant step towards the goal of 

identifying more effective treatments for this disease.
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