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Abstract: Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category 

A biothreat agent. However, despite 15 years of strong government investment and intense 

research focused on the development of a US Food and Drug Administration-approved vaccine 

against Ft, the primary goal remains elusive. This article reviews research efforts focused on 

developing an Ft vaccine, as well as a number of important factors, some only recently rec-

ognized as such, which can significantly impact the development and evaluation of Ft vaccine 

efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-

approved Ft vaccine is likely to be forthcoming and the potential means by which this might 

be achieved.
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Introduction
Fifteen years after the 2001 attacks on the World Trade Center in New York City, when 

it was recognized that organisms such as Francisella tularensis (Ft) could be utilized 

as a biothreat agent, a US Food and Drug Administration (FDA)-approved vaccine for 

tularemia remains an elusive goal. This is despite extensive financial investment since 

2001 in research and development of such a vaccine. The question thus remains as to 

whether an Ft vaccine is still possible. This review discusses what we have learned 

since 2001, the confounding factors that may have helped to produce for some a sense 

of paralysis in the tularemia vaccine field, and whether an FDA-approved tularemia 

vaccine remains plausible.

Microbiology and etiology of Ft
Based on DNA similarity and fatty acid composition, the genus Francisella has been 

classified into three species: F. tularensis (Ft), F. philomiragia, and F. hispaniensis.1 

Ft is further classified into five subspecies of Ft tularensis (also called Ft type A), 

Ft holarctica (Ft type B), Ft novicida, Ft mediasiatica, and a variant of Ft holarc-

tica found in Japan.2 In the case of F. novicida, it should also be noted that based on 

the high degree of genetic relatedness between Ft and F. novicida, F. novicida was 

assigned as a subspecies of Ft in 2006. However, there was a formal objection in 

favor of F. novicida being designated as its own species in 2010,3 in which it was 

suggested that the original assignment was based solely on genetic relatedness and 

did not take into consideration the phenotypic and genomic difference between Ft and 

F. novicida. However, despite this objection, the original assignment of F. novicida 
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as a subspecies of Ft was reaffirmed.4 More importantly, 

of the aforementioned species, only types A and B are the 

major causes of human disease, whereas F. novicida is viru-

lent in mice but avirulent in humans.5 F. philomiragia is a 

muskrat pathogen. Ft type A is a highly virulent organism 

exclusively found in North America and is associated with 

rabbits and a wide range of arthropod vectors.6 Ft type A is 

also more genetically diverse and evolutionarily older than 

the moderately virulent Ft type B.2 Furthermore, molecu-

lar characterizations have identified two distinct clades or 

genotypes of Ft type A that differ in their geographic loca-

tion and virulence.7,8 In contrast, Ft type B is generally less 

virulent and is associated with semiaquatic rodents, hares, 

ticks, and mosquitoes. It is widely distributed throughout 

much of the northern hemisphere and is the only species 

found in Europe.6 In addition, molecular typing studies have 

identified three distinct biovariants of Ft type B that differ 

in antibiotic resistance pattern and geographic locations in 

Europe.9 The live vaccine strain (LVS) is an attenuated 

variant of the Ft subspecies holarctica. However, Ft type A 

represents the greatest concern in terms of bioterrorism and 

human disease in that it is highly virulent and intradermal 

(ID) or inhaled exposure to just ten to 50 bacteria can cause 

severe infection and death.10,11

The immune response to Ft and 
correlates of protection
It is generally believed that immune responses to Ft are 

induced through traditional mechanisms of immune response 

induction, which include Ft antigen (Ag) uptake, process-

ing, and presentation by B-cells, dendritic cells (DCs), 

macrophages (MØs), and subsequent Ft-specific T- and 

B-cell activation. Thus, the key to developing an effective 

vaccine against Ft is a clear understanding of those immune 

components required for protection. Furthermore, the route 

of infection, as well as bacterial virulence, will ultimately 

determine the degree of protection achieved by a given mode 

of vaccination. Ft can infect the host through multiple routes: 

ulceroglandular (through skin scratch), pneumonic (through 

lungs), oropharyngeal (through gastrointestinal tract), ocu-

loglandular (infection through conjunctiva), and typhoidal 

(ingestion may be the mode of transmission).12–14 It is also 

important to note that although all subspecies of Ft have 

been demonstrated to infect humans, most studies focused 

on understanding the immune response to Francisella have 

utilized mice. In addition, it is important to note that the 

type A strain is highly virulent in both humans and mice.2,15 

Similarly, type B Ft holarctica strain, which includes Ft LVS, 

is virulent in both mice and humans, with mice, however, 

being much more susceptible.5

Humoral immunity
The role of humoral immunity in the resolution of infec-

tion and protection against Ft remains controversial, in part 

because of the conventional wisdom asserting that cellular 

immune responses are more important for protection against 

intracellular pathogens.16 However, a number of investiga-

tions have demonstrated that humoral immunity can play 

a role in protection against tularemia, consistent with the 

observation that Ft has been shown to have an extracellular 

phase.16–18 Furthermore, studies have demonstrated that both 

mouse and human antibody (Ab) responses are similar in 

terms of Ag recognition, with the Ab being predominantly 

directed against bacterial lipopolysaccharides (LPS). In the 

case of humans, a robust Ab response is generated within 

2 weeks of immunization or infection, while the peak Ab 

response in mice is 7 weeks after infection.16,19–22 Further-

more, studies have clearly shown a role for both immuno-

globulin (Ig) A and IgG in protection.16,19,22–31 Specifically, 

passive immunization of naive mice with immune sera from 

Ft LPS, heat-killed Ft LVS, or live Ft LVS-immunized 

animals affords protection against a subsequent Ft LVS 

infection. Nevertheless, Ft SchuS4-challenged mice are not 

protected.16,22,30,31 Moreover, passive transfer of Ft-specific 

IgM or IgG provided protection against Ft LVS infection.25 

Furthermore, serum isolated from humans immunized with 

Ft LVS induced significant protection in mice against Ft LVS 

infection.29 Most significantly, however, passive immuniza-

tion of naive mice with immune serum from the mice that 

survived Ft SchuS4 infection following levofloxacin treat-

ment exhibited protection against Ft SchuS4 challenge in 

recipient mice.27 In other studies, passive transfer of Ab 

specific for the membrane protein fraction of Ft LVS alone 

could augment low-dose gentamicin treatment and provide 

protection against an Ft SchuS4 respiratory challenge, when 

administered on days 1 and 4 post-challenge.32 Additional 

studies supporting a role for Abs demonstrated that vaccine-

induced immunity against pulmonary tularemia is lost in 

IgA-deficient mice.16,23,24,28 In the case of IgG-mediated 

protection, it is also important to note that Fcγ receptors 

(FcγRs) are required.16,22 Specifically, Kirimanjeswara et al22 

demonstrated that intraperitoneal inoculation of naive recipi-

ent mice with immune sera from Ft LVS-immunized animals 

could successfully protect recipient wild-type (WT) mice 

against an IN Ft LVS challenge. The protective capability 

of the Ft LVS-specific immune sera was, however, lost when 

Vaccine: Development and Therapy 2016:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

10

Sunagar et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


FcγR common γ-chain knockout (KO) mice were used as 

naive recipients.22

In conclusion, while it is generally accepted that Abs do 

mediate protection in the case of Ft LVS (type B) challenge, 

in the case of Ft SchuS4 (type A) challenge, the importance 

of Ab is more controversial. Specifically, it remains unclear 

that generation of Ab alone via vaccination will be sufficient 

to provide full and consistent protection against Ft type A 

challenge.

Cell-mediated immunity
It has been believed for more than 2 decades that cell-medi-

ated immunity (CMI) plays a critical role in protection against 

tularemia.16 This thinking was due, in part, to the intracel-

lular nature of Ft infection. Thus, early studies investigating 

the role of CMI have focused on CD4+ and CD8+ T-cells,33 

although emerging evidence is also showing critical roles for 

DCs, MØs,34 polymorphonuclear neutrophils (PMNs), and 

natural killer (NK) cells.35

With regard to T-cells, it has also been suggested that 

T-cells are the primary cell population responsible for mediat-

ing immunity against Ft.16 Specifically, both CD4 and CD8 

T-cells can proliferate and produce interferon-γ (IFN-γ) in 

response to a number of Ft proteins.33 Additionally, depletion 

of CD4 T-cells, CD8 T-cells, or IFN-γ abolishes vaccine-

induced immunity against type A Ft SchuS4 infection.36,37 

In addition, studies have demonstrated that passive protec-

tion observed when administering Ft-specific Ab to naive 

recipient mice is dependent on IFN-γ and mature T-cells, in 

that mice depleted of IFN-γ or athymic nude mice were not 

protected against Ft LVS infection following adoptive transfer 

of mouse immune sera.16,25

Infected MØs are the predominant site of bacterial 

replication within the host, somewhat surprisingly, deple-

tion of alveolar MØs using liposomal clodronate does not 

impede disease progression and death in mice infected 

IN with Ft LVS.22 This result is likely due, in part, to Ft’s 

ability to replicate in other host cells, including epithelial 

cells and DCs.35,38–40 Specifically, multiple studies have 

found that Ft can infect DCs, interfere with DC maturation, 

and thereby dampen the immune response during the first 

72 hours of infection, leading to unhampered growth and 

spread to systemic organs.16,35,39,41 Nevertheless, it has also 

been demonstrated in the clodronate study that alveolar MØs 

are critical for passive Ab-mediated protection, since when 

these cells are depleted, protection is lost.22 In this regard, it 

has also been shown that alveolar MØs do internalize and 

kill Ft, when treated with IFN-γ and immune sera.22 Thus, 

MØs play a role in pathogen clearance, which is optimal 

when Ft-specific Ab and IFN-γ are present.

In the case of PMN, their role in resolving Ft infection, 

similar to that of Ab’s role in resolving Ft type A infection, 

is controversial. While Ab-mediated depletion of PMN 

suggests these cells are essential for surviving a primary intra-

dermal (ID) or intravenous (IV) Ft infection, this is not the 

case for intranasal (IN) challenge.35,42,43 It has been demon-

strated that neither depletion nor recruitment of PMN to 

the lungs of Ft SchuS4 IN-infected mice impacts bacterial 

burden or survival time.43 Interestingly, IFN-γ-producing 

PMNs are detectable at the site of infection within 72 hours, 

suggesting a potentially protective role for cytokines 

released by these cells.16,35,43,44 It has also been demonstrated 

that Ab-mediated protection of passively transferred Ft LVS-

specific immune sera is lost when PMNs are depleted and 

mice are subsequently challenged IN with Ft LVS.22

NK cells are an early responder to Ft infection and thus 

thought to be an early source of IFN-γ.45,46 Furthermore, NK 

cells are key for regulating hepatic granuloma formation, 

which helps in controlling bacterial spread.47 Interestingly, 

NK cell depletion decreases mean survival time following 

primary infection but does not affect vaccine-induced 

immunity, since fewer NK cells are recruited to the lung of 

immunized and challenged mice compared to unimmunized 

controls.23,45 This suggests that while NK cells are early 

responders to infection and produce IFN-γ, they are only nec-

essary following a primary exposure of naive individuals.

In conclusion, with regard to the aforementioned cells 

and vaccine development, it appears clear that the induc-

tion of memory T-cells, and in particular IFN-γ-producing 

T helper 1 (Th1) cells, is likely to be key to developing 

an effective vaccine strategy against Ft. In support of this 

contention, studies have also shown that while both Ab and 

IFN-γ can be critical for vaccine-induced protection,24 the 

need for Ab can be overcome, when IFN-γ levels are suf-

ficiently high.28 Nevertheless, evidence also suggests that 

Ab can play a protective role by supplementing the protec-

tive impact of IFN-γ in vaccine-induced protection against 

Ft type A infection.

The immune response in human 
Ft infection and vaccination
The human immune response to Ft infection and vaccination 

has been reviewed elsewhere.48 Briefly, in the case of natural 

infection, Ft-specific IgM, IgG, and IgA Abs are detectable 

∼2 weeks after infection. Similar to Ft infection in mice, 

the majority of the Ab response is directed to Ft LPS.21 
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Also similar to that observed in mice, ex vivo production of 

Th1-type cytokines such as IFN-γ, TNF-α, and IL-2 by CD4 

and CD8 T-cells is observed by restimulated lymphocytes 

obtained from tularemia-infected individuals.49,50 Similar to 

natural infection, in the case of vaccination utilizing Ft LVS 

administered via scarification, Ft-specific IgM, IgA, and IgG 

Abs are detected in serum 2 weeks post vaccination, while 

lymphocytes from vaccinated individuals restimulated ex 

vivo produce Th1-type cytokines, in particular IFN-γ.20,51 

However, it is also important to note that in the case of Ab 

responses, similar to mice infected with Ft, the generation of 

anti-Ft Abs is not necessarily predictive of protection against 

subsequent infection with virulent Ft type A organisms.

Ft vaccine strategies
Due to its high infectivity, high mortality rate at a very low 

infectious dose (ten to 50 organisms), and its ability to be 

aerosolized, Ft has been designated a category A biothreat 

agent by the Centers for Disease Control and Prevention 

(CDC). The need for a vaccine is further emphasized by the 

fact that although WT strains of Ft do respond to antibiotic 

treatment, which includes fluoroquinolones, tetracyclines, 

and the aminoglycosides,52 Ft strains have been engineered 

to be antibiotic resistant.14,15 Furthermore, despite extensive 

research and investment over the last 15 years, there remains 

no FDA-approved vaccine. Thus, there remains a critical need 

for an effective Ft vaccine. Various strategies, which have 

been used to accomplish this, are discussed subsequently.

Live attenuated vaccines
Live attenuated vaccines have shown the greatest promise 

thus far, although concerns about reversion remain a sig-

nificant roadblock to their use as an Ft vaccine. A number 

of live attenuated vaccine candidates were made from Ft 

holarctica by the Soviets in the 1940s and 1950s.53 However, 

Ft LVS is the only vaccine available in the West to combat 

tularemia.54 However, although Ft LVS does provide partial 

protection against a type A challenge in humans,54 it is not 

licensed in the USA, primarily due to the uncertainty regard-

ing its source of attenuation and it instability in culture.53,55 

However, despite the fact Ft LVS is not approved as a vaccine, 

considerable additional money and effort have been devoted 

to the development of a safe and efficacious attenuated Ft 

vaccine using Ft LVS (Table 1), F. novicida (Table 2), and 

Ft SchuS4 (Table 3). Our own studies (unpublished data) 

and that of others56 using a SodB mutant of Ft LVS have 

clearly demonstrated the potential for generating protection 

against a primary infection, as well as high-dose secondary 

exposure to Ft SchuS4, when immunizing with this attenu-

ated organism (Figure 1). Thus, should a fully protective 

attenuated vaccine be developed, in which safety concerns 

are eliminated or further minimized, possibly via multiple 

targeted/well-defined mutations, this approach could still 

produce a strong Ft vaccine candidate.

Inactivated Ft vaccines
Over 70 years ago, Foshay and his research group attempted 

to develop the first killed vaccine for tularemia.57,58 Although 

Foshay’s vaccine preparations were able to protect nonhu-

man primates against Ft SchuS4,53 they exhibited signifi-

cant toxicity, including the generation of necrotic lesions. 

In addition, there was no significant protection observed 

in laboratory workers or in subsequent controlled animal 

trials.57,58 Consistent with the latter study, more recent 

attempts at developing a killed Ft vaccine have also met 

with mixed success.

Table 1 Ft LVS-based live attenuated vaccines

Vaccine strain 
(Ft LVS)

Growth 
medium

Animal 
model

Sex Vaccine dose 
(route)

Ft LVS challenge 
% protection 
(dose, route)

Ft SchuS4 challenge % 
protection (dose, route)

References

Ft LVS MHB C57BL/6 F 100 CFU (IN) ND 100% (25 CFU, IN) 131
SodB MHB C57BL/6 M/F 1,200 CFU (IN) 100% (1.2×106 CFU, IN) 40% (103 CFU, IN) 56
ClpB BHI 

CDM
C57BL/6 F 5×104 CFU (IN) 100% (5×103 CFU, IN) 10% (30 CFU, IN) 132

emrA1 MHB C57BL/6 F 106 CFU (IN) 100% (107 CFU, IN) 15% (17 CFU, IN) 87
CapB MHB BALB/c F 106 CFU (IN) ND 100% (10 LD100, aerosol) 133
clpB NA BALB/c NA 5×104 CFU (IN) ND 30% (86 CFU, IN) 134
dsbA McLeod BALB/c F 106 CFU (SC) ND 100% (100 CFU, SC)

50% (100 CFU, IN)
135

wbtA CHAH BALB/c M 1.5×107 CFU (IN) 100% (25 LD50, IN) 25% (10 CFU, IN) 136
Wzy MHB BALB/c M 2.4×107 CFU (IN) 100% (1.2×105 CFU, IN) 84% (8 CFU, IN) 137

Abbreviations: Ft, Francisella tularensis; LVS, live vaccine strain; MHB, Mueller Hinton Broth; F, female; ND, not determined; IN, intranasal; M, male; BHI, brain heart infusion; CDM, 
Chamberlain’s defined medium; NA, not available; SC, subcutaneous; CHAH, cysteine heart agar containing 2% hemoglobin; LD50, median lethal dose; LD100, absolute lethal dose.
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While incorporation of Freund’s adjuvant into killed 

(phenol–merthiolate treated) Ft LVS or Ft SchuS4 did not 

augment Ft vaccine efficacy,59 a heat-killed Ft LVS vaccine 

formulated with IL-12 expressed in a vasicular stomatitis 

virus-based vector generated enhanced Ft LVS clearance 

versus nonadjuvanted vaccine.31 In another study, mucosal 

vaccination with inactivated Ft (iFt) LVS (paraformaldehyde 

or UV treated) in combination with IL-12 conferred .90% 

protection against lethal Ft LVS challenge. This protection 

was correlated with enhanced bacterial clearance, reduced 

tissue inflammation, and increased Ft-specific serum IgG and 

IgA Ab responses. However, this strategy proved ineffective 

at protecting against an Ft SchuS4 challenge.23 Similarly, 

while Eyles et al60 showed that intramuscular immunization of 

BALB/c mice with iFt adjuvanted with immune-stimulating 

complexes (ISCOMS) or preformed ISCOMS admixed with 

immunostimulatory CpG oligonucleotides provided robust 

protection against respiratory challenges with Ft holarctica 

HN63, the same vaccine formulation did not protect against 

a low-dose aerosol challenge with Ft SchuS4.

An alternative approach to the use of adjuvants involved 

the use of FcγR-targeted monoclonal antibody (mAb)-iFt 

Table 2 F. novicida-based live attenuated vaccines

Vaccine strain  
(F. novicida)

Growth 
medium

Animal model Sex Vaccine dose  
(route)

Ft LVS challenge % 
protection  
(dose, route)

Ft SchuS4 challenge % 
protection  
(dose, route)

References

iglB: fopC TSB C57BL/6 NA 103 CFU (oral) 80% (3.5×104 CFU, IN) ND 138
IglD TSB 

CDM
BALB/c NA 9.7×108 CFU (IN) ND 0% (103 CFU, IN) 139

Fischer rats (344) F 105 CFU (IT) ND 100% (104 CFU, IT)
NHP M/F 108 CFU (BR) ND 83% (103 CFU, aerosol)

iglB TSB Fischer rats (344) F 107 CFU (oral or IT) ND 50% (∼104 CFU, oral or IT) 140
iglB:fljB TSB BALB/c NA 103 CFU (oral) 83% (8.5×104 CFU, IN) ND 141

Fischer rats (344) NA 107 CFU (oral) ND 83% (104, IT)

Abbreviations: F. novicida, Francisella novicida; Ft, Francisella tularensis; LVS, live vaccine strain; TSB, tryptic soy broth medium; NA: not available; IN, intranasal; ND, not 
determined; CDM, Chamberlain’s defined medium; F, female; IT, intrathecal; NHP, nonhuman primate (cynomolgus macaque); M, male; BR, bonchoscopy route.

Table 3 Ft SchuS4-based live attenuated vaccines

Vaccine strain 
(Ft SchuS4)

Growth 
medium

Animal model Sex Vaccine dose 
(route)

Ft LVS 
challenge % 
protection 
(dose, route)

Ft SchuS4 challenge 
% protection 
(dose, route)

References

FTT1103 MHA 
TSB 
CDM

C57BL/6 NA 107–108 CFU (IN) ND 100% (37–68 CFU, IN) 142

BALB/c NA 107–108 CFU (IN) ND 75% (37–68 CFU, IN)
clpB CHAH 

MHB
C57BL/6 F 105 CFU (ID) ND 0% (100 CFU, IN) 114

BALB/c F 105 CFU (ID) ND 80% (100 CFU, IN)
iglD TSB 

CDM
BALB/c NA 4.8×106 CFU (IN) 0% (IN) ND 139

Fischer rats (344) 107 CFU (IT) ND 50% (104 CFU, IT)
FTT0369 
FTT1676

MHB BALB/c F 50 CFU (IN or ID) ND 
ND

90% (50 CFU, IN) 100% 
(50 CFU, ID)

143

capB CDM 
BCGA

BALB/c F 104 CFU (SC) ND 60% (103, SC) 144

FTT0918 CHAH 
MHB

BALB/c F 105 CFU (ID) ND 100% (500, SC) 145

ggt CDM 
BCGA

BALB/c  
F

8.75×105 CFU (SC)  
ND

100% (102, SC) 146

guaBA 
aroD

BHI NZw rabbit F 109 CFU (scarification) ND 27%–36% (104, aerosol) 147

Note: Data from Reed et al.147

Abbreviations: Ft, Francisella tularensis; LVS, live vaccine strain; TSB, tryptic soy broth; CDM, Chamberlain’s defined medium; NA: not available; IN, intranasal; ND, not 
determined; CHAH, cysteine heart agar containing 2% hemoglobin; MHB, Mueller Hinton Broth; F, female; ID, intradermal; IT, intrathecal; BCGA, blood cysteine glucose 
agar; SC, subcutaneous; BHI, brain heart infusion; NZw, New Zealand white; MHA, Mueller Hinton Agar.
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immune complexes (ICs). Such ICs, when administered IN, 

induced full protection against Ft LVS challenge and up to 

50% protection against Ft SchuS4 challenge.24 Consistent 

with this increased protection, enhanced humoral and cellular 

immune responses were also observed, as compared to iFt 

administered alone.24 Bitsaktsis et al28 also demonstrated that 

the addition of CTB adjuvant to iFt could similarly induce 

complete protection of mice challenged with Ft LVS and par-

tial protection of Ft SchuS4-challenged mice. The observed 

protection also correlated with enhanced production of IFN-

γ, as was also the case in the studies using mAb-iFt ICs as 

immunogen.24 Thus, while killed vaccines are less likely to 

generate a strong cellular immune response, as apposed to 

attenuated vaccines,23 successful protection against an Ft 

type A strain was observed. Importantly, it is also believed 

that killed vaccines provide a significant safety advantage 

versus attenuated vaccines.

Subunit vaccines
From the perspective of manufacture, safety, and FDA 

approval, an ideal vaccine against tularemia would use 

a recombinant subunit approach, which would eliminate the 

potential for reversion that could occur with live attenuated 

vaccines and significantly reduce the potential for toxicity, 

which could occur with killed vaccines. However, to date, no 

Ft proteins capable of generating strong protective immunity 

against an Ft type A challenge have been identified.15,33,61–63 

Additionally, while LPS purified from Ft LVS, or as a part of 

a crude membrane fraction, has been utilized as a vaccine can-

didate and offers some protection against Ft LVS infection, 

LPS has proven ineffective as a protective immunogen against 

Ft SchuS4 challenge, making the development of a subunit 

vaccine against Ft difficult at this time.5,19,30,64–67 Additional 

efforts to develop such a vaccine have included vaccination 

of mice with O-Ag capsular polysaccharide in the presence 

of adjuvant or chemically conjugated to bovine serum albu-

min, which enhanced protection against Ft LVS but failed 

to protect mice against aerosol challenge with more virulent 

strains of Ft.64,68 Additionally, while immunization of mice 

with Ft LVS LPS in the presence of PorB, a porin produced 

by Neisseria meningitidis and a TLR2 ligand, enhanced the 

survival of mice challenged with Ft LVS, additional studies 

are still required to determine whether this approach is effec-

tive against the more virulent subspecies of Ft.69 Furthermore, 

an LPS immunogen derived from Ft SchuS4 did not generate 

protective immunity against a subsequent Ft SchuS4 chal-

lenge, although it did provide protection when mice were 

challenged with Ft holarctica.67,70

Other bacterial components have also been investigated 

for use in a subunit vaccine but with limited success. Tul4, 

an Ft surface lipoprotein, when administered alone did not 

generate immune responses capable of controlling Ft LVS 

bacterial replication following IV challenge.71 In addition, 

immunizing mice with Tul4 and DnaK, an Ft heat shock 

protein, in the presence of GPI (a semi-synthetic triterpene 

glycoside adjuvant) could also induce significant protection 

of mice against a respiratory challenge with Ft LVS. How-

ever, the effectiveness of this approach in protecting against 

an Ft  SchuS4 challenge was not reported.72 Other studies 

utilized intraperitoneal immunization with Ft outer membrane 

proteins emulsified in Freund’s adjuvant, which did protect 

∼50% of mice challenged IN with Ft SchuS4, although the 

specific protein responsible for this protection was not identi-

fied.66 Because of the abundance of the Ft outer membrane 
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protein A (FopA) and the knowledge that FopA-specific Abs 

are found in sera of recovering patients, Hickey et al73 sought 

to determine whether FopA would provide protection against 

Ft challenge. Although FopA immunization in the presence 

of IL-12 and aluminum hydroxide did protect mice against 

IN or ID Ft LVS challenge, it did not provide protection 

against an ID Ft SchuS4 challenge.73 Thus, while numerous 

studies have focused on utilizing/identifying Ft-Ag that could 

be incorporated into an Ft subunit vaccine, the key require-

ment for a subunit vaccine, identification of a single Ag that 

confers effective protection against type A Ft strain, still has 

not been met.

Bacterial and viral vector vaccines
Attenuated microorganisms such as bacteria and viruses have 

been successfully used as vehicles to deliver vaccine Ags. 

Furthermore, the advent of genetic engineering has facili-

tated the alteration of pathogenic microorganisms, thereby 

attenuating them and allowing them to serve as vehicles for 

heterologous Ags. In addition, intrinsic characteristics of 

microorganisms, such as LPS and other pathogen-associated 

molecular pattern molecules, enable such vehicles to evoke 

strong innate immune responses, which can in turn guide 

a robust adaptive immune response against the target Ag(s)/

organism.74,75 A number of microbes have been developed for 

this purpose: Salmonella, Listeria monocytogenes,76 Vibrio 

cholerae, lactic acid bacteria,77 Bordetella pertussis,78 and 

Mycobacterium bovis,79 and viruses, such as adenovirus, 

retrovirus, lentivirus, cytomegalovirus, and Sendai virus.75 

However, to date, only a few attempts have been made to 

develop a tularemia vaccine using microbial vectors. Jia et al 

used L. monocytogenes to deliver a number of Ft proteins. 

However, only the expression of IglC by this organism led to 

100% protection against lethal Ft LVS challenge. However, 

the results of the type A challenge are open to interpretation, 

in that although immunization with the vector-expressing 

IglC provided 80%–100% protection, immunization with the 

vector control, which lacked the Ags, generated 40%–50% 

protection.80 In another study, Fulop et al81 used Salmonella 

enterica serovar Typhimurium to deliver Ft FopA protein. 

However, this vaccine failed to induce significant protec-

tion against Ft LVS challenge. More recently, Banik et al 

used TMV as a vaccine vehicle for OmpA, DnaK, and Tul4 

Ags. They incorporated these Ags into the TMV vector 

either together in a single virion (monoconjugate vaccine) 

or in separate virions (multiconjugate vaccine), which were 

then mixed to introduce all three Ags into the host. Both 

strategies elicited moderate levels of protection against 

a high-dose challenge with Ft LVS.82 Thus, despite some 

promising results with Ft LVS challenge, this approach has 

also failed to provide an effective vaccine strategy against 

Ft type A strains. As with subunit vaccines, this failure 

may also primarily stem from the lack of identified Ft Ags 

capable of inducing protection against the highly virulent 

type A Ft strains.

FcγR-targeted vaccines
Targeted vaccines direct an immunogen to a specific immu-

nological target, such as a specific cell type or receptor, in 

order to stimulate an enhanced host immune response. One 

of the primary functions of FcγR is to mediate internaliza-

tion (phagocytosis), processing, and presentation of Ag.24,83,84 

Consistent with this function, Rawool et al24 demonstrated 

that paraformaldehyde iFt, when administered IN in the 

form of mAb-iFt IC, induces full protection against Ft LVS 

challenge and partial protection against Ft SchuS4 challenge, 

as apposed to that of iFt alone, which provided 50% and 

0% protection, respectively. Consistent with the increased 

protection, humoral and cellular immune responses were 

also enhanced, and the use of traditional adjuvant was not 

required.24 In regard to mechanisms involved in the FcγR-

enhanced protection against Ft challenge, Iglesias et al 

demonstrated that when administered IN, the transport of 

iFt from the nasal  passage to the nasal associated lymphoid 

tissue is significantly enhanced, when in the form of mAb-

iFt. In addition, the rate of iFt binding and internalization by 

antigen-presenting cells (APCs) is also significantly enhanced, 

as well as the length of time over which the iFt is presented 

by APCs to T-cells is extended.85 These studies were also fol-

lowed up by more extensive mechanistic studies focused on in 

vivo responses to IN immunization with mAb-iFt versus iFt. 

Specifically,  Bitsaktsis et al86 demonstrated that as apposed 

to IN administration of iFt alone, direct targeting of iFt to 

FcγR via mAb-iFt IC elicits a higher frequency of activated 

DCs within the lung of mAb-iFt-immunized mice follow-

ing Ft challenge. The number of IFN-γ producing effector 

memory CD4 T-cells is also increased in this case, via an IL-

12-dependent mechanism.86 Finally, studies by Suresh et al87 

also indicate that similar FcγR targeting of a live attenuated 

Ft vaccine can result in improved vaccine efficacy when 

utilizing a live attenuated mAb-Ft IC vaccine followed by 

Ft SchuS4 challenge. Specifically, the authors demonstrated 

that an oxidant-sensitive Ft LVS mutant (emrA1) administered 

IN could extend median time to death following a subsequent 

Ft SchuS4 challenge, as compared to unvaccinated controls.87 

They went on to show that time to death was further extended 

when the emrA1 mutant bacteria was delivered in the form 

of mAb-emrA1 Ft IC, providing additional evidence for 
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the benefits of FcγR-targeted vaccines in the generation of 

enhanced immunity against Ft.87 Nevertheless, it is also 

important to note that mAb-iFt IC can engage both activat-

ing FcγR and the inhibitory FcγR (FcγRIIB). Importantly, 

the latter could thus limit the level of immune enhancement/

protection, generated by mAb-iFt immunogen. In this regard, 

using FcγRIIB KO mice, Franz et al88 demonstrated this was 

in fact the case, suggesting that if an FcγR-targeted vaccine 

could be developed, which engages the activating FcγR, but 

not FcγRIIB, the enhanced immunity and protection observed 

with mAb-iFt IC could be significantly improved.

DNA vaccines
The primary advantages of DNA vaccines are that they are 

simple and relatively cheap to manufacture, as compared 

to conventional vaccines (whole cell or protein based). In 

addition, DNA has a higher shelf life and can be stored at 

room temperature, making its transport and storage more 

cost effective.89 More importantly, DNA vaccines induce both 

Ab-mediated immunity and CMI,89 the latter being critical for 

protection against tularemia.56 However, despite the apparent 

advantages of DNA vaccines over conventional vaccines, 

efforts to develop a DNA vaccine against tularemia are lim-

ited. In one such study, a DNA vaccine using T-cell epitopes 

(identified by their reactivity to T-cells of previously infected 

humans) induced proinflammatory cytokines and protection 

against Ft LVS challenge. However, protection against type A 

Ft infection by this vaccine was not determined.90 A similar 

study using another set of epitopes also generated protection 

against lethal Ft LVS challenge but failed to protect mice 

against a type A Ft challenge. The latter vaccine included 

CD8 T-cell epitopes, which induced a strong CD8 T-cell 

response but only limited CD4 T-cell responses.91

Major factors influencing Ft vaccine 
efficacy and vaccination studies
In addition to the Ag/immunogen utilized, a number of other 

key factors influence Ft vaccine efficacy, which include 

bacterial strain, growth conditions of the attenuated or killed 

vaccine and/or challenge strain, the genetic background of the 

animal model, and sex. Furthermore, the lack of experimental 

consistency and consideration of such factors (Tables 1–3) 

have only served to muddy the water in terms of the success-

ful development of a tularemia vaccine.

Impact of bacterial strain
Bacterial strain dictates not only virulence but also, when 

used as an attenuated or killed vaccine, the level of protection 

generated. The best example in regard to strain differences 

impacting virulence is Ft LVS (type B) versus Ft SchuS4 

(type A). While Ft LVS is lethal in mice, it is not lethal in 

humans and has thus been used as an attenuated vaccine for 

humans.54 In contrast, Ft SchuS4 is highly virulent in mice 

and humans.8 However, despite extensive investigations over 

the last 15 years, the precise reasons for this difference remain 

unknown. More recent studies have also revealed differing 

levels of virulence between the type A subpopulations A1a, 

A1b, and A2. Human infections due to A1b resulted in sig-

nificantly higher mortality (24%) than those caused by A1a 

(4%) and A2 (0%).8 These observations are further supported 

by primary infection studies using C57BL/6 mice, in which 

mice infected with A1b died significantly earlier than those 

infected with strains A1a or A2.92,93 A similar tendency has 

been noticed following vaccination in which mice infected 

with two distinct type A strains, Ft FSC033 and Ft SchuS4, 

exhibited increased susceptibility of both naive and Ft LVS-

immunized mice (BALB/c and C57BL/6) by Ft FSC033 

versus Ft SchuS4.94 Furthermore, a more recent study showed 

that subcutaneous vaccination with a sublethal dose of a 

highly virulent Ft LVS strain is capable of protecting BALB/c 

mice against respiratory challenge with a virulent type A 

strain.95,96 Similar results were observed using C57BL/6 mice 

vaccinated with two different strains of Ft LVS, which dif-

fered in their median lethal dose (LD
50

). Specifically, 100% 

of mice vaccinated with the highly virulent strain of Ft LVS 

survived Ft SchuS4 challenge, whereas mice vaccinated 

with a less virulent strain of Ft LVS strain all succumb to 

Ft SchuS4 infection. Consistent with the latter observation, 

earlier studies by Eigelsbach et al reported the existence of 

two different colony variants of the prototypical virulent 

type A Ft SchuS4 and type B Ft LVS strains. These variants 

were identified on the basis of colony morphology (rough 

colonies versus smooth colonies) and their appearance (blue 

versus gray).53,55,97 In the latter case, WT SchuS4 and Ft LVS 

appear blue and the variants gray. These phenotypic differ-

ences were also linked to differences in virulence, as well as 

immunologic properties. In regard to virulence, the Ft LVS 

gray variants exhibited less virulence, as well as being less 

efficacious in protection against the virulent Ft type A strain 

challenge studies compared to blue variants.53,55,98 However, 

as noted throughout this review, the most important aspect 

of these strain differences is that the majority of protective 

Ft vaccines using an Ft LVS type B challenge fail to gener-

ate similar protection, when using an Ft type A challenge. 

Nevertheless, current evidence tends to indicate that dif-

ferences in virulence are largely due to intrinsic properties 
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of the bacterial strains and are not directly related to host 

sex, susceptibility, genetics, or otherwise failed immune 

responses.8 However, regardless of the cause of the strain 

differences in virulence, the use of an Ft type A challenge to 

accurately identify potential vaccine candidates and evaluate 

Ft vaccine efficacy is generally required.

Impact of bacterial growth medium
Immunogens used as attenuated or killed vaccines must 

first be grown in vitro. However, culture medium has been 

shown to have a profound impact on the set of proteins 

expressed by microbes.99 Thus, the choice of medium can 

significantly alter the antigenic composition and efficacy 

of whole cell-based attenuated and killed vaccines. For 

example, M. bovis (BCG) used in human vaccination is grown 

in Sauton medium.100 However, research laboratories use 

Middlebrook 7H9 medium.101 BCG grown in Middlebrook 

7H9 and Sauton media exhibits different protein expres-

sion profiles and different levels of sensitivity to reactive 

nitrogen intermediates.102 This difference is also reflected in 

its protective efficacy, as BCG grown in Middlebrook 7H9 

medium confers better protection compared to BCG grown 

in Sauton medium. Moreover, the elevated protection gen-

erated by BCG grown in Middlebrook 7H9 medium is also 

associated with higher numbers of Mycobacteria-specific 

TH17 cells and higher Ab levels.101 Similarly, a number 

of other microbes have been reported to differentially 

express immunogenic molecules, depending on the growth 

medium.103–107 Ft grown in vitro in Mueller Hinton Broth 

(MHB) expresses a distinct set of genes as compared to those 

obtained from tissues or MØs following Ft infection.108 In 

addition, MHB-grown Ft (Ft-MHB) can induce production 

of select proinflammatory cytokines, while Ft obtained from 

Ft-infected animals or MØs exhibit a reduced ability to do 

so.109,110 Importantly, Ft grown in brain heart infusion (BHI) 

medium in vitro (Ft-BHI) exhibits a protein expression and 

proinflammatory cytokine pattern more closely resembling 

that of Ft obtained from DCs or MØs in vivo.99,108 Ft-BHI and 

Ft-MHB also differ in their ability to interact with comple-

ment and Ft LPS-specific Abs, with Ft-MHB being more 

reactive. The altered immune responses to Ft-MHB versus 

Ft-BHI can be attributed to differential protein expression, 

surface carbohydrates expression, and structural integrity.99 

With this in mind, we have investigated the efficacy of Ft 

LVS-based vaccines generated in MHB versus BHI and 

have found that while Ft-MHB is more protective in mice 

challenged with Ft LVS (manuscript in preparation), Ft-BHI 

is a more protective immunogen following an Ft SchuS4 

challenge (Figure 2). These findings once again emphasize 

the importance of challenge strain, as well as the growth 

medium, when evaluating Ft vaccine efficacy.

Impact of animal model
The murine model
The murine model is of particular interest in this regard, since 

the majority of the studies focused on Ft vaccination and 

infection are done using the mouse model, and in particular 

C57BL/6 or BALB/c mice. The genetic background of the 

individual strains of mice can have a significant impact on 

the outcome of both the immune response and survival, in 

murine models of infectious disease and vaccination.111–113 

More specifically, it has been demonstrated that C57BL/6 

mice are more susceptible to Ft infection and less easily pro-

tected against challenge with the highly virulent type A Ft, as 

apposed to BALB/c mice. Specifically, ID immunization of 

BALB/c mice with Ft LVS generates protective immunity 

against a successive ID challenge but not a respiratory chal-

lenge with type A Ft.96 In contrast, similarly, immunized 

C57BL/6 mice are not protected against either ID or respi-

ratory challenge with the same Ft challenge organism.114 

Similarly, ID vaccination with SchuS4-clpB (a heat shock 

protein mutant) protects BALB/c but not C57BL/6 mice 

from a subsequent respiratory challenge with Ft SchuS4. 

The increased susceptibility of C57BL/6 mice to tularemia 

compared to that of BALB/c mice has been attributed to 

the increased IFNγ and pulmonary IL-17 levels observed 
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in the lungs of C57BL/6 mice.114 There are numerous fac-

tors, in addition to increased IFNγ and pulmonary IL-17 

levels, observed in the lungs of C57BL/6 mice that may 

also explain the differences in susceptibility of vaccinated 

C57BL/6 versus BALB/c mice. More severe tissue damage 

is observed in C57BL/6 mice than BALB/c mice, following 

pulmonary infection.115 It has also been demonstrated that 

C57BL/6 mice favor the development of a Th2 phenotype 

in the lung versus the more protective Th1 response.111,116 It 

is also possible that Ft LVS vaccination fails to induce and 

maintain sufficient numbers of Ag-specific memory T-cells 

in the lungs of C57BL/6 mice.36,117 Collectively, this suggests 

that BALB/c mice, following vaccination, develop a more 

protective immune response to subsequent Ft infection as 

compared to that of C57BL/6 mice. An additional example 

of this finding has also been observed with C3H/HeN versus 

BALB/c mice. Intradermal immunization with a sublethal 

dose of Ft LVS produced reduced survival in C3H/HeN ver-

sus BALB/c mice, receiving an aerosol Ft SchuS4 challenge. 

Consistent with the latter, BALB/c mice immunized ID with 

the SchuS4-clpB mutant also exhibited increased survival 

as compared to C3H/HeN mice. However, in contrast to the 

aforementioned observation, oral priming and boosting of 

C3H/HeN mice with SchuS4-clpB mutant resulted in signifi-

cantly longer survival than that of BALB/c mice following 

an aerosol Ft SchuS4 challenge.118 Whether such differences 

help or hinder Ft vaccine development is likely to depend 

on the approach. By studying such differences, one may 

more easily identify correlates of protection. However, the 

more limited the genetic diversity of the animal model being 

used, in particular as it applies to major histocompatibility 

complex Class I and Class II expression, the more likely one 

may fail to identify the vaccines that are most efficacious in 

an outbred population, such as humans.119

Additional animal models
The majority of Ft research has been, and continues to be, 

carried out in mice. However, vaccine approval will ultimately 

require studies be verified in additional animal models. In 

this regard, an extensive review of such animal models for 

tularemia has been written.120 These animal models include 

monkey, rat, rabbit, guinea pig, and marmoset.120,121 In the 

aforementioned review, it was concluded that significantly 

more information on how species, including the rat, rabbit, 

and guinea pig, respond to Ft infection was needed, including 

a database containing clinical, pathological, and microbio-

logical information, in order to effectively assess strengths 

and weaknesses of each animal model. In addition, each 

animal model has specific advantages and disadvantages, 

which must be considered in the context of the specific goals 

of animal studies being conducted.

Impact of sex
It is well established that sex-dependent host factors can sig-

nificantly impact susceptibility to infection. Multiple studies by 

various research groups have reported sex-based susceptibility 

to numerous pathogens and infectious diseases. In general, 

males of many species are more susceptible than females to 

bacterial, viral, and fungal infections.122–124 However, studies 

on sex bias in tularemia infection have not been published. 

Nevertheless, clinical incidence and progression of tularemia 

in endemic areas has been shown to be significantly higher 

in males than in females in all age-groups except children 

(aged 5–9 years). While this may reflect, in part, differences in 

pathogen exposure through hunting and outdoor professional 

activities (CDC, http://www.cdc.gov/tularemia/statistics/

agesex.html),125 in male versus female susceptibility could 

also be a contributing factor. We have observed for the first 

time that while both naive male and female C57BL6 mice 

are equally susceptible to Ft LVS infection, prior immuniza-

tion with iFt or live Ft vaccine results in a sex-based immune 

response and protection in the case of both Ft LVS126 and Ft 

SchuS4 challenge (Figure 3). Specifically, vaccinated male 

mice develop severe clinical disease and exhibit a significantly 

higher mortality rate, which correlates with increased tissue 

destruction, a higher bacterial burden, and weight loss, as 

compared to immunized female mice. Importantly, this implies 

that tularemia vaccine efficacy will vary based on sex, which 

has been observed in clinical trials involving other infectious 

agents.127–130 Thus, development of a successful vaccine against 

tularemia will require an understanding of the impact sex has 

on vaccine-induced protection against this organism, with sex 

differences necessarily being a serious consideration in any 

future tularemia vaccine development studies.

Paralysis or progress: what does 
the future hold for Ft vaccine 
development?
Despite 15 years of intense research focused on the devel-

opment of an effective vaccine against the highly virulent 

type A Ft, a fully protective, FDA-approved vaccine remains 

elusive. While attenuated vaccines have provided the most 

promising results, with a relatively large selection of 

potential candidates, concerns over safety and in particular 

reversion, represent significant impediments to the licensure 

of an attenuated Ft vaccine. Some promising results have 
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also been obtained with killed vaccines, in particular when 

targeting iFt to FcγR IN. However, a number of limitations 

remain to be overcome in this regard as well. First, 100% 

protection against the type A strain of Ft (SchuS4) has not 

been achieved in this case. Furthermore, the formation of 

mAb-iFt IC can vary significantly from batch to batch, and, 

as a result, the degree of protection observed can also vary 

significantly, also leading to significant difficulties with 

regard to vaccine reproducibility and consequently FDA 

approval. Thus, in this case, it will be necessary to devise 

an FcγR-targeting vaccine strategy, which can be more eas-

ily produced, is more well defined, and in addition engages 

activating FcγR without engaging the inhibitory FcγR 

(FcγRIIB). In fact, such a vaccine for Ft is currently being 

developed in our laboratory. In regard to subunit vaccines, 

this represents the ideal approach in terms of cost, safety, 

and production and could be accomplished using either 

a protein or DNA vaccine approach. However, the primary 

limiting factor in both cases is the lack of an identified 

protective Ft Ag to incorporate into such a vaccine. Given 

the lack of progress over the last 15 years in this regard, the 

incorporation of multiple Ft Ags may provide an alterna-

tive means of generating an effective subunit vaccine. Thus, 

despite the absence of success thus far, a number of viable 

options still exist to produce a fully protective Ft vaccine. 

Furthermore, a number of published studies, many of which 

are listed in Tables 1–3, and Figures 1–3 presented in this 

review demonstrate protection against Ft type A challenge 

following vaccination is possible.

With regard to future studies focused on Ft vaccine devel-

opment, it is also clear that a number of important factors, 

such as bacterial strain, growth medium, the genetics of the 

animal model being used, and sex, can impact protection 

and must be considered. As indicated in Tables 1–3, these 

factors vary widely between studies and laboratories and 

may explain inconsistencies in protection studies observed 

between laboratories. Thus, it will ultimately be necessary 

to identify the optimal conditions in each of these cases and 

consistently use those conditions in evaluating Ft vaccine 

efficacy.

Conclusion
Given the large number of studies that have generated some 

level of protection against the type A strain of Ft and the many 

options still available to improve Ft vaccine efficacy, progress 

is being made and it would appear likely that an effective 

vaccine against Ft will be forthcoming, although additional 

money, time, and research effort will be required.
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